
BBC BASIC Keywords

ABS Absolute value (function)

 Returns the absolute positive value of its argument.

ACS Arc cosine (function)

 Returns the arc cosine of its argument in radians. The permitted range of the argument is -1 to +1-

For example,

PRINT DEG(ACS(0.5))

will print 60, because COS(60°) is 0.5.

AND (A.) Logical AND (operator)

 Performs a bitwise logical AND between two operands which are internally converted to 4 byte integers before the
operation.

It is normally used to join two conditions in an IF or UNTIL statement; thus

IF length >10 AND width > 10 THEN PRINT "OK"

ensures that a rectangle is larger than 10 x 10.

ASC ASCII value (function)

 Returns the ASCII character value of the first character of the argument string.

PRINT ASC("Cambridge Z88")

gives 90, the ASCII value of "Z".

The brackets are optional, and , the null string, gives .ASC"" -1

ASN Arc sine (function)

 Returns the arc sine of its argument in radians. The permitted range of the argument is -1 to +1.

ATN Arc tangent (function)

 Returns the arc tangent of its argument in radians.

AUTO (AU.) Automatic numbering (command)

 Allows lines to be entered without first typing in the number of the line. The line numbers are preceded by the usual
prompt (>).

By default the starting line number and increment are both 10, but they may optionally be specified; for example

AUTO 20

will start with line 20, and

AUTO 100,20

will start at line 100 and increment by 20. AUTO will continue generating line numbers until you press .

 BGET (B.#) Byte from data file (function)

 Returns a byte from the data file whose channel number is its argument. The file pointer is incremented after the byte
has been read. For example,

character=BGET#c

reads the next character from file c.

 BPUT# (BP.#) Output a byte (statement)

Puts a byte to the data file whose channel number is the first argument. The second argument's least significant byte is
written to the file. The file pointer is incremented after the byte has been written. Thus

BPUT#channel, char

writes char to file channel.

 CALL (CA.) Call machine-code (statement)

 Calls a machine code subroutine at a specified address, passing parameters in a parameter block addressed by the
Z80's IX register. The IY register is set to the address of the machine code subroutine being called. The processor's A,
B, C, D, E, F, H, and L registers are initialised to the least significant bytes of A%, B%, C%, D%, E%, F%, H%, and L%
respectively.

This statement could cause corruption of the Cambridge Z88 memory, and should therefore only be used by
experienced programmers.

The parameter block contains the following list:

number of parameters 1 byte (1X+0)

first parameter type 1 byte (1X+1)

first parameter address 2 bytes (1X+2,1X+3)

parameter type) repeated as often

parameter address) as necessary

where the parameter types are as follows:

Type Description

0 8 bit bytes (eg ?a)

4 32 bit integer variable (eg !b or c%)

5 40 bit floating point number (eg d)

128 A string at a defined address (eg $e terminated by a &0D)

129 A string variable such as f$

In the case of a string variable the parameter address is the address of a String Information Block which gives the
current length of the string, number of bytes allocated, and start address, in that order.

muldiv=1234
CALL muldiv,A,B$,C%

CHAIN (CH.) Load and run program (statement)

 Loads and runs the program whose name is specified in the argument allowing one program to load another.
Information can be passed between programs using the static variables @%, and A% to Z%.

CHR$ ASCII character (function)

 Returns the ASCII character string specified by the least significant byte of the numeric argument.
A$=CHR$(90)

will set A$ to 70, since ASC"Z" is 90. The characters corresponding to values 32 and above can be displayed on the
screen with the line

FOR N%=32 TO 255: PRINT CHR$(N%) ; : NEXT

CLEAR (CL.) Clear program (statement)

 Clears all variables, including strings apart from the static variables @%, and A% to Z%.

CLG Clears Graphics Window

 This clears the graphics window (only); it does not affect the position of the graphics cursor.

CLOSE (CL.#) Close channel (statement)

 Closes a specified channel. For example,

CLOSE#c

closes channel c.

CLS Clear text area (statement)

 Clears the text area of the screen. The text cursor is moved to the 'home' position (0,0) at the top left-hand character
position of the text area.

COLOUR

 not implemented.

COS Cosine (function)

 Returns the cosine of its argument in radians.

X=COS(angle)

COUNT
(COU.)

Character count (function)

 Returns the number of characters sent to the output stream (VDU or printer) since the last new line. For example,

PRINT A$::REPEAT PRINT ".";:UNTIL COUNT = 72

will pad the line with dots to 72 characters

DATA (D.) Data (statement)

 Introduces lists of data for use by the READ statement (see READ).

DEF Define function/procedure (statement)

 Precedes declaration of a user-defined function (FN) or procedure (PROC). DEF must be used at the start of a
program line.

For example,

DEF FNcelsiusff) = (f-32)*5/9

defines a function to convert Fahrenheit to Celsius.

Executing

PRINT FNcelsius(98.4)

will convert 98.4 to Celsius.

DEG Degrees (function)

 Returns the argument converted from radians to degrees. For example

PRINT=DEG(PI/2)

will print 90

DELETE
(DEL.)

Delete lines (command)

Note:
CLS can be used to clear the text window and leave the graphics window unchanged.

 Deletes a group of lines from the program. Both start and end lines of the group will be deleted. For example

DELETE 123,456

will delete all lines between 123 and 456 inclusive, which need not exist.

DIM Dimension array (statement)

 Dimensions an array, or reserves an area of memory for special applications. For example,

DIM a$(10,20)

dimensions a two-dimensional string array a$ with elements a$(0,0) up to a$(10,20). Arrays may have one or more
dimensions, and may be string arrays, floating-point arrays, or integer arrays.

DIM X%24

reserves 25 bytes and puts the address of byte 0 in the variable X%.

DIV Integer divide (operator)

 Gives the integer quotient of two items. The result is always an integer.

X=A DIV B y=(top+bottom+1) DIV 2

DRAW x,y Draw black straight line

 Draws a straight line (in black) between the current position of the graphics cursor and the specified coordinates, then
moves the graphics cursor to the specified position.

This statement is identical to PLOT 5.

ELSE (EL.) Else clause (statement)

 An optional part of the IF...THEN, or ON...GOSUB, ON...GOTO statements, it introduces the action to be taken if the
testable condition evaluates to FALSE, or the ON expression is out of range.

END End program (statement)

 Returns to direct mode.

ENDPROC End procedure (statement)

 Denotes the end of a procedure defined with DEF PROC.

EOF# End of file (function)

 Returns -1 (TRUE) if the end of the specified data file has been reached. For example,

REPEAT

char%=BGET#data

...

UNTIL EOF#data

will read characters until the end of the file whose channel number is the variable .data

EOR Logical Exclusive-OR (operator)

 Performs a bitwise integer logical exclusive-or between two operands which are internally converted to 4 byte integers
before the operation.

ERL Error line (function)

 Returns the line number of the line where the last error occurred. For example,

PRINT "Error number" ERR "at line" ERL

ERR Error code (function)

 Returns the error code number of the last error which occurred.

EVAL (EV.) Evaluate string (function)

 Returns the result of evaluating the given expression supplied as a string. For example,

a=6 : b=7

PRINT EVAL ("a + b")

EXP Exponent (function)

 Returns 'e' (2.71828183) to the power of the argument.

EXT# Extent of file (function)

 Returns the total length of the file whose channel number is its argument.

The file must have been opened with OPENIN, OPENUP, or OPENOUT.

FALSE (FA.) False (function)

 Returns the value zero representing logical false. For example,

REPEAT PRINT "*" : UNTIL FALSE

will continue forever.

FN Function (statement)

 Introduces a user-declared function. The first character of the function name can be a letter, underline, or a number.
No spaces are allowed between the function name and the opening bracket of the parameter list (if any).

FOR (F.) Start FOR loop (statement)

 Initialises a FOR ... NEXT loop. The loop is executed at least once for each of the values of the control variable in the
specified range.

FOR card=1 TO 6 PRINT card;

NEXT card

will print

1 2 3 4 5 6

GCOL

 not implemented.

GET/GET$ Wait for key (function)

 Waits for a key to be pressed on the keyboard. GET returns the ASCII value, and GET$ returns the corresponding
single-character string. For example,

REPEAT UNTIL GET = 13

waits for

 to be pressed.

GOSUB
(GOS.)

Call subroutine (statement)

 Calls a section of a program as a subroutine at a specified line number. Control returns to the next statement when
RETURN is encountered in the subroutine. One subroutine may call another subroutine (or itself).

100 GOSUB 120
110 END
120 PRINT "Hello"
130 RETURN

GOTO (G.) Go to line (statement)

 Transfers program control to a line with a specified or calculated line number. For example,

GOTO 100 GOTO (X*10)

The use of the calculated GOTO, as in the second example, is not recommended as it will not be renumbered correctly
by the RENUMBER command.

HIMEM (H.) High memory bound (function)

 A pseudo-variable which contains the address of the first byte of free memory.

IF Condition (statement)

 Sets up a test condition which can be used to control the subsequent flow of the program. It is part of the IF ... THEN ...
ELSE structure. The word THEN is optional under most circumstances.

IF length-5 THEN 110
IF A<C OR A>D GOTO 110
IF A>C AND C>-D THEN GOTO 110 ELSE PRINT "CCL"

INKEY/INKEY$ Read key (function)

 Waits for up to a specified number of clock ticks (10ms each). If no key is pressed in the time limit, INKEY will return -1
and INKEY$ will return a null string; otherwise the INKEY function will return the ASCII value of the key pressed.

INPUT (I.) Input value (statement)

 Inputs values from the keyboard.

The INPUT statement normally prints a ? prompt for each variable in the list. Alternatively strings can be included in the
list of variables to be printed as prompts; omitting the comma after a string will suppress the question mark. For
example:

INPUT"Enter your age:" age%, "and your name",name$

INPUT LINE (statement)

 Identical to INPUT except that the entire line, including commas, quotes and leading spaces is input into a string
variable.

INPUT LINE A$

INPUT# Input from file (statement)

 Reads data from a file into specified variables.

The data should have been written to the file with a corresponding PRINT# statement.

INSTR Substring (function)

 Returns the position of a substring within a string, optionally starting the search at a specified place in the string. The
leftmost character position is 1. If the sub-string is not found, 0 is returned.

For example,

PRINT INSTR("Cambridge Z88"."8")

will print 12, and

PRINT INSTR("PipeDream","e".5)

will start the search at character 5 and print 7.

INT Integer (function)

 Converts a real number to the next lower or equal integer.

INT(99.8) is 99

INT(-12) is -12

INT(-12.1) is - .13

LEFT$ Left of string (function)

 Returns a specified number of characters from the left of a string. If there are insufficient characters in the source
string, all the characters are returned.

Thus, if A$=" BANANA"

PRINT LEFT$(A$,3)

would print " .BAN"

LEN Length of string (function)

 Returns the length of the argument string. For example,

X=LEN"fred"

will set X to 4.

LET Assignment (statement)

 Optional before an assignment statement.

LIST (L.) List program (command)

 Lists the program.

Examples:

LIST lists the entire program

LIST ,99 lists up to line 99

LIST 11, lists from line 11 to the end

LIST 11,99 lists lines 11 to 99 inclusive

LIST 55 lists line 55 only

To obtain a listing of a program to a printer connected to the Cambridge Z88:

Attach and turn on the printer.

Type , type +P, and press LIST

When finished, type -P.

LISTO LIST options (command)

 Controls the appearance of a listed program. The number following the command specifies which of the following
formatting options are required.

Value Option

0 No inserted spaces

1 Space after line number

2 FOR ... NEXT loops indented

4 REPEAT ... UNTIL loops indented

The numbers can be added to combine options, the default being 7.

LN Natural logarithm (function)

 Returns the natural (Naperian) logarithm of its argument.

LOAD (LO.) Load program (command)

 Loads a new program from a file and clears the variables. For example

LOAD "STAT4"

or

LOAD ":RAM.O/CONVERTER.BAS"

LOCAL (LOC.) Local variables (statement)

 Declares variables for local use inside a function (FN) or procedure (PROC).

LOCAL A$,X,Y%

LOG Logarithm (function)

 Returns the base-10 logarithm of its argument.

LOMEM
(LOM.)

Lower memory bound (function)

 A pseudo-variable which controls where in memory the dynamic data structures are to be placed. The default is TOP,
the first free address after the end of the program.

MID$ Middle of string (function)

 Returns a string consisting of a specified number of characters of the string starting from a given position. For example

A$ = MID$(B$, start, length)

sets A$ to the substring of B$ starting at position 'start', and of length 'length'. If 'length' is omitted, or if there are
insufficient characters in the string, then all the characters from 'start' onwards are returned. Thus

PRINT MID$("DOZY",2,2) will print

" "OZ

MOD Modulo (operator)

 Gives the signed remainder of the integer division.

X=A MOD B

is equivalent to

X = A - ((A DIV B) *B)

MODE n MODE statement

 The MODE statement allows selection of the normal text-only mode (MODE 0) or a text-and-graphics mode (MODE 1).
In MODE 1 the display is split into two parts: a text-window on the left and a graphics-window on the right. The text
window consists of 8 rows of 50 characters, and the graphics window is 64 pixels high by 256 pixels wide; you cannot
(normally) mix text and graphics in the same window.

Points in the graphics window are addressed as x,y coordinates from 0,0 (the bottom-left corner) to 255,63 (the
top-right corner), although the origin can be moved using the PLOT -1 statement (q.v.).

Although MODE 1 sets up the window positions and sizes as described, it is possible to change these using the VDU
statement. However the method of doing this is outside the scope of this document. It is not advisable to cause the text
and graphics windows to overlap, although this may occasionally be useful.

MODE clears the display (both text and graphics windows), moves the text cursor to 0,0 (the top left of the text
window), resets the
graphics origin and moves the graphics cursor to 0,0 (the bottom left of the graphics window).

In MODE 0 (the normal 94-column text mode) the other graphics statements have no effect.

MOVE x,y Move graphics cursor

 Moves the graphics cursor to the specified coordinates, but does not affect what is displayed.
This statement is identical to PLOT 4.

NEW New program (command)

 Initialises the interpreter for a new program to be typed in. An old program may be recovered with the OLD command
provided no program lines have been typed in. The variables @% and A% to Z% are preserved even after a NEW
command.

NEXT (N.) End FOR loop (statement)

 Ends a FOR ... NEXT loop. NEXT takes an optional control variable; if this is not the same as the variable supplied in
the corresponding FOR statement, an error will occur.

NOT Logical NOT (operator)

 A unary operator (the same priority as unary –) giving a bit-by-bit binary inversion of the constant, variable, or
mathematical or boolean expression to its right. Usually used in IF ... THEN or UNTIL statements to invert the sense of
the condition. Expressions must be enclosed in brackets.

OLD Recover old program. (command)

 Undoes the effect of NEW provided no lines have been typed in or deleted, no variables have been created, and no
popdown or application has been entered.

ON Multi-way switch (statement)

 Provides a multi-way GOTO or GOSUB, depending on the value of a control variable. The line numbers in the list may
be constants or calculated, and the unwanted ones are skipped without calculation. For example:

ON action GOSUB 1000,2000,3000,4000

ON ERROR Error trap (statement)

 Provides error trapping. If an ON ERROR statement has been encountered, BASIC will transfer control to it (without
taking any reporting action) when an error is detected. This allows error reporting/recovery to be controlled by the
program. However, the program control stack is still cleared when the error is detected and it is not possible to return to
the point where the error occurred.

Note that under some circumstances ON ERROR can cause BASIC to generate repeated errors, requiring a soft-reset.
This can be avoided by including a call to INKEY$, as in the following example, which will allow you to exit from BASIC
to the Index and *KILL the activity:

10 ON ERROR REPORT: 0$=INKEY$(100)
20 ERROR

OPENIN (OP.) Open file for input (function)

 Opens a file for reading or updating and returns the 'channel number' of the file, or 0 on failure. This number must be
used in subsequent references to the file with BGET#, INPUT#, EXT#, PTR#, EOF# or CLOSE#.

OPENOUT Open file for output (function)

 Opens a file for writing and returns the 'channel number' of the file, or 0 on failure. This number must be used in
subsequent references to the file with BPUT#, PRINT#, EXT#, PTR# or CLOSE#.

X=OPENOUT(A$) X=OPENOUT(":RAM.0/DATA.DAT")

 OPENUP
(OPENU.)

Open file for update (function)

 Opens a file for update and returns the channel number, or 0 on failure. Once a file is opened you can update it or
extend it.

OPT Assembler options (statement)

 An assembler pseudo operation controlling the method of assembly.

It is followed by a number in the range 0 to 3 to specify the method of assembly:

Option Action

0 errors suppressed, no listing

1 errors suppressed, listing

2 errors reported, no listing

3 errors reported, listing

The code is assembled into memory at the address specified by P%. For example:

10 DIM code 100
20 FOR pass = 0 TO 3 STEP 3
30 P%=code
40 [
50 OPT pass
60
70 \ backslash introduces a comment
80 \ standard Z80 mnemonics are used
90]
100 NEXT pass
110 END

Alternatively the assembled code can be assembled into memory at the address specified by O%, with labels
generated according to the value of P%, by adding 4 to each of these option values.

For more details, read the in the Developers' Notes.BBC BASIC and the in-line assembler

OR Logical OR (operator)

 Gives the bitwise integer logical OR between two operands which are internally converted to 4 byte integers before the
operation.

OSCLI Operating-system command (statement)

 Allows a string expression to be passed to the operating system. For example, in the BASIC editor (see Editing BASIC
programs, p. 191)

60220 OSCLI "*CLI.<" + B$

PAGE (PA.) Program area (function)

 A pseudo-variable controlling the starting address of the current user program area. The lower byte of PAGE is always
zero.

PI Pi (function)

https://cambridgez88.jira.com/wiki/display/DN/BBC+BASIC+and+the+in-line+assembler

 Returns 3.141592653.

PLOT n,x,y Plotting statement

 A multi-purpose plotting statement, whose effect is controlled by the first parameter n:

n action

-1 Move the graphics origin to x,y.

0 Move the graphics cursor relative to the last point.

1 Draw a line, in "black", relative to the last point.

2 Draw a line, in "inverse", relative to the last point.

3 Draw a line, in "white", relative to the last point.

4 Move the graphics cursor to the absolute position x,y.

5 Draw a line, in "black", to the absolute position x,y.

6 Draw a line, in "inverse", to the absolute position x,y.

7 Draw a line, in "white", to the absolute position x,y.

8-15 As 0-7, but plot the last point on the line twice (i.e. in the "inverting" modes omit the last point).

16-31 As 0-15, but draw the line dotted.

32-63 As 0-31, but plot the first point on the line twice (i.e. in the "inverting" modes omit the first point).

64-71 As 0-7, but plot a single point at x,y.

72-79 Draw a horizontal line left and right from the point x,y until the first "lit" pixel is encountered, or the edge

of the window. This can be used to fill shapes.

80-87 Plot and fill a triangle defined by the two previously visited points and the point x,y.

88-95 Draw a horizontal line to the right of the point x,y until the first "unlit" pixel is encountered, or the
edge of the window. This can be used to "undraw" things.

96-103 Plot and fill a rectangle whose opposite corners are defined by the last visited point and the point x,y.

POINT(x,y) Returns state of pixel

 This function returns the state of the pixel at the specified location, as 0 (unlit) or 1 (lit). If the specified point is outside
the
graphics window (taking into account the position of the graphics origin), or if MODE 0 is selected, the value -1 is
returned.

POS Cursor position (function)

 Returns the horizontal position of the cursor on the screen. The left-hand column is 0 and the right-hand column is one
less than the width of the display.

PRINT (P.) Print text (statement)

 Prints characters on the screen or printer.

Items may be separated by commas, semi-colons, or no separator:

PRINT "ONE" I% "TWO"

Numbers are printed in a format determined by the value of the variable @%. This is set to a hexadecimal value as
follows:

@% = &SSNIVPPWW

where

SS determines the format of strings created by STR$.

If SS=01 then STR$ will use the format specified by 9%, otherwise @% will be ignored.

NN determines the notation format.

NN=00 General notation: integers will be printed with no decimal places, numbers between 0.1 and 1 will be printed as
0.1 etc, and numbers less than 0.1 will use scientific notation.

NN=01 Scientific notation: eg 100 is printed as 1E2.

NN=02 Fixed format notation: if the number will fit into the specified field width, it will be displayed with the number of
decimal places specified by PP. Otherwise general notation will be used.

PP determines the number of decimal places to be printed.

WW determines the overall print field width.

By default, @% = &0000090A, giving general notation with a field width of 10 characters. Its value can be printed, in
hexadecimal, with

PRINT ~@%

Numbers can be printed in hexadecimal by prefixing them with '-'.

PRINT# (P.#) Write to file (statement)

 Writes the internal form of a list of variables, separated by commas, to a specified data file.

PROC Procedure (statement)

 Introduces a user-declared procedure. The first character of a procedure name can be a letter, underline, or a number.
No spaces are allowed between the procedure name and the opening bracket of the parameter list (if any). The
procedure returns to the calling program with an ENDPROC statement.

PTR# File pointer (function)

 A pseudo-variable allowing the random-access pointer of a specified file to be read and changed. For example,

PTR#F=PTR#F+5

moves to the next floating-point number in the file with channel number F, since 5 bytes are allocated to each number.

PUT Output to port (statement)

 Outputs data to a Z80 port. Should only be used by experienced programmers as incorrect use could damage the
Cambridge Z88. The full Z80 extended addressing is available.

PUT A,N :REM output N to port A.

RAD Radians (function)

 Returns its argument converted from degrees to radians. For example:

RAD(90)

READ Read DATA statements (statement)

 Assigns to variables values read from the DATA statements in the program. Strings must be enclosed in double quotes
if they have leading spaces or contain commas.

READ A%,B,C$
DATA 27,-12.34,"Hello"

REM Comment (statement)

 Introduces a comment, causing the rest of the line to be ignored.

RENUMBER
(REN.)

Renumber program (command)

 Renumbers the lines and corrects the cross references inside a program. The options are as for AUTO.

REPEAT
(REP.)

REPEAT loop (statement)

 Introduces a REPEAT...UNTIL loop. For example:

REPEAT PRINT "*": UNTIL COUNT = 80

will print 80 stars on the screen or printer.

REPORT
(REPO.)

Report error (statement)

 Prints out the error string associated with the last error which occurred. If no error has occurred, prints the copyright
string.

RESTORE
(RES.)

Restore READ (statement)

 Sets the line from which subsequent READ statements will read data.

RETURN (R.) Return from subroutine (statement)

 Causes a RETURN to the statement after the most recent GOSUB statement.

RIGHT$ Right of string (function)

 Returns a specified number of characters from the right-hand end of a string. If there are insufficient characters in the
string then all are returned. For example:

PRINT RIGHT$("DOZY",3)

will print 0 Z Y -

RND Random number (function)

 Returns a random number. The type and range of the number returned depends upon the optional parameter, as
follows:

Value Result of RND(X)

X<0 Returns X and resets random number generator to -X.

X=0 Repeats last random number given by RND(1).

X=1 Returns a random number between 0 and 0.999999.

X>1 Returns a random integer between 1 and X inclusive.

RUN Run program (statement)

 Starts execution of the program after clearing all but the static variables @%, and A% to Z%.

SAVE (SA.) Save program (statement)

 Saves the current program area to a file, in internal (tokenised) format.

SAVE "myprog.BAS" SAVE A$

SGN Sign (function)

 Returns -1, 0, or + 1 depending on whether the argument is negative, zero or positive respectively.

result=SGN(answer)

SIN Sine (function)

 Returns the sine of its argument taken in radians.

SPC Print spaces (statement)

 Prints a specified number of spaces. SPC can only be used as part of an INPUT or PRINT list; for example:

PRINT "Name"; SPCM; "Age"; SPC(6): "Address"

SQR Square root (function)

 Returns the positive square root of its argument.
z=SQ R (XA 2+y A2)

STEP (S.) FOR loop increment (statement)

 Part of the FOR statement, this optional section specifies the step size. For example,

FOR i=1 TO 20 STEP 5
PRINT i;
NEXT

will print: 1 6 11 16

STOP Stop program (statement)

 Syntactically identical to END, STOP also prints a message

STOP at line X

where X is the line number.

STR$ String (function)

 Returns the string form of the numeric argument as it would have been printed. A number A% can be converted to a
string in hexadecimal format with the function:

STR$~A%

STRING$ Repeat strings (function)

 Returns a given number of repetitions of a string.

A$=STRING$(5,"HA")

will set AL$ to "HAHAHAHAHA"

TAB Move to screen position (statement)

 Moves the cursor to a given screen position. TAB can only be used as part of a PRINT or INPUT statement.

There are two forms:

TAB(X) will print spaces until the cursor reaches column X (on the same line, or next line).

TAB(X,Y) will move the cursor directly to character position X,Y on the screen, where 0,0 corresponds to the top
left-hand corner.

TAN (T.) Tangent (function)

 Returns the tangent of its argument taken in radians.

THEN (TH.) Condition clause (statement)

 An optional part of the IF ... THEN ... ELSE statement. It introduces the action to be taken if the testable condition
evaluates to TRUE.

TIME (TI.) Time (function)

 A pseudo-variable which sets and reads the elapsed time clock. The value of TIME must be initialised before it is used;
for example

TIME=100

resets the value of TIME to 100 centiseconds, and

X=TIME

sets X to the value of the current elapsed time.

TIME$ Time string (function)

 Returns a string giving the current date and time; for example:

Wednesday 29 April 1987, 10:12:32

The functions LEFT$, MIID$, and RIGHT$ can be used to extract parts of this string. For example, the time alone can
be obtained by
A$ = RIGHT$(TIME$,8)
PRINT A$
10:12:32

TO Upper bound of FOR loop (statement)

 Introduces the terminating value f6r the loop in a FOR ... TO ... STEP statement. When the loop control variable
exceeds the value following 'TO', the loop is terminated.

TOP Top of program (function)

 Returns the value of the first free location after the end of the current program.

TRACE (TR.) Trace program (command)

 TRACE can be used to provide information on the execution of a program. TRACE ON causes the interpreter to print
executed line numbers when it encounters them, for debugging. The facility can be turned off by typing TRACE OFF.

TRUE True (function)

 Returns the value —1, representing logical true.

UNTIL (U.) End REPEAT loop (statement)

 The end of a REPEAT ... UNTIL structure.

USR Call machine-code (function)

 Enters a machine code routine at the address specified in its argument, passing the least-significant bytes of the
integer variables A%, B%, C%, D%, E%, F%, H%, L%, and F% into the correspondingly-named registers of the Z80 on
entry.

Unlike CALL, USR returns a 32-bit result composed of the contents of the Z80's H, L, H', and L' registers,
most-significant to least-significant.

This function should only be used by experienced programmers.

VAL Value of string (function)

 Converts a character string representing a number into numeric form.

X=VAL(a$)

VDU (V.) Output bytes to screen (statement)

 Takes a list of numeric arguments and sends their least-significant bytes as characters to the current 'output stream'.

VPOS (VP.) Vertical position (function)

 Returns the vertical cursor position. The top of the screen is line 0.

WIDTH (W.) Screen width (statement)

 Controls output overall field width. Initially WIDTH is 94 (the default). For example, before printing it is a good idea to
set

WIDTH 80

to give a new line after every 80 characters of output.

*CLI Send line to CLI (OZ command)

 Sends a command to the command line interpreter. For example, in the BASIC editor (see):Editing BASIC programs

60090 *CLI .*:RAM.O/EE.CLI

*EDIT (*E.) *EDIT line number

 This command allows you to edit a specified program line. It results in the line being displayed (after a short delay) with
the cursor positioned at the end, and you can then edit the line using any of the usual line-editing features, as follows:

Move cursor left one character

Move cursor right one character

Move cursor left one word

Move cursor right one word

Move cursor to start of line

Move cursor to end of line

Backspace and delete

Delete character under cursor

 Delete entire line

 D Delete from cursor to end of line

 G Delete character under cursor

S Swap case

T Delete up to next space

 U Insert space at cursor position

 V Toggle between insert and overtype

To enter the edited line into the program press ; to abandon the edit and leave the line unchanged press

.

You can also use to concatenate two or more program lines, by specifying the first line and last line separated*EDIT
by commas (e.g. *EDIT 10,30). In this case you will have to edit out the line numbers of the second and subsequent
lines (and delete the old lines afterwards).

*EDIT may be abbreviated to *E. (the dot is required).

https://cambridgez88.jira.com/wiki/spaces/UG/pages/35913792/Section+Ten+-+BBC+BASIC#SectionTen-BBCBASIC-Editing_BASIC_programs

1.

2.

3.

1.
2.
3.
4.
5.

*ERASE Erase a file (OZ command)

 Erases a specified file. For example,

*ERASE filename

or using the CLI

OSCLI "*ERASE "+file$

*NAME Names the BASIC activity (OZ command)

 Gives the BASIC activity a name, which will be displayed in the list of SUSPENDED ACTIVITIES in the Index.

*NAME MYPROG

*RENAME Rename a file (OZ command)

 Renames a file; for example:
*RENAME oldfile newfile
OSCLI "*RENAME "+oldfile$+" "+newfile$

Notes on V3.10 BBC BASIC

You are advised to select MODE 0 before entering Pipedream, since it seems to get confused by the presence of the graphics
window.
If you reply to the INPUT statement with a very long string (more than 252 characters) the machine will crash, so you must avoid
doing so.
Using graphics statements in an ON ERROR routine may give anomalous results. For example:

10 ON ERROR MODE 0 : REPORT : END
20 MODE 1
30 REPEAT
40 DRAW RND(256)-1,RND(64)-1
50 UNTIL FALSE

The above program can be exited only by pressing . The intention is that this will cause the display to clear and themessage
"Escape" to be displayed. In practice, the message actually displayed will be "Sorry, not implemented" since, the MODE statement
still affects REPORT, ERR and ERL.

Special Cambridge Z88 information

The following system information is available:

PRINT ~PTR# -1 The number of channels left for use and the ROM release number

PRINT EXT# -1 Prints the estimated free memory in bytes

PRINT EOF# -1 Returns 0 for an unexpanded Cambridge Z88 and -1 for an expanded one. See .Expanded/Unexpanded

https://cambridgez88.jira.com/wiki/spaces/UG/pages/35913757/Expanded%2C+Unexpanded

	BBC BASIC Keywords

