
SC/MP Elektor Emulator V0.9 Background Info

This Webpage is dedicated to the very first CPU I ever used and with which I build
two homebrew systems. Over the last couple of years I've been working (hap-
hazardly) on an emulator for this CPU. As of now I think the emulator functions well
enough to put it up for those users that want to try it. However I will not make any
guaranties to it's reliable functioning yet. The program must considered to be in the
alpha-test phase.

SC/MP Emulator Downloads

Download
Elektor
Emulator

The Emulator was written in Visual Basic 6.0 and needs the required runtime-
files which is also available
http://121.73.5.55/scamp/files/SCMP/

Download
NIBL
Emulator

The NIBL emulator was send to me by Henri Mason. He wrote this emulator
in Microsoft Visual C++ and integrated the NIBL ROMS. This means that it
runs the NIBL very tiny BASIC. When I get to it and I can find my old
National Semiconductor documentation I will scan some more info on the
NIBL stuff and make it available here
http://121.73.5.55/scamp/files/SCMPNIBL/

Preface

In this documentation you will find technical background information on the SC/MP-
CPU (say SCAMP) from National Semiconductor. This is additional information for
those who want to work with the SC/MP Emulator. We will cover some history,
hardware info, PIN-OUT-description, CPU-register-set, addressing-modes, the
instruction-set and some sample programs. Below is a screendump of the emulator.

http://121.73.5.55/scamp/files/SCMP/
http://121.73.5.55/scamp/files/SCMP/
http://121.73.5.55/scamp/files/SCMP/
http://121.73.5.55/scamp/files/SCMPNIBL/
http://121.73.5.55/scamp/files/SCMPNIBL/
http://121.73.5.55/scamp/files/SCMPNIBL/

National Semiconductor introduced the SC/MP-In April 1976, almost 25 years to this
day. It was intended for small industrial controllers, appliances and entertainment
devices. The acronym SC/MP stand for Small Cost-effective Micro Processor. It
needed few external components by the standards of those days and was easy to
program. Nowadays one would use small embedded controllers like PICs or
804X/805X-chips for the same purposes.

In The Netherlands the SC/MP was frequently used in climate control applications
used in the greenhouses of The Westland region near Delft and The Hague. In 1977
Elektor Magazine devoted a substantial number of issues to the SC/MP so the
reader could get first-hand knowledge of a new phenomenon; "The
Microprocessor". The Elektor design came in two versions. The first design is as
emulated by me (although my emulator has many features not covered in the
original hardware). The second design featured a hexadecimal keyboard and 8x 7-
segments-led display. And had a true monitor program in ROM, cassette interface
and the option to connect a VDU.

Eventally I build both designs, but the first version was my virgin experience with
computer hardware and it stuck. So from a nostalgic point of view I found it worth
while to devote some time over the last couple of years to write the emulator. It is
written in Visual Basic 6.0 and the reader is free to examine and fiddle with the
source-code.

The SC/MP microprocessor blockdiagram & pinouts

In the right part of the above image you can see that the SC/MP has 40 pinouts. At
the left a block diagram of the SC/MP-Is shown.

The SC/MP has a rather mini-computerlike architecture and can address a total of
65536 bytes memory locations by means of a 16-bit address-bus. Because only 12
of these address lines are directly connected to pinouts, simple applications could
disregard the 4 MSB-address lines that were multiplexed on the data bus during the
NADS-signal. This would result in a design with a lower chipcount. The 65k memory
locations are divided in 16x 4096-bytes called pages. Only a limited number of
memory reference instructions can cross a page boundary, so the SC/MP was often
used with rather limited amount of memory.

My most complicated design featured 9Kbytes of RAM and Tiny-basic in 4K ROM. It
was hooked up to a VDU, an ASR33 Teletype and had a cassette-interface for
storage. Nevertheless in 1978 I was the first at my school to deliver notes and
projects in a typed form and had some crude textprocessing software on this
SC/MP-system to pull it off.

The SC/MP-chip was developed in two versions. The SC/MP-I in P-MOS
technology had a positive power supply of 5 Volts and a negative supply of 7 Volts.
Later National Semiconductor introduced the SC/MP-II that was made in N-MOS
technology and had a single 5 Volt power need. Three of the signals on the SC/MP-
II were logically reversed (i.e. BREQ became NBREQ) so the SC/MP-II is not 100%
pin-compatible with the SC/MP-I. The SC/MP-II could be clocked with a four times
higher frequency (4 MHZ) but this was internally divided by two, so the SC/MP-II
was effectively 2x faster than the SC/MP-I. So back then kludging a SC/MP-II in
your SC/MP-I system certainly was an option, double speed .. Wow!

Design Basics

In the diagram below a simple SC/MP system is shown. Nowadays this logic could
be implemented on one chip a 1000 times over, and you would still have space to
add additional features. (grin)

The SC/MP is connected by means
of an addressbus and a databus to
a ROM and 2 RAM chips. The
program in ROM first has to be
developed in a development-
system. Possible variations on this
theme could be the addition of a 7-
segment LED-display and a
keyboard to facilitate a user-
interface. In a controller application
one might want to add a few solid-
state-relays to switch a large load.
The SC/MP has 3 direct outputs
(FLAGS) that could be used for this.
It even has a rudimentary serial I/O
capability on chip that could be
turned in to a very crude Analog-to-
Digital-Converter (ADC). Nice for
measuring temperature or other
analog data that doesn't require
high speed sampling.

Another variation on the above scheme that gathered some fame was the MK14,
developed by Science of Cambridge Ltd, which was a company of Sir Clive Sinclair.
(see picture). There is also an emulator for the MK14 by Paul Robson (available in
the file-section of my website: http:/files/Emulator/).

The Elektor design on which my emulator is based did not require a monitor-
program in ROM. By fiddling with the address- and data switches you could dump
(latch) binary data straight into the 256-bytes of RAM and then run the program.
Just like an old minicomputer or an Altair. My emulator has the added features of
loading and dumping memory image or loading a small pseudo-assembly program
into RAM, but on the real thing you had to fiddle with dip-switches each time you
wanted to work with it, and no way to save your work. (arrrhhh!!). Needless to say I
got rather proficient at thinking in binary and hexadecimal.

OK, The SC/MP was not exactly a powerfull microprocessor as compared with
contemporary chips like the P4 and the Athlon, but at the time it was affordable (~
U$25,-) in relation to CPUs like the 8080 for which you would still had to fork out
U$100 and which also required a lot of additional chips to make a basic system.

The SC/MP only an instructionset of 46 basic instructions and was rather easy to
program at the binary level. Remember you needed to hand-assemble all programs
on a 8080 that would have been a major task for a startup like me! All in all it was a
nice learning experience.

Multi-processor support

There is one feature of the
SC/MP that is not widely
known: It has build-in multi-
processor capabilities. You
can actually connect up to
three SC/MP chips in one
simple system and let them
run on the same address-
and databus cooperating in
the execution of their task.
The SC/MP contains logic
for a BUS-request and
BUS-grant system that
enables 3 SC/MPs to
access the busses in a
synchronised daisy-chain
fashion. Propably more
than three SC/MP could be
connected in this way but

this would saturate the use of the bus and outweigh the advantage of using
additional chips. Nevertheless multiprocessing build-in was quite a advanced
feature in 1976.

The multi-processor arbitration logic can also be abused to implement a DMA
(Direct Memory Access) transaction but save the arbitration logic all DMA-logic must
be implemented external to the CPU with other of the shelf logic. Some 8080
support chips can be used in conjunction with the SC/MP.

http://121.73.5.55/scamp/files/Emulator/

Pinouts

In order for the SC/MP to easily communicate with the outside world the SC/MP has
three outputlines directly connected to pinouts (Flags 0,1 & 2) and two inputlines
(Sens A & B). Sense A can also be used as an interupt request line in the interupt
enable flag in the status-register is set. Furthermore it has a build-in serial I/O
capability by means of the SIN and SOUT lines that can shift data in and out of the
extension-register. Al lot of applications used one of the flags and one of the sense-
lines (Sense B) as an additional serial interface under program control. In this way I
was later able to hook up a VDU (simple terminal) and a cassette-interface. The
VDU could even be switched for the ASR33 teletype to allow for hardcopy.
Remember that all these facilities came directly from the SC/MP chip, save for
some buffering devices. The SC/MP signals are TTL-compatible and could drive a
load of 2 to 4 74LSXX devices without buffering. Where speed was not a great
factor CMOS-logic could be used to diminish loaddriving needs. The chip was rather
rugged and could sustain a lot of abuse, altough I did mange to blow up a flag-
output line once.

The table below describes the various SC/MP signals and pinouts.

(A preceding "N" in the signal mnemonic signifies a negative active signal.)

Mnemonic Functional Name Description

NRST Reset Input Set high for normal operation. When set low, aborts in-
process operations. When returned high, internal
control circuit zeroes all programmer-accessible
registers; then, first instruction is fetched from memory
location &H0001

CONT Continue Input When set high, enables normal execution of program
stored in external memory. When set low, SC/MP
operation is suspended (after completion of

current instruction) without loss of internal status

NBREQ * Bus Request
In/Output

Associated with SC/MP-Internal allocation logic for
system bus. Can be used as bus request output or
bus busy input. Requires external load resistor to Vcc

NENIN * Enable Input Associated with SC/MP-Internal location logic for
system bus. When set low, SC/MP-Is granted access
to system busses. When set high, places system
busses in high-impedance (TRI-STATE) mode.

NENOUT * Enable Output Associated with SC/MP-Internal allocation logic for
system bus. Set low when NENIN is low and SC/MP-
Is not using system busses (NBREQ-high. Set high at
all other times.)

NADS Address Strobe
Output

Active-low strobe. While low, indicates that valid
address and status output are present on system
busses.

NRDS Read Strobe
Output

Active-low strobe. On trailing edge, data are input to
SC/MP from 8-bit bi-directional data bus. High-
impedance (TRI-STATE) output when

input/output cycle is not in progress.

NWDS Write Strobe
Output

Active-low strobe. While low, indicates that valid
output data are present on 8-bit bi-directional data
bus. High-impedance (TRI-STATE) output when
input/output cycle is not in progress.

NHOLD Input/Output Cycle
Extend

Input

When set low prior to trailing edge of NRDS or NWDS
strobe, stretches strobe to extend input/output cycle;
that is, strobe is held low until NHOLD signal is
returned high. (for slow memory)

SENSE A Sense/Interrupt
Request Input

Serves as interrupt request input when SC/MP-
Internal IE (Interrupt Enable) flag is set. When IE flag
is reset, serves as user-designated sense condition
input. Sense condition testing is effected by copying
status register to accumulator.

SENSE B Sense Input User-designated sense-condition input. Sense-
condition testing is effected by copying status register
to accumulator.

SIN Serial Input to E
register

Under software control, data on this line are right-
shifted into E register by execution of SIO instruction.

SOUT Serial Output from
E register

Under software control, data are right-shifted onto this
line from E register by execution of SIO instruction.
Each data bit remains latched until execution of next
SIO instruction.

Mnemonic Functional Name Description

FLAGS 0,1,2 Flags Outputs User-designated general-purpose flag outputs of
status register. Under program control, flags can be
set and reset by copying accumulator to

statusregister.

AD00-AD11 Address bits 00
through 11

Twelve (TRI-STATE) address output lines. SC/MP
outputs 12 least significant address bits on this bus
when NADS strobe is low. Address bits are then
held valid until trailing edge of read (NRDS) or write
(NWDS) strobes. After trailing edge of NRDS or
NWDS strobe, bus is set to high (TRI-STATE) mode
until next NADS strobe.

Databus Output

(at NADS Time)

During NADS time the four most significant bits of
the addressbus are active at the outputs. Also some
other special signals are available at the remaining
database pinouts.

 DB0 Address Bit 12 Fourth most significant bit of 16-bit address

DB1 Address Bit 13 Third most significant bit of 16-bit address

DB2 Address Bit 14 Second most significant bit of 16-bit address

DB3 Address Bit 15 Most significant bit of 16-bit address

DB4 R-Flag When high, data input cycle is starting; when low,
data output cycle is starting

DB5 I-Flag When high, first byte of instruction is being fetched

DB6 D-Flag When high, indicates delay cycle is started; that is,
second byte of DLY instructions being fetched

DB7 H-Flag When high, indicates that HALT instruction has been
executed. (In some system configurations, the H-
Flag output is latched and, in conjunction with the
CONTinue input, provides a programmed halt).

Databus Standard Output

DB0-DB7 Databus
input/output

During the assertion of NWDS or NRDS data is
written to or read from external devices. Except for
NADS-time, at all other times the databus is floated
in (TRI-STATE) modus

Vcc Plus 5 volts Power lead

GND * Ground (0 Volts) Power ground lead SC/MP-II (P-MOS)

Vgg Minus 7 Volts Power negative lead SC/MP-I (N-MOS)

XIN/ XOUT Clock Crystal
inputs

A quarts crystal between these leads will determine
the clock-frequency of the SC/MP CPU. The
SC/MP-II has an internal divide stage so its clock-
frequency is effectively halved.

TRI-STATE Special TTL-bus
compatible output

In normal circumstances logical information can only
travel on a system bus from an output-line to an
input-line. By means of the TRI-STATE function the
output pin can effectively be isolated from the bus
and hence another pin on the bus can now take the
role of the TTL-output (TTL = Transistor-Transistor-
Logic)

* SC/MP-II All pinouts marked with an asterisk denotes the fact
that these pinouts changed with the introduction of
the SC/MP-II and that they are not exactly
pincompatible with the SC/MP-I. Here the SC/MP-II
nomenclature is used except for Vgg

SC/MP-Instruction format

The SC/MP executes either 1- or 2-byte instructions. The first byte is called the
OPCODE the optional second byte is the OPERAND. Whenever the most
significant byte of the OPCODE is set high it will signify a 2-byte instruction. In that
case the programcounter (P0) is automatically incremented and the second byte is
feched.

bits

7 6543210 76543210

 Opcode Operand

1 Byte instruction 0 XXXXXXX Nvt

2 Byte instruction 1 YYYYYYY ZZZZZZZZ

Most 2-byte instructions are memory-reference instruction that will access memory
external to the CPU. With the exception of the ILD and the DLD instruction, upon
calculating the effective address based on the opcode and the operand the SC/MP
will initiate a single byte read or write memory access. The ILD and the DLD

however instruction will do a read-modify-write instruction. During these two cycles
the bus will be locked for any other (external) operation. So DMA-circuitry will have
to know about this

The Programmable SC/MP registers:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 <-bits

8 Bits Msb Lsb Accu

Msb Lsb Extension

CY OV SB SA IE F2 F1 F0 Status

16 Bits

Msb lsb P0 (PC)

Msb lsb P1

Msb lsb P2

Msb lsb P3

Accu

This is a reasonably standard accumulator-register that contains the result of the
most operations and usually holds one of the source operands. Like in the next
example:

LDI 08 (Accu=8)

ADI 01 (Accu=8+1 è 9)

Extension

The extensionregister is a bit of a multi purpose story. It can be used to hold
secondary operands to the extension instructions, it can be used to temporarily
save the accu and it can be used as an 8-bit index register to facilitate relative
indirect addressing. Whenever the 2nd-byte operand of a memory-reference
instruction (called the displacement) holds a value of &H80 the content of the
extension register is taken as the displacement instead of the 2nd-byte operand.

Furthermore the extension register is also used for the build-in serial I/O capability
of the SC/MP. The MSB of the extension register is connected to the SIN-input and
the LSB is connected to the SOUT-output line. A number of timed serial shift
instructions can now be issued to input and output serial data (if desired
simultaneously).

Status

The status register contains a number of rather standard flags like the carrylink-flag
and the overflow-flag and the interupt-enable-flag. However, the carry and overflow
flags are not directly tested by branch-instructions. They must be copied to the accu

first (CAS-instruction) and their state must be ascertained with bitwise logical
instructions. Branch-testing is only done on the state of the accu-register.

The other status bits are:

• Flag F0, F1 & F2 that are connected to the flag pinout for output.
• Sense SA & SB that are connected to the sense input pinouts.

When interupts are enabled by setting the interupt enable flag the Sense A pinout
will double as a interupt input. Upon an interupt the SC/MP will automatically
execute a XPPC3 instruction. Pointer-register P3 will have to point to an interupt
service-routine. XPPC3 will exchange the content of the PC with P3 when the
interupt triggers. No CPU-registers are saved when an interupt occurs, the interupt
service-routine must take care of this.

The Pointer Registers P0-P3

The Pointer-registers P1-P3 are used as datapointer, stackpointer and subroutine/
interupt service pointer respectively.

Pointerregister P0 is used as the Programcounter. The main difference with a
normal programcounter is the fact that the SC/MP PC is incremented prior to
fetching a new instruction, so the program always continues the next instruction at
PC+1.

Another feature of all pointer-registers is the fact that whenever a pointer-register is
incremented by a auto-indexed-addressing-mode instruction or an effective address
is calculated that crosses a page boundary (i.e. 0FFF->1000) the boundary cross is
not taken but the resulting Px-content or effective address folds back to the
beginning of the page (0FFF->0000). Only by loading an absolute address into the
pointer-register can a page-boundary be crossed!

Apart for the special role of the program-counter an the interupt-service-routine
pointer (P3) all pointer-registers function identical. National Semiconductor the
following pointer-register roles as a rule of thumb.

P0 = Program Counter (see: PC-relative Addressing)
P1 = Data of I/O Pointer (see: Indexed Addressing)
P2 = Stackpointer (see: Auto Indexed Addressing)
P3 = Subroutine/interrupt Pointer (see: Subroutine explanation)

Now you are not exactly bound to this role distribution it does make sense to abide
by it. Especially with regard to the role of P3 that serves as the pointer to
subroutines or the interupt-service-routine.

The XPPC instruction can exchange the content of the PC with any of the other
pointer-registers so any Px can service a subroutine but only P3 can service a
service-routine for an interupt, because the XPPC3 instruction is generated
automatically whenever an interupt is received.

The following code exemplifies the SC/MP subroutine method:

@0000 ORG=0000

 NOP No operation

 LDI 08 Load &H08 in Accu

 XPAH3

 LDI 00 Load &H00 in Accu

 XPAL3 Exchange Accu with high byte of P3

 (P3 now contains the subroutineaddress1)

 XPPC3 Call Subroutine

@0800 ORG=0800

 NOP No operation (makes it easy to determine start of
routine)

:Subroutine

 XAE Exchange Accu with Extension to save the content
of the ACCU

 Subroutine code goes here

 XAE Again exchange Accu with extension to reclaim old

Accu content

 XPPC3 Return from subroutine

 JMP :Subroutine

 (This last JUMP is typical for the SC/MP-subroutine execution method,
because upon the XPPC3 that returns from the subroutine P3 will now point
to this jump instruction that itself points back to the start of the subroutine
enabling subsequent subroutine calls. The same goes for an interupt-
service-routine.)

Addressing Modi

All memory reference instructions make use of addressing-modes to calculate the
effective address of the memory reference. This could be to access the content of a
memory location or to determine the targetaddress of a branch- or jumpinstruct ion.

The SC/MP features the following addressingmodes:

PC Relative/Pointer-register Indexed Addressing

The 2nd byte of an instruction is taken as a displacement in 2s-complement fashion
and added to the current content of the designated pointer register to calculate the
effective address. When the PC (P0) is used as the designated pointer-register we
call this PC-relative mode. A 2s-complement 8-bit value can contain any value from
127dec to + 127dec (&H81 to &H7F in hexadecimal notation).

In the case of a PC-relative Jump (branch) one should take into consideration the
the programcounter will be incremented by 1, prior to the next opcode fetch.

@0000 ORG=0000

 0000 08 NOP

 0001 C0 LD P0(+4)

 0002 04

 (Load a value YY from memory, where the effective address is equal to the
content of the PC (=0002) upon completion of the fetch of the second part
of the instruction + 4 (EA=0002+0004=0006))

 0003 90 JMP :Label

 0004 06

 (Now jump over 6 bytes (upon loading the jumpinstruction PC=0004) to
continue the remaining program. (EA=0004+0006=>000A) However the PC
will increment by 1 prior to fetching the next opcode so the program should
continue at 000B)

 0005 08 NOP

:VALUE-X 0006 YY The load instruction found its target here

 0007 08 NOP

 0008 08 NOP

 0009 08 NOP

 000A 08 NOP

:Label 000B C0 LDI XX Remainder of the program

 XX

Now this is not good programming practice but it suffices to show us how PC-
relative and indexed addressing operate. Both examples used positive
displacements and their target lays ahead of the current PC-value but you could just

as easily have used a negative value. For a jump instruction this would lead to a
program loop. This is shown in the next example:

@0200 ORG=0200

 0200 08 NOP

:Loop 0201 C1 ST P1(+0) Store Accu to LEDs

 0202 00

 0203 F4 ADI 01 Add immediate 1 to Accu

 0204 01

 0205 9C JNZ :Loop Jump Back if Accu is not equal to 0

 0206 FA (negative displacement for jump)

 0207 C4 LDI XX Remainder of Program

 0208 XX

 0209

Indirect Addressing

In SC/MP literature indirect addressing is regarded as a special case of PC-relative
and indexed addressing. In the event that the second byte of an memory reference
instruction contains &H80 as a displacement value It is not taken as a negative
displacement of 128dec But the content of the extension register is used as the 2s-

complement displacement to calculate the effective address.

Immediate Addressing

The second value of the instruction in a memory reference instruction is
immediately used as source data for the instruction. No further address calculation
is required.

Auto Indexed Addressing

This addressing mode is a bit like Indexed addressing but this time the pointer-
register itself is modified by the displacement. This in a pre-decrement and post-
increment fashion.

• In the case of a negative displacement the pointer-register is replaced with
the effective address and then the memory access is executed.

• In the case of a positive displacement the memory access is executed with
the current value of the designated pointer-register, prior to replacing Px with
the new modified calculated EA-value.

In this way we can used P1, P2 or P3 as a LIFO stackpointer. This addressing
mode has no relevance in conjunction with the PC so there is no PC-relative
variation on this theme. The next program sample shows us how this works

@0800

 NOP No operation

:Subroutine ST @P2(-1)

 (Push Accu on stack (Pointer reg will be pre-decremented by 1 and the content
Accu will be written to EA)

 Here goes the main subroutine code

 LD @P2(+1)

 (Pop Stack (the post-increment feature will pop the top of stack prior to storing
the new EA to P2 è P2=P2+1))

 XPPC3 Return from subroutine

 JMP :Subroutine

 (This jump will take care of jumping to the start of the routine for subsequent
subroutine calls)

The example uses P2 as stackpointer to save the content of the accumulator on
stack during the execution of the subroutine code. Prior to returning from subroutine
the old accumulator content is popped from stack.

The SC/MP Instructionset

The following table shows an overview of the available SC/MP instructions:

Legend:

Mnemonic = instruction acronym

@-modes = allowed Addressingmode options

@=autoindex designator

Disp=(indexed or pc-relative displacement)

(X)=selected pointer-register

Opcode1 = bitpattern 1th opcode where the letters refer to:

m=mode bit (for autoindexed addressing)

aa=P0, P1, P2 of P3

Opcode2 = Operand can contain:

p=displacement (2-complement value for indexed of PC-relative addressing)

d=used as source data by instruction (immediate addressing)

Type Instruction category

MR =Memory Reference Instruction

E=Extension Reg. Instruction

ST=Status Reg. Instruction

I=Immediate Instruction

M =Miscellaneous Instruction

Flags = How the Carry & Overflow flags are affected

X= affected, result depends on calculated data

T=True

F=False

!=Could be changed

Mnemonic @-modes Opcode1 Opcode2 Type Flags Description

C O

ADD @DISP(X) 1111.0maa pppp.pppp MR X X Binary ADD
mem. w.
Carry

ADE e 0111.0000 E X X Binary ADD
extension w.
Carry

ADI i 1111.0100 dddd.dddd I X X Binary ADD
immediate
w. Carry

AND @DISP(X) 1101.0maa pppp.pppp MR Logical AND
accu w.
mem.

ANE e 0101.0000 E Logical AND
accu w.
extension

ANI i 1101.0100 dddd.dddd I Logical AND
accu
immediate

CAD @DISP(X) 1111.1maa pppp.pppp MR X X ADD
memory
complement
w. Carry

CAE e 0111.1000 E X X ADD
extension
complement
w. Carry

CAI i 1111.1100 dddd.dddd I X X ADD
immediate
complement
w. carry

CAS st 0000.0111 ST ! ! Move Accu

to Status

CCL cy 0000.0010 M F Clear Carry-
flag

CSA st 0000.0110 ST Move Status
to Accu

DAD @DISP(X) 1110.1maa pppp.pppp MR X Decimal
ADD
memory w.
Carry

DAE e 0110.1000 E X Decimal
ADD
extension w.
Carry

DAI i 1110.1100 dddd.dddd I X Decimal
ADD
immediate
w. Carry

DINT 0000.0100 M Disable
Interrupt

DLD DISP(X) 1011.10aa pppp.pppp MR Decrement
& Load
memory

DLY i 1000.1111 dddd.dddd M Delay

HALT 0000.0000 M Halt
instruction

IEN 0000.0101 M Enable
Interrupt

ILD DISP(X) 1010.10aa pppp.pppp MR Increment &
Load
memory

JMP DISP(X) 1001.00aa pppp.pppp J Jump

Absolute

JNZ DISP(X) 1001.11aa pppp.pppp J Jump Non
Zero

JP DISP(X) 1001.01aa pppp.pppp J Jump
Positive

JZ DISP(X) 1001.10aa pppp.pppp J Jump Zero

LD @DISP(X) 1100.0maa pppp.pppp MR Load accu
from
memory

LDE e 0100.0000 E Load accu
from
extension

LDI i 1100.0000 dddd.dddd I Load accu
immediate

NOP 0000.1000 M No
operation

OR @DISP(X) 1101.1maa pppp.pppp MR Logical OR
accu w.
memory

ORE e 0101.1000 E Logical OR
accu w.
extension

ORI i 1101.1100 dddd.dddd I Logical OR
accu
immediate

RR 0001.1110 SR Rotate right
accu

MDDDDDD
Lè M

RRL 0001.1111 SR X Logical
Rotate right

w. Carry

Cyè
MDDDDDD
Lè Cy

SCL 0000.0011 M T Set Carry
Flag

SIO 0001.1001 E Serial I/O
extension

SINè
MEEEEEEL
è SOUT

SR 0001.1100 SR Shift right

MDDDDDD
Lè void

SRL 0001.1101 SR X Logical Shift
right

Cyè
MDDDDDD
Lè void

ST @DISP(X) 1100.1maa pppp.pppp MR Store accu
to memory

XAE 0000.0001 E Exchange
accu w.
extension

XOR @DISP(X) 1110.0maa pppp.pppp MR Logical
XOR accu
w. memory

XRE e 0110.0000 E Logical
XOR accu
w. extension

XRI i 1110.0100 dddd.dddd I Logical
XOR accu

immediate

XPAH x 0011.01aa X Exchange
pointer high
with accu

XPAL x 0011.00aa X Exchange
pointer low
with accu

XPPC x 0011.11aa X Exchange
pointer with
PC

The following code sample is available with the emulator (Broil.asm)

---Main Program ---

@0000 ORG=0000

 0000 00 NOP

 0001 C4 LDI 0A Setup P1 for Leds

 0002 0A

 0003 35 XPAH1

 0004 C4 LDI 08 Setup P2 For Counter

 0005 08

 0006 36 XPAH2

 0007 C4 LDI 09 Setup P3 for Subroutine

 0008 09

 0009 37 XPAH3

:Loop 000A 3F XPPC3 Jump to Subroutine

 000B AA ILD P2(0) Increment & Load

 000C 00

 000D C9 ST P1(0) Store to Leds

 000E 00

 000F 9C JMP :Loop

 0010 F9

 0011 00 HALT

---Subroutine---

@0900 ORG=0900

 0900 08 NOP

:startsub 0901 01 XAE SAVE ACCU IN Extention

 0902 C4 LDI F8

 0903 F8

:again 0904 F4 ADI 01 Add 1 to Accu

 0905 01

 0906 07 CAS Copy accu to flags

 0907 02 CCL Clear Carry to avoid extra addition

 0908 8F DLY 80 Wait

 0909 80

 090A 9C JNZ :again Loop to :again

 090B F8

 090C 01 XAE restore accu

 090D 3F XPPC3 Return from subroutine

 090E 9C JP :startsub

 090F F0

 0910 00 HALT

