

The Concept Reference Guide describes concepts relating to SuperBASIC and the QL hardware. It is
best to think of the Concept Guide as a source of information. If there are any questions about
SuperBASIC or the QL itself which arise out of using the computer or other sections of the manual then
the Concept Guide may have the answer. Concepts are listed in alphabetical order using the most likely
term for that concept. If the subject cannot be found then consult the index which should be able to tell
you which page to turn to.

Where an example is listed with line numbers, then it is a complete program and can be entered and
run. Examples listed without numbers are usually simple commands and it may not always be sensible
to enter them into the computer in isolation. Examples which demonstrate stipples will not work properly
on a television set.

©1984 SINCLAIR RESEARCH LIMITED
by Stephen Berry (Sinclair Research Limited)

QL
Concepts

Index

Arrays
BASIC
Break
Channels
Character Set And Keys
Clock
Coercion
Colour
Communications - RS-232-C
Data Types Variables
Devices
Direct Command
Error Handling
Expressions
File Types
Functions and Procedures
Graphics
Identifier
Joystick
Keyword
Maths Functions
Memory Map
Microdrives
Monitor
Network
Operators
Peripheral Expansion
Pixel Coordinate System
Program
Qdos
Repetition
ROM Cartridge Slot
Screen
Slicing
Sound
Start Up
Statement
String Arrays and String Variables
String Comparison
Syntax Definitions
Turtle Graphics
Windows

Arrays

Arrays must be DIMensioned before they are used. When an array is dimensioned the value of each of
its elements is set to zero or a zero length string if it is a string array. An array dimension runs from zero
up to the specified value. There is no limits to the number of dimensions which can be defined other
than the total memory capacity of the computer. An array of data is stored such that the last index
defined cycles round most rapidly:

Example:

the array defined by

 DIM array(2,4)

will be stored as

 0,0 low address
 0,1
 0,2
 0,3
 0,4
 1,0
 1,1
 1,3
 1,4
 2,0
 2,1
 2,2
 2,3
 2,4 high address

The element referred to by array(a,b,c) is equivalent to the element referred to by array(a)(b)(c)

Command Function

DIM dimension an array
DIMN find out about the dimensions of an array

BASIC

SuperBASIC includes most of the functions, procedures and constructs found in other dialects of
BASIC. Many of these functions are superfluous in SuperBASIC but are included for compatibility
reasons:

GOTO use IF, REPEAT, etc
GOSUB use DEFine PROCedure
ON...GOTO use SELect
ON...GOSUB use SELect

Some commands appear not to be present. They can always be obtained by using a more general
function. For example, there are no LPRINT or LLIST statements in SuperBASIC but output can be
directed to a printer by opening the relevant channel and using PRINT or LIST.

LPRINT use PRINT #
LLIST use LIST #
VAL not required in SuperBASIC
STR$ not required in SuperBASIC
IN not applicable to 68008 processor
OUT not applicable to 68008 processor

comment

Almost all forms of BASIC require the VAL(x$) and STR$(x) functions in order to be able to convert the

internal codified form of the value of a string expression to or from the internal codified form of the value
of a numeric expression.

These functions are redundant in SuperBASIC because of the provision of a unique facility referred to
as "coercion". The VAL and STR$ functions are therefore not provided.

Break

If at any time the computer fails to respond or you wish to stop a SuperBASIC program or command
then

hold down

CTRL

and then press

SPACE

A program broken into in this way can be restarted by using the CONTINUE command.

Channels

A channel is a means by which data can be output to or input from a QL device. Before a channel can
be used it must first be activated (or opened) with the OPEN command. Certain channels should always
be kept open: these are the default channels and allow simple communication with the QL via the
keyboard and screen. When a channel is no longer in use it can be deactivated (closed) with the
CLOSE command.

A channel is identified by a channel number. A channel number is a numeric expression preceded by a
#. When the channel is opened a device is linked to a channel number and the channel is initialised.
Thereafter the channel is identified only by its channel number. For example:

OPEN #5,SER1

Will link serial port 1 to the channel number 5. When a channel is closed only the channel number need
be specified. For example:

CLOSE #5

Opening a channel requires that the device driver for that channel be activated. Usually there is more
than one way in which the device driver can be activated, for example the network requires a station
number. This extra information is appended to the device name and passed to the OPEN command as
a parameter. See concepts device and peripheral expansion.

Data can be output to a channel by PRINTing to that channel; this is the same mechanism by which
output appears on the QL screen. PRINT without a parameter outputs to the default channel #1. For
example:

10 OPEN #5,mdv1_test_file

20 PRINT #5,"this text is in file test_file"

30 CLOSE #5

will output the text "this text is in file test_file" to the file test_file. It is important to close the file after all
the accesses have been completed to ensure that all the data is written.

Data can be input from a file in an analogous way using INPUT. Data can be input from a channel a
character at a time using INKEY$

A channel can be opened as a console channel; output is directed to a specified window on the QL
screen and input is taken from the QL keyboard. When a console channel is opened the size and shape
of the initial window is specified. If more than one console channel is active then it is possible for more
than one channel to be requesting input at the same time. In this case, the required channel can
be selected by pressing CTRL C to cycle round the waiting channels. The cursor in the window of the
selected channel will flash.

The QL has three default channels which are opened automatically. Each of these channels is linked to
a window on the QL screen.

channel 0 - command and error channel
channel 1 - output and graphics channel
channel 2 - program listing channel

Monitor Television

Command Function

OPEN open a channel for I/O
CLOSE close a previously opened channel
PRINT output to a channel
INPUT input from a channel
INKEY$ input a character from a channel

Character set and keys

The cursor controls are not built in to the operating system: however, if these functions are to be
provided by applications software, they should use the keys specified; also the specified keys should not
normally be used for any other purpose.

Decimal Hex Keying Display/Function

0 00 CTRL £ NULL
1 01 CTRL A
2 02 CTRL B
3 03 CTRL C Change input channel (see note)
4 04 CTRL D
5 05 CTRL E
6 06 CTRL F
7 07 CTRL G
8 08 CTRL H
9 09 TAB (CTRL I) Next field

10 0A ENTER (CTRL J) New line / Command entry
11 0B CTRL K
12 0C CTRL L
13 0D CTRL M Enter
14 0E CTRL N
15 0F CTRL O

16 10 CTRL P
17 11 CTRL Q
18 12 CTRL R
19 13 CTRL S
20 14 CTRL T
21 15 CTRL U
22 16 CTRL V
23 17 CTRL W
24 18 CTRL X
25 19 CTRL Y
26 1A CTRL Z
27 1B ESC (CTRL SHIFT |) Abort current level of command
28 1C CTRL SHIFT \
29 1D CTRL SHIFT]
30 1E CTRL SHIFT ´
31 1F CTRL SHIFT ESC

32 20 SPACE
33 21 SHIFT 1 !
34 22 SHIFT ' "
35 23 SHIFT 3 #
36 24 SHIFT 4 $
37 25 SHIFT 5 %
38 26 SHIFT 7 &
39 27 ' '
40 28 SHIFT 9 (
41 29 SHIFT 0)
42 2A SHIFT 8 *
43 2B SHIFT = +
44 2C , ,
45 2D - -
46 2E . .
47 2F / /

48 30 0 0
49 31 1 1
50 32 2 2
51 33 3 3
52 34 4 4
53 35 5 5

54 36 6 6
55 37 7 7
56 38 8 8
57 39 9 9
58 3A SHIFT ; :
59 3B ; ;
60 3C SHIFT , <
61 3D = =
62 3E SHIFT . >
63 3F SHIFT / ?

64 40 SHIFT 2 @
65 41 SHIFT A A
66 42 SHIFT B B
67 43 SHIFT C C
68 44 SHIFT D D
69 45 SHIFT E E
70 46 SHIFT F F
71 47 SHIFT G G
72 48 SHIFT H H
73 49 SHIFT I I
74 4A SHIFT J J
75 4B SHIFT K K
76 4C SHIFT L L
77 4D SHIFT M M
78 4E SHIFT N N
79 4F SHIFT O O

80 50 SHIFT P P
81 51 SHIFT Q Q
82 52 SHIFT R R
83 53 SHIFT S S
84 54 SHIFT T T
85 55 SHIFT U U
86 56 SHIFT V V
87 57 SHIFT W W
88 58 SHIFT X X
89 59 SHIFT Y Y
90 5A SHIFT Z Z
91 5B [[
92 5C \ \
93 5D]]
94 5E SHIFT 6 ^
95 5F SHIFT - _

96 60 £ £
97 61 A a
98 62 B b
99 63 C c

100 64 D d
101 65 E e
102 66 F f
103 67 G g
104 68 H h
105 69 I i
106 6A J j
107 6B K k
108 6C L l
109 6D M m
110 6E N n

111 6F O o

112 70 P p
113 71 Q q
114 72 R r
115 73 S s
116 74 T t
117 75 U u
118 76 V v
119 77 W w
120 78 X x
121 79 Y y
122 7A Z z
123 7B SHIFT [{
124 7C SHIFT \ |
125 7D SHIFT] }
126 7E SHIFT ´ ~
127 7F SHIFT ESC ©

128 80 CTRL ESC ä
129 81 CTRL SHIFT 1 ã
130 82 CTRL SHIFT ' â
131 83 CTRL SHIFT 3 é
132 84 CTRL SHIFT 4 ö
133 85 CTRL SHIFT 5 õ
134 86 CTRL SHIFT 7 ø
135 87 CTRL ' ü
136 88 CTRL SHIFT 9 ç
137 89 CTRL SHIFT 0 ñ
138 8A CTRL SHIFT 8 æ
139 8B CTRL SHIFT = œ
140 8C CTRL , á
141 8D CTRL _ à
142 8E CTRL . â
143 8F CTRL / ë

144 90 CTRL 0 è
145 91 CTRL 1 ê
146 92 CTRL 2 ï
147 93 CTRL 3 í
148 94 CTRL 4 ì
149 95 CTRL 5 î
150 96 CTRL 6 ó
151 97 CTRL 7 ò
152 98 CTRL 8 ô
153 99 CTRL 9 ú
154 9A CTRL SHIFT ; ù
155 9B CTRL ; û
156 9C CTRL SHIFT , ß
157 9D CTRL = ¢
158 9E CTRL SHIFT . ¥
159 9F CTRL SHIFT / `

160 A0 CTRL SHIFT 2 Ä
161 A1 CTRL SHIFT A Ã
162 A2 CTRL SHIFT B Â
163 A3 CTRL SHIFT C É
164 A4 CTRL SHIFT D Ö
165 A5 CTRL SHIFT E Õ
166 A6 CTRL SHIFT F

167 A7 CTRL SHIFT G Ü
168 A8 CTRL SHIFT H Ç
169 A9 CTRL SHIFT I
170 AA CTRL SHIFT J Æ
171 AB CTRL SHIFT K Œ
172 AC CTRL SHIFT L α
173 AD CTRL SHIFT M δ
174 AE CTRL SHIFT N θ
175 AF CTRL SHIFT O λ

176 B0 CTRL SHIFT P μ
177 B1 CTRL SHIFT Q π
178 B2 CTRL SHIFT R Φ
179 B3 CTRL SHIFT S i
180 B4 CTRL SHIFT T ¿
181 B5 CTRL SHIFT U Ƨ
182 B6 CTRL SHIFT V §
183 B7 CTRL SHIFT W ¤
184 B8 CTRL SHIFT X «
185 B9 CTRL SHIFT Y »
186 BA CTRL SHIFT Z °
187 BB CTRL [÷
188 BC CTRL \ ←
189 BD CTRL] →
190 BE CTRL SHIFT 6 ↑
191 BF CTRL SHIFT _ ↓

192 C0 Left Cursor left one character
193 C1 ALT Left Cursor to start of line
194 C2 CTRL Left Delete left one character
195 C3 CTRL ALT Left Delete line
196 C4 SHIFT Left Cursor left one word
197 C5 SHIFT ALT Left Pan left
198 C6 SHIFT CTRL Left Delete left one word
199 C7 SHIFT CTRL ALT Left
200 C8 Right Cursor right one character
201 C9 ALT Right Cursor to end of line
202 CA CTRL Right Delete character under cursor
203 CB CTRL ALT Right Delete to end of line
204 CC SHIFT Right Cursor right one word
205 CD SHIFT ALT Right Pan right
206 CE SHIFT CTRL Right Delete word under & right of cursor
207 CF SHIFT CTRL ALT Right

208 D0 Up Cursor right
209 D1 ALT Up Scroll up
210 D2 CTRL Up Search backward
211 D3 ALT CTRL Up
212 D4 SHIFT Up Top of screen
213 D5 SHIFT ALT Up
214 D6 SHIFT CTRL Up
215 D7 SHIFT CTRL ALT Up
216 D8 Down Cursor down
217 D9 ALT Down Scroll down
218 DA CTRL Down Search forwards
219 DB ALT CTRL Down
220 DC SHIFT Down Bottom of screen
221 DD SHIFT ALT Down
222 DE SHIFT CTRL Down
223 DF SHIFT CTRL ALT Down

224 E0 CAPS LOCK Toggle CAPS LOCK function
225 E1 ALT CAPS LOCK
226 E2 CTRL CAPS LOCK
227 E3 ALT CTRL CAPS LOCK
228 E4 SHIFT CAPS LOCK
229 E5 SHIFT ALT CAPS LOCK
230 E6 SHIFT CTRL CAPS LOCK
231 E7 SHIFT CTRL ALT CAPS LOCK
232 E8 F1
233 E9 CTRL F1
234 EA SHIFT F1
235 EB CTRL SHIFT F1
236 EC F2
237 ED CTRL F2
238 EE SHIFT F2
239 EF CTRL SHIFT F2

240 F0 F3
241 F1 CTRL F3
242 F2 SHIFT F3
243 F3 CTRL SHIFT F3
244 F4 F4
245 F5 CTRL F4
246 F6 SHIFT F4
247 F7 CTRL SHIFT F4
248 F8 F5
249 F9 CTRL F5
250 FA SHIFT F5
251 FB CTRL SHIFT F5
252 FC SHIFT space "Special" space
253 FD SHIFT TAB Back tab (CTRL ignored)
254 FE SHIFT ENTER "Special" newline (CTRL ignored)
255 FF See below

Codes up to 20 hex are either control characters or non-printing characters. Alternative keyings are
shown in brackets after the main keying.

Note that CTRL-C is trapped by Qdos and cannot be detected without changes to the system variables.

Note that codes C0-DF are cursor control commands.

The ALT key depressed with any key combination other than cursor keys or CAPS LOCK generates the
code FF, followed by a byte indicating what the keycode would have been if ALT had not been
depressed.

Note that CAPS LOCK and CTRL-F5 are trapped by Qdos and cannot be detected without special
software.

Clock

The QL contains a real time clock which runs when the computer is switched on.

The format used for the date and time is standard ISO format.

1983 JAN 01 12:09:10

Individual year, month, day and time can all be obtained by assigning the string returned by DATE to a
string variable and slicing it. The clock will run from 1961 JAN 01 00:00:00

Comment:

For a description of the format, see BS5249: Part 1: 1976 and as modified in Appendix D.2.1 Table 5
Serial 5 and Appendix E.2 Table 6 Serials 1 and 2.

Command Function

SDATE set the clock
ADATE adjust the clock
DATE return the date as a number
DATE$ return the date as a string
DAY$ return day of the week

Coercion

If necessary SuperBASIC will convert the type of unsuitable data to a type which will allow the specified
operation to proceed.

The operators used determine the conversion required. For example, if an operation requires a string
parameter and a numeric parameter is supplied then SuperBASIC will first convert the parameter to type
string. It is not always possible to convert data to the required form and if the data cannot be converted
an error is reported.

The type of a function or procedure parameter can also be converted to the correct type. For example,
the SuperBASIC LOAD command requires a parameter of type name but can accept a parameter of

type string and which will be converted to the correct type by the procedure itself. Coercion of this form
is always dependent on the way the function or procedure was implemented.

There is a natural ordering of data types on the QL, see figure below. String is the most general type
since it can represent names, floating point and integer numbers. Floating point is not as general as
string but is more general than integer since floating point data can represent integer (almost exactly).
The figure below shows the ordering diagramatically. Data can always be converted moving up the
diagram but it is not always possible moving down.

Example

a = b + c (no conversion is necessary before performing the addition.
Conversion is not necessary before assigning the result to a)

a% = b + c (no conversion is necessary before performing the addition but

the result is converted to integer before assigning)

a$ = b$ + c$ (b$ and c$ are converted to floating point, if possible, before

being added together. The result is converted to string before
assigning)

LOAD "mdv1_data" (the string "mdv1_data" is converted to type name by the

LOAD procedure before it is used)

Statements can be written in SuperBASIC which would generate errors in most other computer
languages. In general, it is possible to mix data types in a very flexible manner:

i. PRINT "1" + 2 + "3"

ii. LET a$ = 1 + 2 + a$ + "4"

COLOUR

Colours on the QL can be either a solid colour or a stipple - a mixture of two colours to some
predefined pattern. Colour specification on the QL can be up to three items: a colour, a contrast colour
and a stipple pattern.

Single:

colour:= composite_colour

The single argument specifies the three parts of the colour specification. The main colour is contained in
the bottom three bits of the colour byte. The next three bits contain the exclusive or (XOR) of the main
colour and the contrast colour. The top two bits indicate the stipple pattern.

By specifying only the bottom three bits (i.e. the required colour) no stipple will be requested and a
single solid colour will be used for display.

Double:

colour: = background, contrast

The colour is a stipple of the two specified colours. The default checkerboard stipple is assumed (stipple
3)

Triple:

colour: = background, contrast, stipple

Background and contrast colours and stipple are each defined separately.

Colours:

The codes for colour selection depend on the screen mode in use:

Code bit pattern composition colour

 8 colour 4 colour

0 0 0 0 black black
1 0 0 1 blue blue black
2 0 1 0 red red red
3 0 1 1 red + blue magenta red
4 1 0 0 green green green
5 1 0 1 green + blue cyan green
6 1 1 0 green + red yellow white
7 1 1 1 green + red + blue white white

Colour Composition and Codes

Stipples

Stipples mix a background and a contrast colour in a fine stipple pattern. Stipples can be used on the
QL in the same manner as ordinary solid colours although stipples may not be reproduced correctly on
an ordinary domestic television. There are four stipple patterns:

Stipple 3 is the default.

Example:

i. PAPER 255 : CLS

ii. PAPER 2,4 : CLS

iii. PAPER 0,2,0 : CLS

Warning:

Stipples may not reproduce correctly on a domestic television set which is fed via the UHF socket.

COMMUNICATIONS RS-232-C

The QL has two serial ports (called SER1 and SER2) for connecting it to equipment which uses serial
communications obeying EIA standard RS-232-C or a compatible standard.

The RS-232-C 'standard' was originally designed to enable computers to send and receive data via
telephone lines using a modem. However, it is now frequently used to connect computers directly with
each other and to various items of peripheral equipment, e.g. printers, plotters, etc.

As the RS-232-C 'standard' manifests itself in many different forms on different pieces of equipment, it
can be an extremely difficult job, even for an expert to connect together for the first time two pieces of
supposedly standard RS-232-C equipment. This section will attempt to cover most of the basic problems
that you may encounter.

The RS-232-C 'standard' refers to two types of equipment:

 1. Data Terminal Equipment (DTE)
 2. Data Communication Equipment (DCE)

The standard envisaged that the terminal (usually the DTE) and the modem (usually the DCE) would
both have the same type of connector.

The diagram above illustrates how the DTE transmits data on pin 2 whilst the DCE must receive data on
its pin 2 (which is still called transmit data!). Likewise, the DTE receives data on pin 3 whilst the DCE
must transmit data on its pin 3 (which is still called receive data!). Although this is confusing in itself, it
can lead to far greater problems when there is disagreement as to whether a certain device should be
configured as DCE or DTE.

Unfortunately, some people decide that their computers should be configured as DCE devices whilst
others configure equivalent computers as DTE devices. This obviously leads to difficulties in the
configuration of the serial ports on each piece of equipment.

SER1 on the QL is configured as DCE, while SER2 is configurd as DTE. Therefore, it should be
possible to connect at least one of the serial ports to a given device simply by using whichever port is
wired the 'correct' way. The pin-out for the serial ports is given below. A cable for connecting the QL to a
standard 25-way 'D' type connector is available from Sinclair Research Limited.

SER1 SER2

pin name function pin name function

1 GND Signal ground 1 GND Signal ground
2 TxD Input 2 TxD Output
3 RxD Output 3 RxD Input
4 DTR Ready input 4 DTR Ready output
5 CTS Ready output 5 CTS Ready input
6 - +12V 6 - +12V

TxD Transmit Data DTR Data Terminal Ready
RxD Receive Data CTS Clear To Send

Once the equipment has been connected to the 'correct' port, the baud rate (the speed of transmission
of data) must be set so that the baud rates for both the QL and the connected equipment are the same.
The QL can be set to operate at:

 75
 300
 600
 1200

 2400
 4800
 9600
 19200 (transmit only) baud

The QL baud rate is set by the BAUD command and is set for both channels. The baud rates cannot be

set independently.

The parity to be used by the QL must also be set to match that expected by the peripheral equipment.
Parity is usually used to detect simple transmission errors and may be set to be even, odd, mark, space
or no parity, i.e. all 8 bits of the byte are used for data.

Stop bits mark the end of transmission of a byte or character. The QL will receive data with one, one
and a half, or two stop bits, and will always transmit data with at least two stop bits. Note that if the QL is
set up to 9600 baud it will not receive data with only one stop bit: at least one and a half stop bits are
required.

The may be necessary to connect the handshake lines between the QL and a piece of equipment

connected to it. This allows the QL and its peripheral to monitor and control their rate of communication.
They may need to do this if one of them cannot cope with the speed at which data is being transmitted.
The QL uses two handshaking lines:

CTS Clear to Send
DTR Terminal Ready

If DTE cannot cope with the rate of transmission of data then it can negate the DTR line which tells the
DCE to stop sending data. Obviously, when the DTE has caught up it tells the DCE, via the DTR line, to
start transmitting again. In the same way, the DCE can stop the DTE sending data by negating the CTS
line. If additional control signals are required they can be wired up using the 12V supply available on
both serial ports.

Although transmission from the QL is often possible without any handshaking at all, the QL will
not receive correctly under any circumstances without the use of CTS on SER1 and DTR on
SER2.

Communications on the QL are 'full duplex', that is both receive and transmit can operate concurrently.

The parity and handshaking are selected when the serial channel is opened.

command function

BAUD set transmission speed
OPEN open serial channels *
CLOSE close serial channels

* see concept 'DEVICE' for a full specification

DATA TYPES - VARIABLES

integer

Integers are whole numbers in the range -32768 to +32767. Variables are assumed to be integer if the
variable identifier is suffixed with a percent %. There are no integer constants in SuperBASIC, so all
constants are stored as floating point numbers.

syntax: identifier%

example: i. counter%

 ii. size_limit%

 iii. this_is_an_integer_variable%

floating point

Floating point numbers are in the range +/- (10

-615
 to 10

+615
), with 8 signiflcant digits. Floating point is the

default data type in SuperBASIC. All constants are held in floating point form and can be entered
using exponent notation.

syntax: identifier | constant

example: i. current_accumulation

 ii. 76.2356

 iii. 354E25

string

A string is a sequence of characters up to 32766 characters long. Variables are assumed to be type
string if the variable name is suffixed by a $. String data is represented by enclosing the required
characters in either single or double quotation marks.

syntax: identifier$ | "text"

example: i. string_variables$

 ii. "this is string data"

 iii. "this is another string"

name

Type name has the same form as a standard SuperBASIC identifier and is used by the name system to
name Microdrive files etc.

syntax: identifier

example: i. mdv1_data_file

 ii. ser1e

DEVICES

A device is a piece of equipment on the QL to which data can be sent (input) and from which data can

be output.

Since the system makes no assumptions about the ultimate I/O (input/output) device which will be used,
the I/O device can be easily changed and the data diverted between devices. For example, a program
may have to output to a printer at some point during its run. If the printer is not available then the output
can be diverted to a Microdrive file and stored. The file can then be printed at a later date. I/O on the QL
can be thought of as being written to and read from a logical file which is in a standard device-
independent form.

All device specific operations are performed by individual device drivers specially written for each

device on the QL. The system can automatically find and include drivers for peripheral devices which
are fitted. These should be written in the standard QL device driver format; see the concept peripheral
expansion.

When a device is activated a channel is opened and linked to the device. To correctly open a channel
device basic information must sometimes be supplied. This extra information is appended to the device
name.

The file name should conform to the rules for a SuperBASIC type name though it is also possible to
build up the file name (device name) as a SuperBASIC string expression.

In summary the general form of a file name is:

identifier [information]

where the complete file name (including the extra information) conforms to the rules for a SuperBASIC
identifier.

Each logical device on the system requires its own particular 'extra information' although default
parameters will be assumed in each case where possible.

Define

device: = name

where the form of the device name is outlined below.

example

for console device

CON_wXhaxXy_k

Console I/O

[wXh] - window width, height
[AxXy] - window X,Y coordinate of upper left-hand corner
[k] - keyboard type ahead buffer length (bytes)

default: con_448x180a32x16_128

example: OPEN #4,con_20x50a0x0_32

 OPEN #8,con_20x50

 OPEN #7,con_20x50a10x10

SCR_wXhaxXy

Screen Output

[wXh] - window, width, height
[AxXy] - window X, Y coordinate
default: scr_448x180a32x16

example: OPEN #4, scr _0x10a20x50

 OPEN #5, scr_10x10

SERnphz

Serial (RS-232-C)

n port number (1 or 2)
[p] parity [h] handshaking [z] protocol
e – even i – ignore r - raw data no EOF
o – odd h – handshake z - control Z is EOF
m – mark c - as z but converts
s – space ASCII 10 (Qdos
 newline character)
 to ASCII 13
 <CR>)

default: ser1rh (8 bit no parity with handshake)

example: OPEN #3, serle

 OPEN #4, serc

 COPY mdv1_test_file TO ser1c

NETd_s

Serial Network I/O

[d] indicates direction [s] station number
i – input 0 - for broadcast
o – output own station - for general listen (input only)

default: no default

example: OPEN #7, neti_32

 OPEN #4, neto_0

 COPY ser1 TO neto_21

MDVn_name

Microdrive File Access

n - Microdrive number
name - Microdrive file name

default: no default

example: OPEN #9, mdv1_data_file

 OPEN #9, mdv1_test_program

 COPY mdv1_test_file TO scr_

Keyword Function

OPEN initialise a device and activate it for use

CLOSE deactivate a device

COPY copy data between devices
COPY_N copy data between devices, but do
 not copy a file's header information

EOF test for end of file

WIDTH set width

DIRECT COMMAND

SuperBASIC makes a distinction between a statement typed in preceded by a line number and a
statement typed in without a line nurnber. Without a line number the statement is a direct command
and is processed immediately by the SuperBASIC command interpreter. For example, RUN is typed in
on the command line and is processed, the effect being that the program starts to run. If a statement is
typed in with a line number then the syntax of the line is checked and any detectable syntax errors
reported. A correct line is entered into the SuperBASIC program and stored. These statements
constitute a SuperBASIC program and will only be executed when the program is started with the RUN
or GOTO command.

Not alI SuperBASIC statements make sense when entered as a direct command, for example, END
FOR, END DEFine, etc

ERROR HANDLING

Errors are reported by SuperBASIC in a standard form:

At line line_number error_text

Where the line number is the number of the line where the error was detected and the error text is listed
below.

(1) Not complete
An operation has been prematurely terminated (or break has been pressed).

(2) Invalid job

An error return from Qdos relating to system calls controlling multitasking or I/O.

(3) Out of memory
Qdos and/or SuperBASIC has insufficient free memory.

(4) Out of range

Usually results from attempts to write outside a window or an incorrect array index.

(5) Buffer full
An I/O operation to fetch a buffer full of characters filled the buffer before a record terminator was found.

(6) Channel not open

Attempt to read, write or close a channel which has not been opened. Can also occur if an attempt to
open a channel fails.

(7) Not found

File system, device, medium or file cannot be found. SuperBASIC cannot find an identifier. This can
result from incorrectly nested structures.

(8) Already exists

The file system has found an already existing file with the same name as a new file to be opened for
writing.

(9) In use

The file system has found that a file or device is already exclusively used.

(10) End of file
End of file detected during input.

(11) Drive full

A device has been filled (usually Microdrive).

(12) Bad name
The file system has recognised the name but there is a syntax or parameter value error. In SuperBASIC
it means a name has been used out of context. For example, a variable has been used as a procedure.

(13) Xmit error
RS-232-C parity error

(14) Format failed

Attempted format operation has failed, the medium is possibly faulty (usually a Microdrive cartridge).

(15) Bad parameter
There is an error in the parameter list of a system or SuperBASIC procedure or function call. An attempt
was made to read data from a write only device.

(16) Bad or changed medium
The medium (usually a Microdrive cartridge) is possibly faulty

(17) Error in expression

An error was detected while evaluating an expression.

(18) Overflow
Arithmetic overflow division by zero, square root of a negative number, etc.

(19) Not Implemented

(20) Read only

There has been an attempt to write data to a shared file.

(21) Bad line
A SuperBASIC syntax error has occurred.

(22) PROC/FN cleared

This is a message which is for information only and is not reporting an error. It is reporting that the
program has been stopped and subsequently changed forcing SuperBASIC to reset its internal state to
the outer program level and so losing any procedure environment which may have been in effect.

error recovery

After an error has occurred the program can be restarted at the nextstatement by typing

CONTINUE

If the error condition can be corrected, without changing the program, the program can be restarted at
the statement which triggered the error. Type

RETRY

EXPRESSIONS

SuperBASIC expressions can be string, numeric, logical or a mixture: unsuitable data types are
automatically converted to a suitable form by the system wherever this is possible.

define

monop: = | +

 | -
 | NOT

expression: = | [monop] expression operator expression
 | (expression)
 | atom

 atom: = | variable
 | constant
 | function | (expression *|, expression *)
 | array_element

 variable: = | identifier
 | identifier %
 | identifier $

 function: = | identifier
 | identifier %
 | identifier $

 constant: = | digit * [digit] *
 | *[digit] *, *[digit]*
 | *[digit] * |,| *[digit]* E *[digit]*

The final value returned by the evaluation of the expression can be integer giving an
integer_expression, string giving a string_expression or floating point giving a floating expression.
Often floating point and integer expressions are equivalent and the term numeric_expression is then
used.

Logical operators can be included in an expression. If the specified operation is true then a one is
returned as the value of the operation. If the operation is false then a zero is returned. Though logical
operators can be used in any expression they are usually used in the expression part of an IF

statement.

example: i. test_data + 23.3 + 5

 ii. "abcdefghijklmnopqrstuvwxyz"(2 TO 4)

 iii. 32.1 * (colour = 1)

 iv. count = -limit

FILE TYPES

FILES

All I/O on the QL is to or from a logical file. Various file types exist.

data

SuperBASIC programs, text files. Created using PRINT, SAVE, accessed using INPUT, INKEY$, LOAD
etc.

exec

An executable transient program. Saved using SEXEC, loaded using EXEC, EXEC_W etc.

code

Raw memory data, screen images, etc. Saved using SBYTES, loaded using LBYTES.

FUNCTIONS AND PROCEDURES

SuperBASIC functions and procedures are defined with the DEFine FuNction and DEFine PROCedure
statements. A function is activated (or called) by typing its name at the appropriate point in a
SuperBASIC expression. The function must be included in an expression because it is returning a value
and the value must be used. A procedure is activated (or called) by typing its name as the first item
in a SuperBASIC statement.

Data can be passed into a function or procedure by appending a list of actual parameters after the
function or procedure name. This list is compared to a similar list appended after te name of the function
or procedure when it was defined. This second list is called the formal parameters of the function or
procedure. The formal parameters must be SuperBASIC variables. The actual parameters must be an
array, an array slice or a SuperBASIC expression of which a single variable or constant is the simplest
form.

Since the actual parameters are actual expressions, they must have an actual type associated with
them. The formal parameters are merely used to indicate how the actual parameters must be processed
and so have no type associated with them. The items in each list of parameters are paired off in order
when the function or procedure is called and the formal parameters become equivalent to the actual
parameters. There are three distinct ways of using parameters.

If the actual parameter is a single variable and if data is assigned to the formal parameter in the function
or procedure then the data is also assigned to the corresponding actual parameter.

If the actual parameter is an expression then assigning data to the corresponding formal parameter will
have no effect outside the procedure. Note that a variable can be turned into an expression by enclosing
it within brackets.

if the actual parameter is a variable but has not previously been set then assigning data to the
corresponding formal parameter will set the variable specified as the actual parameter.

Variables can be defined to be local to a function or procedure with the LOCal statement. Local

variables have no effect on similarly named variables outside the function or procedure in which they are
defned and so allow greater freedom in choosing sensible variable names without the risk of corrupting
external variables. A local variable is available to any inside function or procedure called from the
procedure function in which it is declared to be local unless the function or procedure called contains a
further local declaration of the same variable name.

Functions and procedures in SuperBASIC can be used recursively. That is a function or procedure can
call itself either directly or indirectly.

Command Function

DEFine FuNction define a function
DEFine PROCedure define a procedure
RETurn leave a function or procedure

(return data from a function)
LOCal define local data in a function or procedure

GRAPHICS

It is important to realise that the QL screen has non-square pixels and that changing screen mode will
change the shape of the pixels. Thus if the grapics procedures were simply pixel based they would draw
different shapes in the two modes. For example, in one mode we would have a circle while the same
figure in the other mode would be an ellipse.

The graphics procedures ensure that whatever screen mode is in use, consistent figures are produced.
It is not possible to use a simple pixel count to indicate sizes of figures, so instead the graphics
procedures use an arbitrary scale and coordinate system to specify sizes and positions of figures.

The graphics procedures use the graphics co-ordinate system, i.e. draw relative to the graphics
origin which is in the bottom left hand corner of the specified or default window. Note that this is not the

same as the pixel origin used to define the position of windows and blocks etc. The graphics origin
allows a standard Cartesian coordinate system to be used. A graphics cursor is updated after each
graphics operation: subsequent operations can either be relative to this cursor or can be absolute, i.e.
relative to the graphics origin.

The scaling factor is such that the full distance in the vertical direction in the specified or default

window has length 100 by default and can be changed with the SCALE command. The scale in the x
direction is equal to the scale in the y direction. However, the length of line which can be drawn in the x
direction is dependent on the shape of the window. Increasing the scale factor increases the maximum
size of the figure which can be drawn before the window size is exceeded. If the graphics output is
switched to a different size of window then the subsequent size of the output is adjusted to fit the new
window. If the figure exceeds its output window then the figure is clipped.

It is useful to consider the window to be a window onto a larger graphics space in which the figures are
drawn. The SCALE command allows the graphics origin to be set so allowing the window to be moved
around the graphics space.

The graphics procedures are output to the window attached to the specified or default channel and the
output is drawn in the INK colour for that channel.

Command Function

CIRCLE draw an ellipse or a circle }
LINE draw a line } absolute
ARC draw an arc of a circle }
POINT plot a point }

CIRCLE_R draw an ellipse or a circle }

LINE_R draw a line }
ARC_R draw an arc of a circle } relative
POINT_R plot a point }

SCALE set scale and move origin
FILL fill in a shape
CURSOR position text

Graphics Fill

Figures drawn with the graphics and turtle graphics procedures can be optionally 'filled' with a specified
stipple or colour. If FILL is selected then the figure is filled as it is drawn.

The FILL algorithm stores a list of points to plot rather than actually plotting them. When the figure

closes there are two points on the same horizontal line. These two points are connected by a line in the
current INK colour and the process repeats. Fill must always be reselected before drawing a new figure
to ensure that the buffer used to store the list of points is reset.

The following diagram illustrates FILL:

warning

There is an implementation restriction on FILL. FILL must not be used for re-entrant shapes (i.e. a

shape which is concave). Re-entrant shapes must be split into smaller shapes which are not re-entrant
and each sub-shape filled independently.

IDENTIFIER

A SuperBASIC identifier is a sequence of letters, numbers and underscores.

define: letter:= | a..Z

 | A..Z

 number:= | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0 |

 identifier:= letter * || letter | number | _ | | *

example: i. a

 ii. limit_1

 iii. current_guess

 iv. counter

An identifier must begin with a letter followed by a sequence of letters, numbers and underscores and
can be up to 255 characters long. Upper and lower case characters are equivalent.

Identifiers are used in the SuperBASIC system to identify Variables, Procedures, Functions, Repetition
loops, etc.

warning

NO meaning can be attributed to an identifier other than its ability to identify constructs to SuperBASIC.
SuperBASIC cannot infer the intended use of an identifier from the identifier's name!

JOYSTICK

The joystick ports marked CTL1 and CTL2, allow two joysticks to be attached to the QL.

The joysticks are arranged to generate specific key depressions when moved in a specific way and any
program which uses a joystick must be able to adapt to these keys. The QL keyboard can be read
directly using the KEYROW function.

 CTL1 CTL2

mode key key

up cursor up F4
down cursor down F2

left cursor left F1
right cursor right F3

fire space F5

comment

The joystick ports can be used for adding other more general purpose control devices to the QL.

Joysticks for other computers using a 9-way 'D' connector require an adaptor to be used with the QL.
Such an adaptor is available from Sinclair Research.

KEYWORD

SuperBASIC keywords are identifiers which are defined in the SuperBASIC Keyword
Reference Guide. Keywords have the same form as a SuperBASIC standard
identifier. The case of the keyword is not significant. Keywords are echoed as a
mixture of upper and lower case letters and are always reproduced in full. The
upper case portion indicates the minimum required to be typed in for SuperBASIC
to recognise the keyword.

The set of SuperBASIC keywords may be extended by adding PROCEDURES to the QL.
It is a good idea to define these with their names in upper case and this will
indicate their special function in the SuperBASIC system. Conversely, ordinary
procedures should be defined with their names in lower case.

WARNING: Existing keywords cannot be used as ordinary identifiers within a
SuperBASIC program. SuperBASIC keywords are:

List of Keywords

ABS DEFine PROCedure LEN RANDOMISE
ACOS,ASIN END DEFine LET RND
ACOT,ATAN DEG LIST RECOL
ADATE DELETE LOAD REMark
ARC,ARC_R DIM LOCal RENUM
AT DIMN LN,LOG10 REPeat
AUTO DIR LRUN END REPeat
BAUD DIV MERGE RESPR
BEEP DLINE MOD RETurn
BEEPING EDIT MODE RETRY
BLOCK ELLIPSE MOVE RUN
BORDER ELLIPSE_R MRUN SAVE
CALL EOF NET SIN
CHR$ EXEC,EXEC_W NEW SCALE
CIRCLE EXIT NEXT SCROLL
CIRCLE_R EXP ON GO TO SDATE
CLEAR FILL ON GO SUB SELect
CLOSE FILL$ OPEN,OPEN_IN END SELect
CLS FLASH OPEN_NEW SEXEC
CODE FOR OVER SQRT
CONTINUE END FOR PAN STOP
RETRY FORMAT PAPER STRIP
COPY,COPY_N GO SUB PAUSE TAN
COS GO TO PEEK,PEEK_W TO
COT IF,THEN,ELSE PEEK_L TURN
CSIZE END IF PENUP TURN TO
CURSOR INK PENDOWN UNDER
DATA,READ INKEY$ PI VER$
RESTORE INPUT POINT,POINT_R WIDTH
DATE$,DATE INSTR POKE,POKE_W WINDOW
DAY$ INT POKE_L
DEFine FuNction KEYROW PRINT
END DEFine LBYTES RAD

MATHS FUNCTIONS

SuperBASIC has the standard trigonometrical and mathematical functions.

Function Name

COS cosine
SIN sin
TAN tangent

ATAN arctangent
ACOT arcotangent

ACOS arcosine
ASIN arcsine

COT cotangent
EXP exponential
LN natural logarithm
LOG10 common logarithm

INT integer
ABS absolute value

RAD convert to radians

DEG convert to degrees

PI return the value of pi ±

RND generate a random number
RANDOMISE reseed the random number generator

MEMORY MAP

The QL contains a Motorola 68008 microprocessor, which can address 1 Megabyte of memory, i.e. from
00000 to FFFFF Hex. The use of addresses within this range are defined by Sinclair Research to be as
follows:

The screen RAM is organised as a series of sixteen bit words starting at address Hex 20000 and
progressing in the order of the raster scan, i.e. from left to right with each display line and then from the
top to the bottom of the picture. The bits within each word are organised so that a pixel to the left is
always more significant than a pixel to the right (i.e. the pixel pattern on the screen looks the same as
the binary pattern). However, the organisation of the colour information in the two screen modes is
different:

Setting the Flash bit toggles the flash state and freezes the background colour for the flash to the value
given by R, G and B for that pixel. Flashing is always reset at the beginning of each display line.

In high resolution mode, red and green specified together is interpreted by the hardware as white.

warning

Use of reserved areas in the memory map may cause incompatibility with future Sinclair products.
Spurious output to addresses defined to be peripheral I/O addresses can cause unpredictable
behaviour. It is recommended that these areas are NOT written to and not used for any other purpose.
Poking areas in use as Microdrive buffers can corrupt Microdrive data and can result in a loss of
information. Pokng areas in use such as system tables can cause the system to crash and can result in
the loss of data and programs.

All I/O should be performed using either the relevant SuperBASIC commands or the QDOS Operating
System traps.

MICRODRIVES

Microdrives provide the main permanent storage on the QL. Each Microdrive cartridge has a capacity of
at least 100Kbytes. Available free memory space is allocated by QDOS as Microdrive buffers when
necessary to improve performance.

Each blank cartridge must be formatted before use and can hold up to 255 sectors of 512 bytes per
sector. QDOS keeps a directory of files stored on the cartridge. Each microdrive file is identified using a
standard SuperBASIC file or device name.

A cartridge can be write protected be removing the small lug on the right hand side.

On receiving new blank microdrive cartridges, format them a few times to condition the tape.

general care

Physically each Microdrive cartridge contains a 200 inch loop of high quality video tape which is moved
at 28 inches per second. The tape completes one circuit every 7.5 seconds.

NEVER touch the tape with your fingers or insert anything into the cartridge

NEVER turn the computer on or off with cartridges in place

ALWAYS store cartridges in their sleeves when not in use

ALWAYS insert or remove cartridges from the Microdrive slowly and carefully

ALWAYS ensure the cartridge is firmly installed before starting the microdrive

NEVER move the QL with cartridges installed - even if not in operation

NEVER touch the cartridge while the Microdrive is in operation

DO NOT repeatedly insert and remove the cartridge without running the Microdrive

tape loops

If a tape loop appears at either of the two places shown in figure 1 then gently ease it back into the
cartridge. Use a non-fibrous instrument for this, e.g. the side of a pen or pencil. NEVER touch the tape
with your fingers for this or any reason.

Command Function

FORMAT prepare a new cartridge for use

DELETE delete a file from a cartridge

DIR list the files on a cartridge

SAVE
SBYTES saves data from a cartridge
SEXEC

LOAD
LBYTES
EXEC loads data from a cartridge
MERGE

OPEN_IN
OPEN_NEW
OPEN opens and closes files
CLOSE

PRINT
INPUT SuperBASIC file I/O
INKEY$

warning

If you attempt to write to a cartridge which is write protected then the QL will repeatedly attempt to write
the data but will eventually give up and give a "bad medium" error.

MONITOR

A monitor may be connected to the QL via the RGB socket on the back of the computer. Connection is
via an 8-way DIN plug plus cable for colour monitors, or a 3-way DIN plug plus cable for monochrome.
The RGB socket connections are as in the following table, and the column indicating wire colour refers
to the colour coding used on the 8-way cable and connector available from Sinclair Research Limited.
Pin designation is as shown in the diagram below.

Pin function signal
sleeve colour
on QL RGB
colour lead

1 PAL composite PAL (4) orange
2 GND ground green
3 VIDEO composite monochrome video (3) brown
4 CSYNC composite sync (2) yellow

5 VSYNC vertical sync (1) blue
6 GREEN green (1) red
7 RED red (1) white
8 BLUE blue (1) purple

A monochrome monitor can be connected using a screened lead with a 3-way or an 8-way DIN plug at
the QL end. Only pins 2 (ground) and 3 (composite video) need to be connected via the cable to the
monitor. The connection at the monitor end will vary according to the monitor but is usually a phono
plug. The monitor must have a 75 ohm 1V pk-pk composite video non-inverting input (which is the
industry standard). Both 3-way DIN plugs and phono plugs are available from audio shops.

Diagram of Monitor Connector as viewed from rear of QL, showing pin numbers and
functions.

Diagram of Monitor Connector as viewed from rear of QL, showing pin numbers and functions

An RGB (colour) monitor can be connected using a lead with an 8 way DIN plug at the QL end. The
connection at the monitor end will vary according to the monitor (there is no industry standard) and will
often be supplied with it. A suitable cable with an 8-way DIN plug at one end and bare wires at the other
end is available from Sinclair Research Limited.

A composite PAL monitor, or the composite video input on some VCRs may work with the QL. Only pins
2 (ground) and 1 (composite PAL) need to be connected via a cable to the monitor or VCR.

NETWORK

The QL can be connected with up to 63 other QLs. If there are more than 2 computers on the network
then each computer (or station) must be assigned a unique station number. On the QL this can be done
using the NET command.

Information is transmitted over the network in blocks. For normal communication between two stations
the receiving station must acknowledge correct reception of the block. If a block is corrupted then the
receiving station will request retransmission.

Using a network station number of zero has a special meaning. Sending to neto_0 is called
broadcasting: any message sent in this way can be read by any station which is listening to neti_0. Note
that the normal verification that a message has been received is disabled for broadcasts, so that
broadcasting messages of length more than one block (255 bytes) is unreliable.

A network station which listens to its own station number (e.g. NET3:LOAD neti_3) can receive data
from any station sending to it.

Command Function

NET assign a network station number

OPEN open a network channel
CLOSE close a network channel

PRINT
INPUT network I/O
INKEY$

LOAD
SAVE
LBYTES
SBYTES
EXEC load and save via network
SEXEC
LRUN
MRUN
MERGE

comment

If you are planning to connect several QLs on the network, or use a long piece of cable then you should
wire it up with low capacitance twin core cable such as 3 amp light flex or bell wire. Take care to connect
the centres of each jack to each other, and the outsides to each other. You will find that although the
software can handle 63 stations, the hardware will not drive more than about 100m of cable, depending
on what type it is.

If you are only connecting a few machines with the lads supplied, you need not worry.

OPERATORS

Operator Type Function

= floating string logical type 2 comparison
== numeric string almost equal ** (type 3 comparison)
+ numeric addition
- numeric subtraction
/ numeric division
* numeric multiplication
< numeric string less than (type 2 comparison)
> numeric string greater than (type 2 comparison)
<= numeric string less than or equal to (type 2 comparison)
>= numeric string greater than or equal (type 2 comparison)
<> numeric string not equal to (type 3 comparison)
& string concatenation
&& bitwise AND
|| bitwise OR
^^ bitwise XOR
~ bitwise NOT
OR logical OR
AND logical AND
XOR logical XOR
NOT logical NOT
MOD integer modulus
DIV integer divide
INSTR string type 1 string comparison
^ floating raise to the power

- floating unary minus
+ floating unary plus

**almost equal - equal to 1 part in 10^7

If the specified logical operation is true then a value not equal to zero will be returned. If the operation is
false then a value of zero will be returned.

precedence

The precedence of SuperBASIC operators is defined in the table above. If the order of evaluation in an
expression cannot be deduced from this table then the relevant operations are performed from left to
right. The inbuilt precedence of SuperBASIC operators can be overriden by enclosing the relevant
sections of the expression in parentheses.

highest unary plus and minus
 string concatenation
 INSTR
 exponentiation
 multiply, divide, modulus and integer divide
 add and subtract
 logical comparison
 NOT (bitwise or logical)
 AND (bitwise or logical)
lowest OR and XOR (bitwise or logical)

PERIPHERAL EXPANSION

The expansion connector allows extra peripherals to be plugged into the QL. The
connections available at the connector are:

The connector on the QL is a 64 way (male) DIN-41612 indirect edge connector.

An 'L' appended to a signal name indicates that the signal is active low.

Signal Function

A0-A19 68008 address lines
RDWL Read / Write
ASL Address Strobe
DSL Data Strobe
BGL Bus Grant
DSMCL Data Strobe - Master Chip
CLKCPU CPU Clock
E 6800 peripherals clock
RED Red
BLUE Blue
GREEN Green
CSYNCL Composite Sync
VSYNCH Vertical Sync
ROMOEH ROM Output Enable
FC0 Processor status
FC1 Processor status
FC2 Processor status
RESETCPUL Reset CPU

QL Peripheral Output Signals

Signal Function

DTACKL Data acknowledge
BRL Bus request
VPAL Valid Peripheral Address
IPL0L Interrupt Priority Level 5
IPL1L Interrupt Priority Level 2
BERRL Bus Error
EXTINTL External Interrupt
DBGL Data bus grab

QL Peripheral Input Signals

Signal Function

D0..D7 Data Lines

QL Peripheral Bi-directional Signals

Signal Functional

SP0..SP3 Select peripheral 0 to 3
VIN 9V DC (nominal) - 500mA max.
VM12 -12V
VP12 +12V
GND ground

Miscellaneous

It is not intended that the following description of the QL peripheral expansion mechanism be sufficient
to implement an actual expansion device, but rather be read to gain a basic understanding of the
expansion mechanism.

Single or multiple peripherals may be added to the QL up to a maximum of 16 devices. A single
peripheral can be plugged directly into the QL Expansion Slot while multiple peripherals must be
plugged into the QL Expansion Module, which in turn is plugged into the QL Expansion Slot via a buffer
card.

In this context the term 'device' also includes expansion memory. Although the areas of the QL memory
map allocated to expansion memory are different from those allocate to expansion devices, the basic
mechanism is the same. Only one expansion memory peripheral can be plugged into the QL at any one
time. The address space allocated for peripheral expansion in the QL Physical memory map allows 16
Kbytes per peripheral. This area must contain the memory mapped I/O required for the driver and the
code for the driver itself.

QDOS includes facilities for queue management and simple serial I/O which may be of use when writing
device drivers.

The position of each peripheral device in the overall memory map of the QL is determined by the select
peripheral lines: SP0, SP1, SP2 and SP3. These select lines generate a signal corresponding to the slot
position in the QL expansion module, thus for a device to be selected the address input from address
lines: A14, A15, A16 and A17 must be the same as the signals from SP0, SP1, SP2 and SP3
respectively.

PIXEL COORDINATE SYSTEM

The pixel coordinate system is used to define the positions and sizes of windows, blocks and cursor
positions on the QL screen. The coordinate system has its origin in the top left hand corner of the default
window (or screen) and always assumes that positions are specified as though the screen were in 512
mode (high resolution mode). The system will use the nearest pixel available for the particular mode set
making the coordinate system independent of the screen mode in use.

Some commands are always relative to the default window origin, e.g. WINDOW, while some are
always relative to the current window origin, e.g. BLOCK

PROGRAM

A SuperBASIC program consists of a sequence of SuperBASIC statements, where each statement is
preceded by a line number. Line numbers are in the range of 1 to 32767.

Command Function

RUN start a loaded program

LRUN load a program from a device and start it

[CTRL] [SPACE] force a program to stop

syntax: line_number:= *[digit]* [range 1,32767]
 *[line_number statement *[:statement]*]*

example: i. 100 PRINT "This is a valid line number"

 RUN

 ii. 100 REMark a small program

 110 FOR foreground = 0 TO 7

 120 FOR contrast = 0 TO 7

 130 FOR stipple = 0 TO 3

 140 PAPER foreground, contrast, stipple

 150 CURSOR 0,70

 160 FOR n = 0 TO 2

 170 SCROLL 2,1

 180 SCROLL -2,2

 190 END FOR n

 200 END FOR stipple

 210 END FOR contrast

 220 END FOR foreground

 RUN

QDOS

Qdos is the QL Operating System and supervises:

Task Scheduling and resource allocation
Screen I/O (including windowing)
Microdrive I/O
Network and serial channel communication
Keyboard input
Memory management

memory map

A full description of Qdos is beyond the scope of this guide but a brief description is included.

The system RAM has an organisation imposed by the QDOS operating system and is defined as
follows:

The terms SV_RAMT, SV_RESPR, SV_TRNSP, SV_BASIC, SV_FREE, SV_HEAP are used to
represent addresses inside the QL. These terms are not recognised by SuperBASIC or the QDOS
operating system. Furthermore, the addresses represented are liable to change as the system is
running.

sv_ramt RAM Top
 This will vary according to the memory expansion boards attached to

the system.

sv_respr Resident Procedures
 Resident procedures are loaded into the top of RAM. Space can be

allocated in the resident procedure area using the RESPR function,
but this space cannot be released except by resetting the QL.
Resident Procedures written in machine code can be added to the
SuperBASIC name list and so become extensions to the
SuperBASIC system.

sv_trnsp Transient Programs
 Transient programs are loaded immediately below the resident

procedures. Each program must be self contained, i.e. it must contain
space for its own data and its own stack. It must be position
independent or must be loaded by a specially written linking loader. A
transient program is executed from BASIC by using the EXEC

command or from QDOS by activating it as a job.

 The transient program area may be used for storing data only but this

data will still be treated by QDOS as a job and therefore must not be
activated.

sv_basic SuperBASIC Area
 This area contains all loaded SuperBASIC programs and related

data. This area expands and contracts using up the free space as
required.

sv_free Free Space

 Free space is used by the Qdos file subsystem to create Microdrive
Slave Blocks, i.e. copies of Microdrive blocks which can be held in
RAM.

sv_heap System Heap
 This is used by the system to store data channel definitions and also

provides working storage for the I/O subsystem. Transient programs
may allocate working space for themselves on the heap via Qdos
system calls.

 System Tables/System Variables
 This area is directly above the screen memory. The System Tables

and supervisor stack are resident above the system variables.

system calls

System calls are processed by Qdos in 'supervisor mode'. When in supervisor mode, Qdos will not allow
any other job to take over the processor. System calls processed in this way are said to be 'atomic', i.e.
the system call will process to completion before relinquishing the processor. Some system calls are
only partially atomic, i.e. once they have completed their primary function they will relinquish the
processor if necessary. Unless specifically requested all the system calls are partially atomic.

The standard mechanism for making a system call is by making a trap to one of the Qdos system
vectors with appropriate parameters in the processor registers. The action taken by Qdos following a
system call is dependent on the particular call and the overall state of the system at the time the call was
made.

input/output

Qdos supports a multitasking environemtn and therefore a file can be accessed by more than one
process at a time. The Qdos filing sub-system can handle files which have been opened as EXCLUSIVE
files or as SHARED files. A shared file cannot be written to. QL devices are processed by the SERIAL
I/O SYSTEM. As its name suggests any data output by this system can be redirected to any other
device also supported by the redirectable I/O system.

The device names required by Qdos are the same as the device names required by SuperBASIC and
are discussed in the concept section DEVICES. The collection of standard devices supplied with the QL
can be expanded.

devices

The standard devices included in the system are discussed in this guide in the section DEVICES.
Further devices may be added to the system, given a name (e.g. SER1, NET) and then accessed in the
same way as any other QL device.

multitasking

Jobs will be allowed a share of the CPU in line with their priority and competition with other jobs in the
system. Jobs running under the control of Qdos can be in one of three states:

active: Capable of running and sharing system resources. A job

in this state may not be runnign continuously but will
obtain a share of the CPU in line with its priority.

suspended: The job is capable of running but is waiting for another job

or I/O. A job may be suspended indefinitely or for a
specific period of time.

inactive: The job is incapable of running, its priority is 0 and so it

can never obtain a share of the CPU

Qdos will reschedule the system automatically at a rate related to the 50 Hz frame rate. The system will
also be rescheduled after certain system calls.

example: This program generates an on-screen readout of the real-time

clock running as an independent job.

 First RUN this program with a formatted cartridge in microdrive

2. This generates a machine code title called 'clock'. Wait for the
microdrive to stop. Next, set the clock using the SDATE

command.

 Then type:

 EXEC mdv2_clock

 and a continuous time display will appear at the top right of the

command window.

100 c=RESPR(100)

110 FOR i = 0 TO 68 STEP 2

120 READ x:POKE_W i+c,x

130 END FOR i

140 SEXEC mdv2_clock,c,100,256

1000 DATA 29439,29697,28683,20033,17402

1010 DATA 48,13944,200,20115,12040

1020 DATA 28691,20033,17402,74,-27698

1030 DATA 13944,236,20115,8279,-11314

1040 DATA 13944,208,20115,16961,16962

1050 DATA 30463,28688,20035,24794

1060 DATA 0,7,240,10,272,200

N.B. Line 1060 governs the position and colour of the clock window - the data terms are, in order:

border colour/width, paper/ink colour, window width, height, x-origin, y-origin

These are pairs of bytes, entered by POKE_W as words.

The x-origin and the y-origin (the last data item) should be 272 and 202 in monitor mode, or 240 and
216 in TV mode.

Generate the paper and ink word, for example, as 256*paper+ink. Thus white paper, red ink is 256*7 + 2
= 1794

REPETITION

Repetition in SuperBASIC is controlled by two basic program constructs. Each construct must be
identified to SuperBASIC:

REPeat identifier FOR identifier = range

 Statements statements
END REPeat identifier END FOR identifier

These two constructs are used in conjunction with two other SuperBASIC statements:

NEXT identifier EXIT identifier

Processing a NEXT statement will either pass control to the statement following the appropriate FOR or
REPeat statement, or if a FOR range has been exhausted to the statement following the NEXT.

Prcoessing an EXIT will pass control to the statement after the END FOR or END REPeat selected by
the EXIT statement. EXIT can be used to exit through many levels of nested repeat structures. EXIT
should always be used in REPeat loops to terminate the loop on some condition.

A combination of NEXT,EXIT and END statements allows FOR and REPeat loops to have a loop
epilogue added. A loop epilogue is a series of SuperBASIC statements which are executed on some

special condition arising within the loop:

The loop epilogue is only processed if the FOR loop terminates normally. If the loop terminates via an
EXIT statement then processing will continue at the END FOR and the epilogue will not be processed.

It is possible to have a similar construction in a REPeat loop:

This time entry into the loop epilogue is controlled by the IF statement. The epilogue will or will not be
processed depending on the condition in the IF statement. A SELect statement can also be used to
control entry into the epilogue.

ROM CARTRIDGE SLOT

Allows software to be used in the QL system from a Sinclair QL ROM Cartridge. The ROM Cartrdge can
contain software to directly change the behaviour of the SuperBASIC system. The cartridge can contain:

i. Software to be used instead of or with the SuperBASIC system. For example:

assemblers
compilers
debuggers
application software
etc

ii. Software to expand the SuperBASIC system. For example:

special procedures
etc

It is not possible to use ZX ROM Cartridges on the QL.

pin out

Side b is the upper side of the connector; side a is the lower.

Signal Function

A0..A15 Address lines
D0..D7 Data lines
ROMOEH ROM Output Enable
VDD 5V
GND Ground

warning:

Never plug or unplug a ROM cartridge while the QL power is on.

SCREEN

512 mode

The screen is 512 pixels across and 256 pixels deep. Only the solid colours

black
red
green
white

can be displayed in this mode.

256 mode

Low resolution mode also has a hardware flash. The screen is 256 pixels across and 256 pixels deep.
The full set of solid colours is available in this mode:

black
blue
red
magenta
green
cyan
yellow
white

warning

A domestic television is not capable of displaying the complete QL screen. Portions of the screen at the
top and the sides will not be reproduced. The default initial window will take account of this and will
reduce the effective picture size. The full size can be restored with the WINDOW command.

Command Function

MODE set screen mode

SLICING

Under certain circumstances it is possible to refer to more than one element in an array i.e. slice the
array The array slice can be thought of as defining a subarray or a series of subarrays to SuperBASIC.

Each slice can define a continuous sequence of elements belonging to a particular dimension of the
original array. The term array in this context can include a numeric array, a string array or a simple
string.

It is not necessary to specify an index for the full number of dimensions of an array. If a dimension is
omitted then slices are added which will select the full range of elements for that particular dimension,
i.e. the slice (0 TO). SuperBASIC can only add slices to the end of a list of array indices.

syntax: index: = | numeric_exp {single element}
 | numeric_exp TO numeric_exp {range of elements}
 | numeric_exp TO {range to end}
 | TO numeric_expression {range from beginning}

 array_reference:= | variable
 | variable (| index * |,index| * |)

An array slice can be used to specify a source or a destination subarray for an assignment statement.

example: i. PRINT data array

 ii. PRINT letters$(1 TO 15)

 iii. PRINT two_d_array (3) (2 TO 4)

String slicing is performed in the same way as slicing numeric or string arrays.

Thus

a$(n) will select the nth character.
a$(n TO m) will select all characters from the nth to the mth, inclusively
a$(n TO) will select from a character n to the end, inclusively
a$(1 TO m) will select from the beginning to the nth character inclusively
a$ will select the entire contents of a a$

Some forms of BASIC have functions called LEFT$, MID$, RIGHTS. These are not necessary in

SuperBASIC. Their equivalents are specified below:

SuperBASIC Other BASIC

a$(n) MID$(a$,n,1)

a$(n TO m) MID$ (a$,n,m+1-n)

a$(1 TO n) LEFT$ (a$,n)

a$(n TO) RIGHTS (a$,LEN(a$)+1-n)

warning

Assigning data to a sliced string array or string variable may not have the desired effect. Assignments
made in this way will not update the length of the string. The length of a string array or string variable is
only updated when an assignment is made to the whole string.

START UP

Immediately after switch on (or reset) the QL will perform a RAM test which will give a spurious pattern
on the display. If the RAM test is passed then the screen will be cleared and the copyright screen
displayed.

After start up, the QL displays the copyright message and asks whether it is being used on a television
or a monitor. The QL will set different initial screen modes and window sizes depending on the answer.

Press F1 if you are using a monitor and F2 if you are using a television set.

The QL has the ability to 'boot' itself up from programs contained in either the ROM cartridge slot or in
Microdrive 1. If the ROM cartridge slot contains a self starting program then start up will continue under
the control of the program in the ROM cartridge. If nothing suitable is found then the QL will check
Microdrive 1 for a cartridge. If a cartridge is found and if it contains a file called BOOT it is loaded and
run.

default screen

The QL has three default channels which are linked to three default windows.

Channel 0 is used for listing commands and error messages, channel 1 for program and graphics output
and channel 2 for program listings. The default channel can be modified using the optional channel
specifier in the relevant command.

It is important NOT to switch on the QL with a Microdrive cartridge in position. If booting from a
Microdrive cartridge is required then the cartridge must be inserted between switching on and pressing
either F1 or F2.

SOUND

Sound on the QL is generated by the QL's second processor (an 8049) and is controlled by specifying:

up to two pitches
the rate at which the sound must move between the pitches, the ramp
how the sound is to behave after it has reached one of the specified pitches, the wrap
if any randomness should be built into the sound, i.e. deviations from the ramp
if any fuzziness should be built into the sound. i.e. deviations on every cycle of the sound

Fuzziness tends to result in buzzy sounds while randomness, depending on the other parameters, will
result in 'melodic' sounds or noise.

The complexity of the sound can be built up stage by stage gradually building more complex sounds.
This is, in fact, the best way to master sound on the QL.

Specify a duration and a single pitch. The specified pitch will be beeped for the specified time.

LEVEL 1

This is the simplest sound command, other than the command to stop the sound, on the QL.

LEVEL 2

A second pitch and a gradient can be added to the command. The sound will then 'bounce' between the
two pitches at the rate specified by the gradient.

The sounds produced at this level can vary between: semi musical beeps, growls, zaps and moans. It is
best to experiment.

LEVEL3

A parameter can be added which controls how the sound behaves when it becomes equal to one of the
specified pitches. The sound can be made to 'bounce' or 'wrap'.

The number of wraps can be specified, including wrap forever. It is even more important to experiment.

LEVEL4

Randomness can be added to the sound. This is a deviation from the specified step or gradient.

Depending on the amount of randomness added in relation to the pitches and the gradient, it will
generate a very wide and unexpected range of sounds.

LEVEL 5

More variation can be added by specifying 'fuzziness'. Fuzziness adds a random factor to the pitch
continuously Fuzziness tends to make the sound buzz.

Combining all of the above effects can make a very wide range of sounds, many of them unexpected.
QL sound is best explored through experiment. By specifying a time interval of zero the sound can be
made to repeat forever and so a sequence of BEEP commands can be used until the sound generated
is the sound which is required. A word of warning: slight changes in the value of a single parameter can
have alarming results on the sound generated.

STATEMENT

A SuperBASIC statement is an instruction to the QL to perform a specific operation, for example:

LET a = 2

will assign the value 2 to the variable identified by a.

More than one statement can be written on a single line by separating the individual statements from
each other by a colon (:), for example:

LET a = a + 2 : PRINT a

will add 2 to the value identified by the variable a and will store the result back in a. The answer will then
be printed out

If a line is not preceded by a line number then the line is a direct command and SuperBASIC processes
the statement immediately. If the statement is preceded by a line number then the statement becomes
part of a SuperBASIC program and is added into the SuperBASIC program area for later execution.

Certain SuperBASIC statements can have an effect on the other statements over the rest of the logical
line in which they appear i.e. IF, FOR, REPeat, REM, etc. It is meaningless to use certain SuperBASIC
statements as direct commands.

STRING ARRAYS, STRING VARIABLES

String arrays and numeric arrays are essentially the same, however there are slight differences in
treatment by SuperBASIC. The last dimension of a string array defines the maximum length of the
strings within the array. String variables can be any length up to 32766. Both string arrays and string
variables can be sliced.

String lengths on either side of a string assignment need not be equal. If the sizes are not the same then
either the right hand string is truncated to fit or the length of the left hand string is reduced to match. If
an assignment is made to a sliced string then if necessary the 'hole' defined by the slice will be padded
with spaces.

It is not necessary to specify the final dimension of a string array. Not specifying the dimension selects
the whole string while specifying a single element will pick out a single character and specifying a slice
will define a sub string.

COMMENT: Unlike many BASICs SuperBASIC does not treat string arrays as fixed length strings. If the
data stored in a string array is less than the maximum size of the string array then the length of the
string is reduced.

WARNING: Assigning data to a sliced string array Or string variable may not have the desired effect.
Assignments made in this way will not update the length of the string and so it is possible that the
system will not recognise the assignment. The length of a string array or a string variable is only
updated when an assignment is made to the whole string.

Command Function

FILL$ generate a string
LEN find the length of a string

STRING COMPARISON

order:

. (decimal point/full stop)
digits or numbers in numerical order
AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz

space ! " # $ % & ' () * + , - . / : ; < = > ? @ [|] ^ _ / { | } ~ ©

other non printing characters

The relationship of one string to another may be:

equal: All characters or numbers are the same or equivalent

lesser: The first part of the string, which is different from the
corresponding character in the second string, is before it in
the defined order.

greater: Thefirst part of the first string which is different from the

corresponding character in the second string, is after it in the
defined order.

Note that a '.' may be treated as a decimal point in the case of string comparison which sorts numbers
(such as SuperBASIC comparisons). Note also that comparison of strings containing non-printable
characters may give unexpected results.

types of comparison

type 0 case dependent - character by character comparison

type 1 case independent - character by character

type 2 case dependent - numbers are sorted in numerical order

type 3 case independent - numbers are sorted in numerical order

type 0 not normally used by the SuperBASIC system.

usage

type 1 File and variable comparison
type 2 SuperBASIC <, <=, =, >= ,>, INSTR and <>
type 3 SuperBASIC == (equivalence)

SYNTAX DEFINITIONS

SuperBASlC syntax is defined using a non-rigorous 'meta language' type notation. Four types of
construction are used :

 | | Select one of
 [] Enclosed item(s) are optional
 * * Enclosed items are repeated

 .. Range

 { } Comment

e.g. | A | B | A or B
 [A] A is optional
 * A * A is repeated
 A..Z A, B, C, etc
 {this is a comment}

Consider a SuperBASIC identifier.

A sequence of numbers, digits, underscores, starting with a letter and finishing with an optional % or $

letter:= | A..Z
 | a..z
 {a letter is one of: ABCDEFGHIJKLMNOPQRSTUVWXYZ}
 or abcdefghijklmnopqrstuvwxyz

digit: = | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Underscore:= _
 {an underscore is _}

TURTLE GRAPHICS

SuperBASIC has a set of turtle graphics commands:

Command Function

PENUP stop drawing
PENDOWN start drawing
MOVE move the turtle
TURN turn the turtle
TURNTO turn to a specific heading

The set of commands is the minimum and normally would be used within another
procedure to expand on the commands. For example:

100 DEFine PROCedure forward(distance)

110 MOVE distance

120 END DEFine

130 DEFine PROCedure backwards(distance)

140 MOVE -distance

150 END DEFine

160 DEFine PROCedure left(angle)

170 TURN angle

180 END DEFine

190 DEFine PROCedure right(angle)

200 TURN -angle

210 END DEFine

These will define some of the more famous turtle graphic commands.

Initially the turtle's pen is up and the turtle is pointing at 0 degrees which is to the right hand side of the
window.

The FILL command will also work with figures drawn with turtle graphics. Also ordinary graphics and
turtle graphics can be mixed, although the direction of the turtle is not modified by the ordinary graphics
commands.

WINDOWS

Windows are areas of the screen which behave, in most respects, as though each individual window
was a screen in its own right, i.e. the window will scroll when it has become filled by text, it can be
cleared with the CLS command, etc.

Windows can be specified and linked to a channel when the channel is opened. The current window
shape can be changed with the WINDOW command and a border added to a window with the BORDER
command. Output can be directed to a window by printing to the relevant channel. Input can be directed
to have come from a particular window by inputting from the relevant channel If more than one
channel is ready for input then input can be switched between the ready channels by pressing

[CTRL] C

The cursor will flash in the selected window

Windows can be used for graphics and non-graphic output at the same time. The non graphic output is
relative to the current cursor position which can be positioned anywhere within the specified window with
the CURSOR command and at any line-column boundary with the AT command. The graphics output is
relative to a graphics cursor which can be positioned and manipulated with the graphics procedures.

PARTS

Certain commands (CLS, PAN etc.) will accept an optional parameter to define part of the current
window for their operation. This parameter is as defined below:

part description

0 whole screen
1 above and excluding cursor line
2 bottom of screen excluding cursor line
3 whole of cursor line
4 line right of and including cursor

Command Function

WINDOW re-define a window
BORDER take a border from a window
PAPER define the paper colour for a window
INK define the ink colour for a window
STRIP define a strip colour for a window
PAN pan a window's contents
SCROLL scroll a window's contents
AT position the print position
CLS clear a window
CSIZE set character size
FLASH character flash
RECOL recolour a window

