
Richard. T. Russell & Douglas J. Mounter

The
BBC BAS|C(280)

Reference Manual
for Cambridge 288

Second edition

Copyright
BBC BAS|C(280) is the copyright © 1982, 1984-2006 of RT. Russell.

The BBC BAS|C(280) Reference Manual, first edition, 1 February 1989, is the copyright ©
1983, 1984, 1985. and 1989 of M-TEC Computer Services (UK).

This BBC BAS|C(280) Reference Manual, second edition is copyright © 2019 of
cambridge288.jira.com (general improvements and fixes of first edition, added information
of latest version of BBC BAS|C(280) for Cambridge 288 using extended commands of the
Z88 Patch).

Disclaimer
The authors have made every reasonable effort to check the information in this manual and
they believe it to be correct. However, they will not in any event be liable for any loss,
including consequential loss, caused by an error, defect or inaccuracy in this information,
including, but not limited to, loss of profit or loss of contracts.

Credits
Our thanks to Richard Russell, Matthew Soar and Cambridge Computer Ltd for providing
technical information and help in preparing this manual.

Preface

You are reading the second edition of this manual. It happened because Richard Russell decided
to release the source code of the BBC BAS|C(280) for CP/M in June 2019 and a few months later
also the source code of the 288 Patch under the same Zlib license.

It allowed us, the team of cambridqez88.iira.com. to finally release the source code of BBC
BAS|C(280) port for the Cambridge Z88 that also contained the integration of the 288 Patch,
released to the project in 2006 by Richard Russell as a “ROMabIe” binary. Previously, the patch
was only available as a binary add-on program for OZ releases V2.2 UK - V4.0 UK. The integrated
patch allowed OZ V4.3 and newer releases to enjoy the improved BBC BASIC application.
Respecting copyright, we preserved the reverse-engineered and optimised version source code
privately. This source code, however, lacked all the deeper understanding and comments of the
original work.

All original source code labels and comments from the ZLib licensed files have now been applied
to our reverse-engineered and optimized version of BBC BAS|C(280) for Cambridge 288.

You can find the source code here: httpszllbitbucket.orq/cambridqe/oz/src/develop/aops/bbcbasic/

The original Z88 User Guide contained introductory information about the BBC BAS|C(280) V3.0
available for the Cambridge Z88. Many years have passed since the first edition of this manual
was released by M-TEC, It is no longer available in print or purchase. The 288 Patch contained an
introduction readme text file, referencing the added star commands.

We decided to do the effort and preserve the legacy of BBC BASIC for Z88, by making this guide
available with ALL the updated information from the patch and new improvements of OZ. This
guide is based on mainly the online CP/M 280 guide also using the extended random files
examples, typed in from the original contents of the M-TEC first edition. It was then improved,
spell-checked, clearer layout, improved 288-specific descriptions (ie. screenshot for clarity) and
added with the 288 Patch command reference. All the original text from the M-TEC first edition has
been checked against this second edition. It is targeted to be the complementary guide for BBC
BAS|C(280) on Cambridge 288 ROM V4.7 and later releases.

Screenshots, code examples and 288 Patch have been validated on O v - the Cambridae 288
emulator.

On behalf of the cambridqe288.iira.com team, thank you Richard, for the generous decision to
make the source code of BBC BAS|C(280) and 288 Patch available for everybody.

Gunther Strube, Vic Gerhardi and Jamie Bradbury
October 2019 - May 2020

BBC BAS|C(280) Reference Manual for 288, 2nd edition 2

Table of Contents

Introduction 15
Before You Start 15
Running BBC BAS|C(280) 16

General information 17
Introduction 17

Control Codes and Functions 17
Generation 17
What happens to Control Codes? 17
Pausing the Display 17

Line Numbers 17
Statement Separators 17

EdMng 17
Introduction 18
The Program Editor 18

No Program Editor available in Cambridge 288 ROM releases OZ V2.2 - V4.0 18
Using PipeDream as Program Editor 20
Auto Numbering PipeDream files 20

Installing 288 Patch with Program Editor and other commands 21
Expression Priority 23

Order of Evaluation 23
Examples 23

Variables 23
Specification 24
Numeric Variables 24

Real Variables 24
Integer Variables 24
Static Variables 24
Boolean Variables 24
Numeric Accuracy 25

String Variables and Garbage 25
Strings 25
Garbage Generation 25
Memory Allocation 25

Arrays 25
Program Flow Control 27

Introduction 27
Loop Operation Errors 27
Program Structure Limitations 27
Leaving Program Loops 28

REPEAT...UNT|L Loops 28
Changing the Loop Variable 29
Popping the Inner Variable 29

BBC BAS|C(280) Reference Manual for 288, 2nd edition 3

Local Variables
Stack Pointer

Indirection
Introduction
The indirection operators
Query

Byte Access
Query as a Byte Variable

Exclamation
Dollar
Use as Binary Operators
Power of Indirection Operators

Operators and Special Symbols
Keywords
Error Handling

Introduction
Types of Errors
Trapping Errors
Reasons for Trapping Errors

Error Trapping Commands
Error Reporting

ERR
ERL
REPORT

Problems with Error Trapping
Error Trapping Examples

Procedures and Functions
Introduction
Names
Functions and Procedure Definitions

Starting a Definition
The Function/Procedure Body
Ending a Definition
Single Line Functions/Procedures
Extending the Language

Passing Parameters
Formal and Actual Parameters

Local Variables
Re—entrant Functions/Procedures

Assembler
Introduction

Instruction mnemonics
Assembler Statements
Labels

BBC BAS|C(280) Reference Manual for 288, 2nd edition

30
30
30
31
31
31
31
32
32
32
33
34
34
35
38
38
38
38
38
39
39
39
4o
40
40
41
43
43
43
44
44
44
44
44
44
45
45
46
46
47
48
48
49
49

Comments
Byte, Word and String Constants

Define Byte - DEFB
Define Word - DEFW
String Constant - DEFM
Defined storage

Reserving Memory
The Program Counter
Using DIM to Reserve Memory
Moving HIMEM to Reserve Memory
Length of Reserved Memory
Initial Setting of the Program Counter

The Assembly Process
OPT

Bit O - LSB
Bit 1
Bit 2

Assembly at a Different Address
OPT Summary

Code Assembled Starting at P%
Code Assembled Starting at 0%

How the Assembler Works
Saving and Loading Machine Code Programs

*SAVE
*LOAD
Saving and loading machine code files with PROC_save & PROC_Ioad
Using PROC_save
Using PROC_Ioad

Conditional Assembly and Macros
Introduction
Conditional Assembly
Macros
Managing system error events on the 288

Warning
Error handling

Statements and functions
Introduction

Syntax
Symbols

ABS
ACS
ADVAL
AN D (A.)
ASC

BBC BAS|C(280) Reference Manual for 288, 2nd edition

49
49
49
50
50
50
51
51
51
51
51
52
53
53
53
53
53
53
53
53
54
54
55
55
55
56
56
56
57
57
57
57
58
58
59

62
62
62
62
63
64
65
66
68

ASN 69
ATN 70
AUTO (AU.) 71
BGET# (B.#) 73
BPUT# (BP.#) 75
CALL (CA.) 75

Parameter Table 76
Parameter Formats 77

CHAIN (CH.) 78
CHR$ 78
CLEAR (CL.) 80
CLOSE# (CLO.#) 81
CLG 81
CLS 83
COLOUR 83
COS 84
COUNT (COU.) 86
DATA (D.) 87
DEF 87
DEG 88
DELETE (DEL.) 90
DIM 90

Dimensioning Arrays 91
Reserving an Area of Memory 91

DIV 92
DRAW 93
*EDIT (*E.) 95
ELSE (EL.) 95
END 97
ENDPROC 98
ENVELOPE 98
EOF# 99
EOR 100
ERL 102
ERR 102
EVAL (EV.) 103
EXP 105
EXT# 106
FALSE (FA.) 107
FN 108
FOR (F.) 111
GCOL (GC.) 113
GET/GET$ 113
GOSUB 116
GOTO (G.) 117

BBC BAS|C(280) Reference Manual for 288, 2nd edition 6

HIMEM 117
IF 118
INKEY/l NKEY$ 120
INPUT 120
INPUT LINE 122
|NPUT# 123
INSTR 124
INT 125
LEFT$ 126
LEN 127
LET 128
LIST (L.) 129
LISTO 131

Bit Settings 131
Bit 0 (LSB) 131
Bit 1 131
Bit 2 131

LN 132
LOAD (LO.) 133
LOCAL 134
LOG 135
LOMEM 136
MOD 139
MODE (MO.) 140
MOVE 141
NEXT (N.) 143
NOT 144
OLD 145
ON 146

Limitations 147
ON ERROR 148
OPENIN (OR) 149
OPENOUT 150
OPENUP 151
OPT 152

Code Assembled Starting at P% 153
Code Assembled Starting at 0% 153

OR 153
OSCLI 154
PAGE (PA.) 155
Pl 157
PLOT (PL.) 157
POINT 159
PRINT 162

General Information 162

BBC BAS|C(280) Reference Manual for 288, 2nd edition 7

Print Format Control 163

STR$ Format Control - SS 164
Format Selection - NN 164
Number of Digits - PP 164
Zone Width - WW 165
Changing the Print Control Variable 166

Examples 166
PRINT# (P.#) 168
PROC 169
PTR# 171
PUT 171
RAD 172
READ 173
REM 174
RENUMBER (REN.) 175
REPEAT (REP.) 176
REPORT (REPO.) 177
RESTORE (RES.) 179
RETURN (R.) 180
RIGHT$ 181
RND 181
RUN 182
SAVE (8A.) 183
SGN 184
SIN 185
SOUND 186
SPC 187
SQR 189
STEP (8.) 189
STOP 190
STR$ 191
STRING$ 192
TAB 193
TAN (T.) 194
THEN (TH.) 195
TIME (TL) 196
TIME$ 197
TO 198
TOP 199
TRACE (TR.) 201
TRUE 201
UNTIL (U.) 202
USR 203
VAL 204
VDU (V.) 205

BBC BAS|C(280) Reference Manual for 288, 2nd edition 8

VPOS 206
WIDTH (W.) 207

The Screen Driver 209
Introduction 209
Escape Sequences 209
Description of VDU Codes 210

VDU O 210
VDU 1 210
VDU 7 210
VDU 8 210
VDU 9 210
VDU 10 210
VDU 12 210
VDU 13 210
VDU 127 210

Description of Escape Sequences 211
Introduction 211
Special characters 211
Box Characters 213
Cursor Positioning 214
Display Attributes 215
Changing Display Attributes 216
Cancelling Display Attributes 216
Changing Display Attributes 216
Text Justification and Margins 217
Windows 217
Defining a Window 217
Selecting a Window 218
User Defined Characters 220
Printing User Defined Characters 220
Limitations 220
Miscellaneous Functions 221

Window Scrolling 221
Grey Window 221
Multiple Output 221
Multiple Bell 222

Operating System Interface 223
Introduction 223
File Specifiers 223
Symbols 224
Accessing Star Commands 225

Syntax 225
Case Conversion 225

Star Commands 225

BBC BAS|C(280) Reference Manual for 288, 2nd edition 9

*CLI
*DELETE
*ERASE
*NAME
*SPOOL and *EXEC
*RENAME

The Command Line Interpreter (CLI)
CLI Command Files
Cancelling a CLI File
Special Character Sequences
File Control Commands
|/O Redirection
Additional CLI File Commands
Re—binding Within a CLI Command File

Accessing The CLI From BBCBAS|C(Z80)
CLI Command Examples

Example 1
Example 2
Example 3

Printing
Introduction
Keyboard Control
From Within a Program

Using the CLI
Printer On
Printer Off
Using PRINT#

The Printer Filter
Printer Control Codes
Attributes
Untrapped Characters
Printer Redirection

The Serial Port
Hardware Connections
Flow Control
Output
Input

BBC BASIC(280) Files
Introduction
The Structure of Files

Basics
Serial (Sequential) Files
Random Access Files
Indexed Files

BBC BASIC(280) Reference Manual for 288, 2nd edition

225
225
226
226
226
227
228
228
228
229
229
229
230
230
231
231
232
232
232

234
235
235
236
236
237
237
237
239
240
240
242
243
244
245
245
245
246

246
247
248
248
248
248
249

10

Files in BBC BAS|C(280)
Introduction
How Data is ReadNVritten
How Data is Stored

Numeric Data
How Strings are Stored

How Files are Referred To
The 288 Flling System

File Access Commands
Introduction
Filenames
Organisation of Examples
Program File Manipulation

SAVE
LOAD
CHAIN
*DELETE
*RENAME

Files and Devices
Introduction
Opening Files
File Opening Functions
OPENOUT
OPENIN
OPENUP
CLOSE#
|NPUT#
PRINT#
EXT#
PTR#
EOF#
BGET#
BPUT#

Serial Files
Introduction
Character Data Files

Ex 1 - Writing Serial Character Data
Ex 2 - Reading Serial Character Data
Ex 3 - Writing 'AT END' of Character Files

Mixed Numeric/Character Data Files
Ex 4 - Writing a Mixed Data File
Ex 5 - Reading a Mixed Data File
Ex 6 - Writing 'AT END' of Mixed Files

Compatible Data Files
Ex 7 - Writing a Compatible Data File

BBC BAS|C(280) Reference Manual for 288, 2nd edition

249
250
250
250
250
250
251
251
251
252
252
253
253
253
253
254
254
254
255
256
256
256
256
257
257
258
258
258
258
258
259
260
260
261
261
261
261
263
264
266
266
269
269
271
272

11

Ex 8 - Reading a Compatible Data File
Random (Relative) Files

Introduction
Designing the File

Record Structure
Accessing The Records

Ex 9 - Simple Random Access File
Ex 10 - Simple Random Access Database
Ex 11 - Random Access Inventory Program

Indexed Data Files
Deficiencies of Random Access Files
The Address Book Program

File Organisation
Program Organisation
The Index

Ex 12 (the LAST)
The Binary Chop

Explanation

Annex A: Table of ASCII Codes

Annex B: Mathematical Functions

Annex C: Error Messages and Codes
Summary
Trappable - Program

Trappable - Operating System
Untrappable - Error Code 0

Details
Accuracy lost (23)
Arguments (31)
Array (14)
Bad call (30)
Bad command (254)
Bad DIM (10)
Bad HEX (28)
Bad name (204)
Bad program
Can't match FOR (33)
Channel (222)
DIM space (11)
Division by zero (18)
End of file (252)
Escape (17)
Exp range (24)
Failed at nnn
File not found (252)

BBC BAS|C(280) Reference Manual for 288, 2nd edition

275
277
277
277
277
277
279
281
284
296
296
296
296
296
297
297
306
307

310

314

316

316
317
317
317
318
318
318
318
318
318
318
319
319
319
319
319
319
319
319
319
320
320

12

File type mismatch (252) 320
FOR variable (34) 320
In use (252) 320
LINE space 320
Log range (22) 321
Missing , (5) 321
Missing " (9) 321
Missing) (27) 321
Missing # (45) 321
Mistake (4) 321
-ve root (21) 321
No GOSUB (38) 322
No FN (7) 322
No FOR (32) 322
No PROC (13) 322
No REPEAT (43) 322
No room 322
No such FN/PROC (29) 322
No such line (41) 322
No such variable (26) 322
No TO (36) 323
Not LOCAL (12) 323
ON range (40) 323
ON syntax (39) 323
Out of DATA (42) 323
Out of range (1) 323
Read protected (252) 323
RENUMBER space 324
Sorry, not implemented 324
String too long (19) 324
Subscript (15) 324
Suspended (252) 324
Syntax error (16) 324
Too big (20) 324
Too many open files (192) 325
Type mismatch (6) 325
Write protected (252) 325

Annex D: Format of Program and Variables in Memory 326
Memory Map 326

Memory for Files and Applications 327
Auto-boot CLI File and Z88 ROM’s up to V4.0 327
BBC BAS|C(280) Program 327
The Memory Map 327

Memory Management 329

BBC BAS|C(280) Reference Manual for 288, 2nd edition 13

Limiting the Number of Variables
String Management

Garbage Generation
Memory Allocation for String Variables

Program Storage in Memory
Line Length
Line Number
Statements
Line Terminator

Variable Storage in Memory
Integer Variables
Real Variables
String Variables
Fixed Strings

BBC BAS|C(280) Reference Manual for 288, 2nd edition

330
330
330
330
331
331
331
331
331
332
332
333
336
336

14

Introduction

Before You Start
This is a BBC BASIC reference manual, it is not intended to teach you BASIC nor tell you how the
288 computer works. It gives a summary of the BBC BASIC(280)'S commands and functions plus
some hints and tips on their use. It also describes the minor differences between the Acorn 6502
and 280 versions of BBC BASIC. A general knowledge of BASIC has been assumed.

File handling with BBC BASIC(280) is more flexible than on the BBC Micro and different in
approach to most other versions of BASIC. Because of this, BBC BAS|C(280) file handling has
been covered in some detail.

Please read your 288's documentation before you try to use it seriously. We have included some
(very) basic hints for beginners later in this section and these should be sufficient to get you going.
However, if you are going to make the best use of your Z88, you need to understand what you are
doing. Understanding does not come easy, but if you study the documentation and try things out
for yourself you will be well rewarded.

Apart from sound, all the statements and functions specified for BBC BASIC are available. BBC
BAS|C(280) has been designed to be as compatible as possible with version 4 of the 6502 BBC
BASIC resident in the BBC Micro Master series. The language syntax is not always completely
identical to that of the 6502 version, but in most cases the 280 version is more tolerant.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 15

Running BBC BAS|C(280)
To run BBC BAS|C(280) for the first time:

0 Make sure the INDEX is displayed on your 288. If necessary, press the [INDEX] key
0 Use the cursor keys to select 'BBC BASIC' from the application list
0 Press the [ENTER] key

=-.’- "El: 'CIEE- F1'_ TI_I=_.-‘I

After a moment, the BBC BASIC application will have started and the interpreter will reply:

E3“ fifififl za-“fifi‘wfi 3wm

You can now start to use BBC BAS|C(280).

If you have previously run BBC BAS|C(280), you can return to it by using the cursor keys to select
BASIC from the list of suspended activities list in the INDEX. BBC BAS|C(280) will appear exactly
as you left it.

If you wish, you can have several instantiations (sessions or editions) of BBC BAS|C(280). Each
instantiation will appear in the suspended activities list and you may use the cursor control keys to
select the appropriate instantiation.

|-.-_": "-'-IEHL‘EEI FI'I‘I I'-.-'ITIE'_:-

The easiest way to return to a suspended instantiation of BBC BAS|C(280) by pressing EIB. If you
have more than one suspended instantiation of BBC BAS|C(280), pressing DB will return you to
the earliest suspended instantiation. Pressing EIB a second time will take you to the next earliest,
and so on.

Within the space available, we can’t go into details of what an operating system is, how programs
run, etc. Your 288 user guide gives an explanation of how the 288 works, what commands are
available, how to run programs, etc. - please read it.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 16

General information

Introduction

Control Codes and Functions

Generation

Control codes are generated by pressing the 0 key followed by another key. You don’t need to hold
the 0 key down. Thus ‘control’ A is generated by pressing the 0 followed by the ‘A’ key. ‘Control A’
is shown as <>A, etc.

What happens to Control Codes?
In the immediate mode on the BBC Micro, all control codes (with the exception of [ESC] and 0U)
are echoed to the micro’s VDU software where they initiate the same functions as if they had been
sent by the VDU statement. This does not happen on the Z88. In the immediate mode and in the
response to an INPUT statement, some control codes have a special significance to the input line
editor (see later); with the exception of [ESC] , the others are ignored. All control codes and
special function key codes are available to GET and GET$.
Pressing the [ESC] key aborts a BBC BAS|C(280) program or command.

Pausing the Display
Holding down the O and [SHIFT] will pause the output to the screen.

Line Numbers

Line numbers up to 65535 are allowed. If line 65535 does not exist, then GOTO 65535 is
equivalent to END. Line number 0 is not permitted.

Statement Separators
When it is necessary to write more than one statement on a line, the statements may be separated
by a colon ':'. BBC BAS|C(280) will tolerate the omission of the separator if this does not lead to
ambiguity. It's safer to leave it in and the program is easier to read.

For example, the following will work.

10 FOR i=1 TO 5 PRINT i : NEXT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 17

Editing

Introduction

The single line editor is active in the immediate mode, and in response to an INPUT statement in a
program and during the *EDIT command.
The following editing keys are available when the single line editor is active:

[DEL] Backspace and Delete

«:- Cursor Left

=> Cursor Right

0 [DEL] Delete line

0D Delete to End of Line

<>G Delete Character

<>M [ENTER]

08 Swap Case

0T Delete Word

0U Insert Character

<>V Insert/Overtype

0 4:- Start of Line

0 :2 End of Line

[SHIFT] <2 Previous Word

[SHIFT] :> Next Word

[SHIFT] [DEL] Delete Character (same as 0G)

The Program Editor

As described in the 288 manual - section 7, you can use PipeDream to edit a BBC BAS|C(280)
program. This method is, however, a little long-winded if you want to edit a couple of lines.

No Program Editor available in Cambridge 288 ROM releases OZ V2.2 - V4.0
The single editor is not available to BBC BAS|C(280) when your Cambridge 288 is shipped with
ROM releases V2.2 - V4.0. Richard Russell supplied a 288 Patch program for those ROM releases
that would supply the *EDIT command. If you have not installed the patch program, it is possible to
include a line-editing procedure in your BBC BAS|C(280) programs.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 18

The following program segment, which was developed by Cambridge Computer Ltd, provides the
facilities of a line editor:

60000 END
60010 DEF PROCE(B)
60020 REM Cambridge Computer L td .

60030 IF B=O THEN ENDPROC
60040 A=OPENOUT":RAM.O/EE.CLI"
60050 B$=":RAM.O/E.CLI"
60060 PRINT#A,".>"+B$
60070 PRINT#A,".J","LIST"+STR$(B),"PROCF"
60080 CLOSE#A
60090 *CLI .*:RAM.O/EE.CLI
60100 ENDPROC
60110 DEF PROCF
60120 A=INKEY(O)
60130 A=OPENIN B$
60140 INPUT#A,A$,A$
60150 CLOSE#A
60160 A=OPENOUT B$

60170 PRINT#A," .J" ,A$
60180 PTR#A=PTR#A—l
60190 BPUT#A,O
60200 CLOSE#A
60210 VDU 8
60220 OSCLI"*CLI .<"+B$
60230 ENDPROC

Once you have added the segment to your program, you can use it to edit program line ‘nnnn’ with
the command:

PROCE (nnnn)

The editing functions previously described are available when the line editing procedure is used.
To save entering the program segment for every program you write, create a file containing the
program segment using PipeDream and save it in plain text mode as EDBAS. In this case, add .J
as the first line of the file. The start of the program segment would then look like this:

60000 END
60010 DEF PROCE(B)
60020 REM Cambridge Computer L td .

60030 IF B=0 THEN ENDPROC
60040 A=OPENOUT":RAM.O/EE.CLI"
e t c . ”

BBC BAS|C(280) Reference Manual for 288, 2nd edition 19

You can append the editor to your BBC BASIC programs with the following command:

*CLI .*EDBAS

Your program should not, of course, use line numbers 60000 and up. If it does, they will be
overwritten when you load the line editor functionality.

To abort the single line editor when using PROCE(nnnn) and leave the line unchanged, press
[ESC] .

The editor generates two working files in :RAMO called /EE.CL| and /E.CL|. The files can be
erased after use. If you have a RAM card in slot 1 or slot 2 you could alter the program to save its
working files in :RAM.1 or :RAM.2 by changing lines: 60040, 60050, and 60090.

Using PipeDream as Program Editor
As illustrated above, you can use PipeDream to write your BBC BAS|C(280) programs. You should
save the program files in plain text format (you will get some interesting error messages if you
don’t). Don’t forget to include the CLI jammer command .J as the first line of the file. For complete
(new) programs, you should include the BBC BAS|C(280) command NEW as the second line of
the file.
This will make sure that any program in memory will be deleted before the new one is typed in.
The first two lines of your PipeDream file will then look like this:

. J
NEW

If you saved (as plain text) the program to a file called BASPROG, you should load (type) it into
BBC BAS|C(280) with the following command:

*CLI . *BASPROG

Auto Numbering PipeDream files
If you use PipeDream to write your programs, you can arrange for the lines to be automatically
numbered by BBC BAS|C(280) as the file is ‘loaded’. All you need to do is include the AUTO
command as the third line of your program file. The first 3 lines of your PipeDream program file
would now look like this:

NEW
AUTO

BBC BAS|C(280) Reference Manual for 288, 2nd edition 20

Installing 288 Patch with Program Editor and other commands
The version of BBC BASIC resident in the Cambridge Computer 288 ROM releases V2.2 - V4.0 is
deficient in a few respects, especially in the lack of any editing facilities or support for graphics
operations. The purpose of the BASIC Patch program is to provide some of these capabilities.

The patch provides *EDIT (Program Editor), MODE, CLG, DRAW, MOVE, PLOT commands and
POINT() function; their syntax is compatible with other versions of BBC BASIC. Their syntax and
functionality is described in the command reference section later in this manual.

The patch needs an expanded machine (at least 128 Kbytes of RAM installed in slot 1). If this is
not the case, or if the available memory has been deliberately reduced by changing HIMEM, the
message "No RAM" will be displayed when the program is CHAINed. The patch only works with
Operating System (“OZ") versions V2.2-V3.0 and V4.0 (it will not work with foreign language
versions V3.12 to V3.26 ROM’s, because of a software bug in these machines).

The patch program is installed with a simple CHAIN command, and thereafter remains resident
until the machine is reset or BASIC is KlLLed. It occupies two kilobytes of memory, and results in
the value of PAGE being raised to &ZBOO; when the graphics operations are used a further 2K is
used for the display buffer.

Download the 288 Patch ZIP file from RT. Russell’s BBC BASIC website here:
htt ://www.bbcbasic.co.uk/bbcbasic/288 atch.html, then follow these steps:

0 Extract Zip file contents and upload the Z88PATCH.BBC program to your 288, for example
to :RAM.0.
Instantiate or activate a BBC BAS|C(280) application with DB
Enter the following command:

CH.”:RAM.O/Z88PATCH.BBC”
o The patch will be installed in the BBC BAS|C(280) application

REBEL:- -'Bfi‘.§w- €289} :Iiéflfiflm- E =5 1hm12‘rRua %!98?
Vfig'afikfig Path BEE

Installation of the BASIC Patch has a number of "side effects" of which you should be aware:

1. Changing HIMEM will have the effect of disabling the patch. If HIMEM has been changed it
must be set back to &COOO before re-CHAINing the patch program (or alternatively KILL
and restart BASIC from the INDEX). Changing HIMEM is not recommended in any case,
since setting it to an unsuitable value will "crash" the machine (even without the patch).

2. The "Silly", "RENUMBER space" and "LINE space" errors will not appear; instead the "No
room" message will be produced in each case.

3. You are advised to select MODE 0 before entering Pipedream, since it seems to get
confused by the presence of the graphics window.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 21

4. Since Cambridge Computer provided no "legal" method of installing a patch such as this, a
rather "dirty" method has had to be adopted. This has some unfortunate, but unavoidable,
consequences:

a. The RUN and CHAIN commands may occasionally fail to work properly (on
average fewer than 1 in 1000 times). If this happens no harm will be done; simply
issue the command again.

b. If you reply to the INPUT statement with a very long string (more than 252
characters) the machine will crash, so you must avoid doing so.

5. Using graphics statements in an ON ERROR routine may give anomalous results. For
example:

10 ON ERROR MODE 0 : REPORT : END
20 MODE 1
3O REPEAT
4O DRAW R N D (2 5 6) — l , R N D (6 4) — l
50 UNTIL FALSE

The above program can be aborted only by pressing [ESC] . The intention is that this will
cause the display to clear and the message "Escape" to be displayed. In practice, the
message actually displayed will be "Sorry, not implemented" since, although the Patch is
active, the MODE statement still affects REPORT, ERR and ERL.

The Patch commands are integrated in OZ V4.3 and later releases, without the above mentioned
“side effects”. PAGE address is not affected (remains at &2300). Later 288 ROM versions,
provided by the Open Source 288 Development Project, can be accessed here (contains release
notes and download links):

https://cambridc1ez88.iira.com/wiki/soaces/OZ/

BBC BAS|C(280) Reference Manual for 288, 2nd edition 22

Expression Priority

Order of Evaluation

The various mathematical and logical operators have a priority order. The computer will evaluate
an expression taking this priority order into account. Operators with the same priority will be
evaluated from left to right. For example, in a line containing multiplication and subtraction, ALL the
multiplications would be performed before any of the subtractions were carried out. The various
operators are listed below in priority order.

var iab les
A

* / M O D

Examples

funct ions () ! ? & unary+— NOT

DIV

>= > <

The following are some examples of the way expression priority can be used. It often makes things
easier for us humans to understand if you include the brackets whether the computer needs them
or not.

IF A=2 AND B=3 THEN

IF ((A = 2) A N D (B = 3)) T H E N

IF A=l OR C=2 AND B=3 THEN
I F ((A = l) O R ((C = 2) A N D (B = 3))) T H E N

IF NOT(A=1 AND B=2) THEN

I F (N O T ((A = 1) A N D (B = 2))) T H E N

N=A+B/C-D N=A+(B /C) -D
N=A/B+C/D N=(A/B)+(C/D)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 23

Variables

Specification
Variable names may be of unlimited length and all characters are significant. Variable names must
start with a letter. They can only contain the characters A..Z, a..z, 0..9 and underline. Embedded
keywords are allowed. Upper and lower case variables of the same name are different.

The following types of variable are allowed:

A real numeric
A% integer numeric
A$ string

Numeric Variables

Real Variables

Real variables have a range of 15.9E-39 to i3.4E38 and numeric functions evaluate to 9
significant figure accuracy. Internally every real number is stored in 40 bits (5 bytes). The number
is composed of a 4 byte mantissa and a single byte exponent. An explanation of how variables are
stored is given at Annex D.

Integer Variables
Integer variables are stored in 32 bits and have a range of +2147483647 to -2147483648. It is not
necessary to declare a variable as an integer for advantage to be taken of fast integer arithmetic.
For example, FOR...NEXT loops execute at integer speed whether or not the control variable is an
'integer variable' (% type), so long as it has an integer value.

Static Variables
The variables A%..Z% are a special type of integer variable in that they are not cleared by the
statements RUN, CHAIN and CLEAR. In addition A%, B%, C%, D%, E%, H% and L% have
special uses in CALL and USR routines and P% and 0% have a special meaning in the assembler
(P% is the program counter and 0% points to the code origin). The special variable @% controls
numeric print formatting. The variables @%..2% are called 'static', all other variables are called
'dynamic'.

Boolean Variables

Boolean variables can only take one of the two values TRUE or FALSE. Unfortunately, BBC BASIC
does not have true boolean variables. However, it does allow numeric variables to be used for
logical operations. The operands are converted to 4 byte integers (by truncation) before the logical
operation is performed. For example:

PRINT NOT 1 .5 The argument, 1.5, is truncated to 1 and the logical inversion of
-2 this gives -2

PRINT NOT —1 . 5 The argument is truncated to -1 and the logical inversion of this
0 gives 0

Two numeric functions, TRUE and FALSE, are provided. TRUE returns the value -1 and FALSE
the value 0. These values allow the logical operators (NOT, AND, EOR and OR) to work properly.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 24

However, anything which is non-zero is considered to be TRUE. This can give rise to confusion,
since +1 is considered to be TRUE and NOT(+1) is -2, which is also considered to be TRUE.

Numeric Accuracy

Numbers are stored in binary format. Integers and the mantissa of real numbers are stored in 32
bits. This gives a maximum accuracy ofjust over 9 decimal digits. It is possible to display up to 10
digits before switching to exponential (scientific) notation (PRINT and STR$). This is of little use
when displaying real numbers because the accuracy of the last digit is suspect, but it does allow
the full range of integers to be displayed. Numbers up to the maximum integer value may be
entered as a decimal constant without any loss of accuracy. For instance, A%=2147483647 is
equivalent to A%=&7FFFFFFF.

String Variables and Garbage

Strings
String variables may contain up to 255 characters. An explanation of how variables are stored is
given at the Annex entitled “Format of Program and Variables in Memory”.

Garbage Generation
Unlike numeric variables, string variables do not have a fixed length. When you create a string
variable, the memory used is sufficient for the initial value of the string. If you subsequently assign
a longer string to the variable there will be insufficient room for it and the string will have to occupy
a different area in memory. The initial area will then become 'dead'. These areas of 'dead' memory
are called garbage. As more and more re-assignments take place, the area of memory used for
the variables grows and eventually there is no more room. Several versions of BASIC have
automatic 'garbage collection' routines which tidy up the variable memory space when this occurs.
Unfortunately, this can take several seconds and can be embarrassing if your program is time
conscious. BBC BASIC does not incorporate 'garbage collection' routines and it is possible to run
out of room for variables even though there should be enough space.

Memory Allocation

You can overcome the problem of 'garbage' by reserving enough memory for the longest string you
will ever put into a variable before you use it. You do this simply by assigning a string of spaces to
the variable. If your program needs to find an empty string the first time it is used, you can
subsequently assign a null string to it. The same technique can be used for string arrays. The
example below sets up a single dimensional string array with room for 20 characters in each entry,
and then empties it ready for use.

10 DIM names$(10)
2 0 FOR i=0 TO 10

30 name$(i)=STRING$(20," ")
4 0 NEXT

50 s t o p $ = " " ;
60 FOR i=0 TO 10
7O n a m e $ (i) = " " ;
8 0 NEXT

Assigning a null string to stop$ prevents the space for the last entry in the array being recovered
when it is emptied.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 25

Arrays
Arrays of integer, real and string variables are allowed. All arrays must be dimensioned before use.
Integers, reals and strings cannot be mixed in a multidimensional array; you have to use one array
for each type of variable you need.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 26

Program Flow Control

Introduction

Whenever the BBC BAS|C(280) comes across a FOR, REPEAT, GOSUB, FN or PROC statement,
it needs to remember where it is in the program so that it can loop back or return there when it
encounters a line with NEXT, UNTIL or RETURN statement or when it reaches the end of a
function or procedure. These 'return addresses' tell BBC BAS|C(280) where it is in the structure of
your program.

Every time the BBC BAS|C(280) encounters a FOR, REPEAT, GOSUB, FN or PROC statement it
'pushes' the return address on to a 'stack' and every time it encounters a NEXT, UNTIL, RETURN
statement or the end of a function or procedure it 'pops' the latest return address of the stack and
goes back there.

Unlike the BBC Micro, which has separate stacks for FOR...NEXT, REPEAT...UNT|L
GOSUB...RETURN and FN/PROC operations, BBC BAS|C(280) uses a single control stack (the
processor's hardware stack) for all looping and nesting operations. The main effects of this
difference are discussed below.

Loop Operation Errors
Apart from memory size, there is no limit to the level of nesting of FOR...NEXT, REPEAT...UNT|L
and GOSUB...RETURN operations. The untrappable error message 'No room' will be issued if all
the stack space is used up. Because a single stack is used, the following error messages do not
exist.

Too many FORs
Too many REPEATS
Too many GOSUBS

Program Structure Limitations
The use of a common stack has one disadvantage (if it is a disadvantage) in that it forces stricter
adherence to proper program structure. It is not good practice to exit from a FOR...NEXT loop
without passing through the NEXT statement. It makes the program more difficult to understand
and the FOR address is left on the stack. Similarly, the loop or return address is left on the stack if
a REPEAT...UNT|L loop or a GOSUB...RETURN structure is incorrectly exited. This means that if
you leave a FOR..NEXT loop without executing the NEXT statement, and then subsequently
encounter, for example, a RETURN statement, BBC BAS|C(280) will report an error. (In this case,
a 'No GOSUB at line nnnn' error.) The example below would result in the error message 'No PROC
at line 500'.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 27

400
410
420
430

INPUT "What number should I s top a t " , num

PROC_error_demo
END

4 4 0 :

450
460
470
480
490
500

DEF PROC_error_demo
FOR i=1 TO 100

PRINT i ;

IF i=num THEN 500
NEXT i

ENDPROC

BBC BAS|C(280) is a little unusual in detecting this error, but it is always risky. It usually results in
an inconsistent program structure and an unexpected 'Too many FORs/REPEATs/GOSUBS' error
on the BBC Micro when the control stack overflows.

Leaving Program Loops
There are a number of ways to leave a program loop which do not conflict with the need to write
tidy program structures. These are discussed below.

REPEAT...UNTIL Loops
The simplest way to overcome the problem of exiting a FOR...NEXT loop is to restructure it as a
REPEAT...UNT|L loop. The example below performs the same function as the previous example,
but exits the structure properly. It has the additional advantage of more clearly showing the
conditions which will cause the loop to be terminated.

400
410
420
430

INPUT "What number should I s top a t " , num
PROC_error_demo
END

440 '
450
460
470
480
490
500
510

DEF PROC_error_demo
i=0
REPEAT

i=i+1
PRINT i ;

UNTIL i=1OO OR i=num
ENDPROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 28

Changing the Loop Variable
A simple way of forcing an exit from a FOR...NEXT loop is to set the loop variable to a value equal
to the limit value and then GOTO to the NEXT statement. alternatively, you could set the loop
variable to a value greater than the limit (assuming a positive step), but in this case the value on
exit would be different depending on why the loop was terminated. (In some circumstances, this
may be an advantage.) The example below uses this method to exit from the loop. Notice,
however, that the conditions which cause the loop to terminate are less clear since they do not
appear together.

400 — — —
410 INPUT "What number should I s top a t " , num

420 PROC_error_dem
4 3 0 END

440 :
450 DEF PROC_error_demo
460 FOR i=1 TO 100
4 7 0 PRINT i ;

480 IF i=num THEN i = 5 0 0 : GOTO 510
490
500 More program here i f necessary
510 NEXT

5 2 0 ENDPROC

Popping the Inner Variable

A less satisfactory way of exiting a FOR...NEXT loop is to enclose the loop in a dummy outer loop
and rely on BBC BAS|C(Z80)'S ability to 'pop' inner control variables off the stack until they match.
If you use this method you MUST include the variable name in the NEXT statement. This method,
which is demonstrated below, is very artificial and the conditions which cause the loop to terminate
are unclear.

400 — — —
410 INPUT "What number should I s top a t " , num

420 PROC_error_demo
4 3 0 END

440 :
450 DEF PROC_error_demo
4 6 0 FOR dummy=l TO 1 :REM Loop once on ly

470 FOR i=1 TO 100
4 8 0 PRINT i ;

4 9 0 IF i=num THEN 5 3 0 :REM Jump t o ou te r NEXT

500 — — —
510 More program here i f necessary
5 2 0 NEXT i

530 NEXT dummy
5 4 0 ENDPROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 29

Local Variables

Since local variables are also stored on the processor's stack, you cannot use a FOR...NEXT loop
to make an array LOCAL. For example, the following program will give the error message 'Not
LOCAL at line 400'.

380 DEF PROC_error_demo
3 9 0 FOR i=1 TO 10

400 LOCAL data (i)
4 1 0 NEXT

4 2 0 ENDPROC

You can overcome this by fabricating the loop using an |F...THEN statement as shown below. This
is probably the only occasion when the use of a Single stack promotes poor program structure.

380 DEF PROC_error_demo
390 i=1
400 LOCAL d a t a (i)
410 i=i+l
4 2 0 IF i < l l THEN 4 0 0

4 3 0 ENDPROC

Stack Pointer

The program stack is initialised to begin at HIMEM and, because of this, you cannot change the
value of HIMEM when there is anything on the stack. As a result, you cannot change HIMEM from
within a procedure, function, subroutine, FOR...NEXT loop or REPEAT...UNT|L loop.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 30

lndirection

Introduction

Most versions of BASIC allow access to the computer's memory with the PEEK function and the
POKE command. Such access, which is limited to one byte at a time, is sufficient for setting and
reading screen locations or 'flags', but it is difficult to use for building more complicated data
structures. The indirection operators provided in BBC BAS|C(280) enable you to read and write to
memory in a far more flexible way. They provide a simple equivalent of PEEK and POKE, but they
come into their own when used to pass data between CHAINed programs, build complicated data
structures or for use with machine code programs.

The indirection operators

There are three indirection operators:

Name Symbol Purpose No. of Bytes Affected

Query ? Byte lndirection Operator 1

Exclamation ! Word lndirection Operator 4

Dollar $ String lndirection Operator 1 to 256

The examples that follow assume that a DIM statement has been used to reserve an area of
memory and store the address of the first byte of the memory in a variable called ‘mem’. See the
keyword DIM for more details. Or example:

DIM mem 2 0

If you know what you are doing, you can use the indirection operators to access the 288’s system
memory. However, because of the sophistication of the operating system, THIS CAN BE
DISASTROUS.

Query

Byte Access

The query operator accesses individual bytes of memory. ?M means 'the contents of‘ memory
location 'M'. The first example below write &23 to memory location mem, the second example sets
‘number’ to the contents of that memory location and the third example print the contents of that
memory location.

?mem=&23

number=?mem
PRINT ?mem

Thus, '?' provides a direct replacement for PEEK and POKE.
?A=B is equivalent to POKE A,B
B=?A is equivalent to B=PEEK(A)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 31

Query as a Byte Variable
A byte variable, '?count' for instance, may be used as the control variable in a FOR...NEXT loop
and only one byte of memory will be used.

DIM count% 0

FOR ?count%=0 TO 2 0

Exclamation

The query (?) indirection operator works on one byte of memory. The word indirection operator (!)
works on 4 bytes (an integer word) of memory. Thus,

! M = & 1 2 3 4 5 6 7 8

would load

&78 into address M
&56 into address M+1
&34 into address M+2
&12 into address M+3.

and
PRINT ~ 1M (print !M in hex format)

would give

12345678

Dollar

The string indirection operator ($) writes a string followed by a carriage-return (&OD) into memory
starting at the specified address. Do not confuse M$ with $M. The former is the familiar string
variable whilst the latter means 'the string starting at memory location M'. For example,

$M="ABCDEF"

would load the ASCII characters A to F into addresses M to M+5 and &OD into address M+6, and

PRINT $M

would print
ABCDEF

BBC BAS|C(280) Reference Manual for 288, 2nd edition 32

Use as Binary Operators
All the examples so far have used only one operand with the byte and word indirection operators.
Provided the left-hand operand is a variable (such as 'memory') and not a constant, '?' and '!' can
also be used as binary operators. (In other words, they can be used with two operands.) For
instance, M?3 means 'the contents of memory location M plus 3' and MB means 'the contents of
the 4 bytes starting at M plus 3'. In the following example, the contents of memory location ‘mem’
plus 5 is first set to &50 and then printed.

DIM memory 2 0
memory?5=&50
PRINT memory?5

Thus,
A? I=B is equivalent to POKE A+|,B
B=A?I is equivalent to B=PEEK(A+|)

The two examples below show how two operands can be used with the byte indirection operator
(?) to examine the contents of memory. The first example displays the contents of 12 bytes of
memory from location ‘mem’. The second example displays the memory contents for a real
numeric variable. (See the Annex entitled Format of Program and Variables in Memory.)

10 DIM memory 2 0

20 FOR o f f s e t = 0 TO 12
30 PRINT ~memory+offset, ~memory?of fset
4 0 NEXT

Line 30 prints the memory address and the contents in hexadecimal format.

10 NUMBER=0

2 0 DIM A% - 1

3O REPEAT

4O INPUT"NUMBER PLEASE "NUMBER

5 0 PRINT " & " ;

6 0 FOR I%=2 TO 5

70 NUM$=STR$~(A%?-I%)
80 IF LEN(NUM$)=l NUM$="O"+NUM$
90 PRINT NUM$;" " ;

100 NEXT
l l O N%=A%?- l

120 NUM$=STR$~(N%)

130 IF LEN(NUM$)=1 NUM$="0"+NUM$

1 4 0 PRINT " & "+NUM$"

150 UNTIL NUMBER=O

See the Annex entitled Format of Program and Variables In Memory for an explanation of this
program.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 33

Power of lndirection Operators
lndirection operators can be used to create special data structures, and as such they are an
extremely powerful feature. For example, a structure consisting of a 10 character string, an 8 bit
number and a reference to a similar structure can be constructed.

If M is the address of the start of the structure then:

$M is the string
M?11 is the 8 bit number
M!12 is the address of the related structure

Linked lists and tree structures can easily be created and manipulated in memory using this facility.

Operators and Special Symbols
The following list is a rather terse summary of the meaning of the various operators and special
symbols used by BBC BAS|C(280). It is provided for reference purposes; you will find more
detailed explanations elsewhere in this manual.

? A unary and binary operator giving 8 bit indirection.

! A unary and binary operator giving 32 bit indirection.

A delimiting character in strings. Strings always have an even number of "
in them. " may be introduced into a string by the escape convention .

Precedes reference to a file channel number (and is not optional).

$ A character indicating that the object has something to do with a string.
The syntax $<expression> may be used to position a string anywhere in
memory, overriding the interpreter's space allocation. As a suffix on a
variable name it indicates a string variable.
$A="WOMBAT" Store WOM BAT at address A followed by CR.

% A suffix on a variable name indicating an integer variable.

& Precedes hexadecimal constants e.g. &EF.

A character which causes new lines in PRINT or INPUT.

() Objects in parentheses have the highest priority.

= 'Becomes' for LET statement and FOR, 'result is' for FN, relation of equal
to on integers, reels and strings.

- Unary negation and binary subtraction on integers and reals.

Binary multiplication on integers and reals; statement indicating operating
system command (*DIR, *OPT).

Multi-statement line statement delimiter.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 34

Suppresses forthcoming action in PRINT. Comment delimiter in the
assembler. Delimiter in VDU and INPUT.

Unary plus and binary addition on integers and reals; concatenation
between strings.

Delimiter in lists.

Decimal point in real constants; abbreviation symbol on keyword entry;
introduce label in assembler.

Relation of less than on integers, reals and strings.

Relation of greater than on integers, reals and strings.

Binary division on integers and reals.

Alternative comment delimiter in the assembler.

Relation of less than or equal on integers, reals and strings.

Relation of greater than or equal on integers, reals and strings.

Relation of not equal on integers, reals and strings.

Delimiters for assembler statements. Statements between these delimiters
may need to be assembled twice in order to resolve any forward
references. The pseudo operation OPT (initially 3) controls errors and
listing.

Binary operation of exponentiation between integers and reals.

A character in the start of a print field indicating that the item is to be
printed in hexadecimal. Also used with STR$ to cause conversion to a
hexadecimal string.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 35

Keywords
Keywords are recognized before anything else. (For example, DEG and ASN in DEGASN are
recognized, but neither is recognized in ADEGASN.) Consequently, you don't have to type a space
between a keyword and a variable (but it does make it easier to read your program).

Although they are keywords, the names of pseudo variables such as Pl, LOMEM, HIMEM, PAGE,
TIME, etc, act as variables in that their names can form the first part of the name of another
variable. For example, if A is a variable, then AB can also be a variable. Similarly, the name PI is
not recognized in the name PILE; they are both unique variable names. However, Pl%, Pl$ etc. are
not allowed. Since variables named in lower case will never be confused with keywords, many
programmers use upper case only for keywords.

Ninety-three out of the total of 123 keywords are not allowed in upper case at the start of a variable
name (anything may be used in lower case). Those keywords that are allowed are shown in bold
type.

Sound and colour commands are not available on the 288. The commands are shown in small
italics. If you use one of these commands, a “Sorry, not implemented” error will be reported.

Graphics commands are available via installation of external 288 Patch for ROM releases V2.2 -
V4.0. The Z88 Patch is integrated by default in ROM releases V4.3 and later.

If the Z88 Patch is not installed and you use one of the graphics commands, a “Sorry, not
implemented” error will be reported.

Since the keywords must be in upper case, you may wish to use the [CAPS LOCK] key to lock the
letter keys to uppercase (the default setting for BBC BASIC(280)). Alternatively, you can invert the
action of the [SHIFT] key so that unshifted letters are in upper case and shifted letters are in lower
case.

[CAPS LOCK] Caps lock off/on

El [CAPS LOCK] Invert shift action ([SHIFT] for lower case)

0 [CAPS LOCK] Normal shift action ([SHIFT] for upper case)

BBC BASIC(280) Reference Manual for 288, 2nd edition 36

ABS
ASN
CALL
CLOSE
COUNT
DMA
ENDPROC
ERR
FALSE
GET$
INKEY
LEFT$(
LN
nMD$(
NEXT
OPENW
PAGE
PRmT
READ
RESTORE
SAVE
SQR
TAB(
TRACE
VDU

BBC BAS|C(280) Reference Manual for 288, 2nd edition

ACS
ATN
CHAN
CLS
DAIA
DN
ENVELOPE

ERROR
FN
GOSUB
|NKEY$
LEN
LOAD
MOD
NOT
OPENOUT
PI
PROC
REM
RETURN
SGN
STEP
TAN
TRUE
VPOS

Keywords Available

ADVAL

AUTO
CHR$
COLOUR

DEF
DRNN
EOF
EVAL
FOR
GOTO
INPUT
LET
LOCAL
MODE
OFF
OPENUP
PLOT
PTR
RENUMBER
RIGHT$(
aN
STOP
THEN
UNTm
VWDTH

AND
BGET
CLEAR
COLOR

DEG
ELSE
EOR
EXP
GCOL
lflMEM
|NSTR(
UNE
LOG
MOVE
OLD
OR
POH¢H)
PUT
REPEAT
RND
SOUND

STR
nME
USR

ASC
BPUT
CLG
cos
DELETE
END
ERL
EXT
GET
IF
INT
HST
LOMEM
NEW
ON
oscu
POS
RAD
REPORT
RUN
SPC
STHNG$(
TO
VAL

37

Error Handling

Introduction

Types of Errors

Once you have written your program and removed all the syntax errors, you might think that your
program is error free. Unfortunately life is not so simple, you have only passed the first hurdle.
There are two kinds of errors which you could still encounter; errors of logic and run-time errors.
Errors of logic are where BBC BAS|C(280) understands exactly what you said, but what you said
is not what you meant. Run-time errors are where something occurs during the running of the
program which BBC BAS|C(280) is unable to cope with. For example,

answer=A/B

is quite correct and it will work for all values of A. But if B is zero, the answer is 'infinity'. BBC
BAS|C(280) has no way of dealing with 'infinity' and it will report a 'Division by zero' error.

Trapping Errors

There is no way that BBC BAS|C(280) can trap errors of logic, since it has no way of
understanding what you really meant it to do. However, you can generally predict which of the
run-time errors are likely to occur and include a special 'error handling' routine in your program to
recover from them.

Reasons for Trapping Errors

Why would you want to take over responsibility for handling run-time errors? When BBC
BAS|C(280) detects a run-time error, it reports it and RETURNS TO THE COMMAND MODE.
When you write a program for yourself, you know what you want it to do and you also know what it
can't do. If, by accident, you try to make it do something which could give rise to an error, you
accept the fact that BBC BAS|C(280) might terminate the program and return to the command
mode. However, when somebody else uses your program they are not blessed with your insight
and they may find the program 'crashing out' to the command mode without knowing what they
have done wrong. Such programs are called 'fragile'. You can protect your user from much
frustration if you predict what these problems are likely to be and include an error handling routine.
In the example below, a '-ve root' error would occur if the number input was negative and BBC
BAS|C(280) would return to the command mode.

1 O REPEAT

2 0 INPUT "Type in a number " num

3 0 PRINT num, " " , S Q R (n u m)

4 0 PRINT

50 UNTIL FALSEzREM Loop until the ESCape
6O :REM key i s p ressed

BBC BAS|C(280) Reference Manual for 288, 2nd edition 38

Example run:

RUN
Type in a number 5

5 223606798

Type in a number 23
23 4.79583152

Type in a number 2
2 1.41421356

Type in a number -2
-2

-ve root at line 30

Error Trapping Commands
The ON ERROR command directs BBC BAS|C(280) to execute the statement(s) following ON
ERROR when a trappable error occurs:

ON ERROR PRINT "'Oh N o ! " : E N D

If an error was detected in a program after this line had been encountered, the message 'Oh No!‘
would be printed and the program terminated. If, as in this example, the ON ERROR line contains
the END statement or transfers control elsewhere (e.g. using GOTO) then the position of the line
within the program is unimportant so long as it is encountered before the error occurs. If there is no
transfer of control, execution following the error continues as usual on the succeeding line, so in
this case the position of the ON ERROR line can matter.

As explained in the Program Flow Control sub-section, every time BBC BAS|C(280) encounters a
FOR, REPEAT, GOSUB, FN or PROC statement it 'pushes' the return address on to a 'stack' and
every time it encounters a NEXT, UNTIL, RETURN statement or the end of a function or procedure
it 'pops' the latest return address of the stack and goes back there. The program stack is where
BBC BAS|C(280) records where it is within the structure of your program.

When an error is detected by BBC BAS|C(280), the stack is cleared. Thus, you cannot just take
any necessary action depending on the error and return to where you were because BBC
BAS|C(280) no longer knows where you were.

If an error occurs within a procedure or function, the value of any PRIVATE variables will be the
last value they were set to within the procedure or function which gave rise to the error.

Error Reporting
There are two functions, ERR and ERL, and one statement, REPORT, which may be used to
investigate and report on errors. Using these, you can trap out errors, check that you can deal with
them and abort the program run if you cannot.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 39

ERR
ERR returns the error number (see the Annex entitled Error Messages and Codes).

ERL
ERL returns the line number where the error occurred. If an error occurs in a procedure or function
call, ERL will return the number of the calling line, not the number of the line in which the
procedure/function is defined. If an error in a DATA statement causes a READ to fail, ERL will
return the number of the line containing the READ statement, not the number of the line containing
the DATA.

REPORT
REPORT prints out the error string associated with the last error which occurred.

Problems with Error Trapping
If there is an error in your ON ERROR statement, BBC BAS|C(280) will go into an infinite loop.
[ESC] (which generates error code 27) will not break you out of this loop. On most (single tasking)
computers like the BBC Micro, you can escape from such a loop by pressing <BREAK> or turning
the computer off.
Because the 288 is a sophisticated computer which is capable of holding several programs in
memory concurrently, this option has complications.
If there is an error in the error handling part of your program, you will end up in a ‘doom loop’.
Unless you take special precautions, you will need to perform a soft or hard reset to escape from
this situation. A hard reset will cause all the programs and data in RAM to be lost and a soft reset
may possibly leave the computer in an unstable condition which will lead to an eventual software
failure.

To overcome this problem, you should ALWAYS include a line similar to

dummy = INKEY (O)

as the FIRST line of any error handling routine. If you do so, you will be able to escape to the
INDEX from a ‘doom loop’ by pressing the [INDEX] key. If you try to return to your BBC
BAS|C(280) program, you will find yourself in the same situation as when you left it. All you can do
is to OKI LL the offending BBC BAS|C(280) instantiation. You will lose your program, but
everything else will be intact. For example:

10 ON ERROR GOTO 1 0 0 0
20 FOR i= 1 TO 20
3 0 e t c m

1 0 0 0 dummy = I N K E Y (O)
1010 PRINT “ E r r o r ! ”
1 0 2 0 e t c . .

BBC BAS|C(280) Reference Manual for 288, 2nd edition 40

Error Trapping Examples
The example below does not try to deal with errors, it just uses ERR, ERL and REPORT to tell the
user about the error. It’s only advantage over BBC BASIC(Z80)'s normal error handling is that it
gives the error number; it would probably not be used in practice. As you can see from the second
run, pressing [ESC] is treated as an error (number 17).

5 ON ERROR GOTO 1 0 0

10 REPEAT

2 0 INPUT "Type a number " num

3 0 PRINT num," " , S Q R (n u m)

4 0 PRINT

5 0 UNTIL FALSE

6O :
7O :

1 0 0 dummy = I N K E Y (O)

110 PRINT

120 PRINT "Error No " ;ERR

130 REPORTzPRINT " a t l ine " ;ERL

1 4 0 END

Example run:

RUN
Type a number 1

1
Type a number -2

-2
Error No 21
-ve root at line 30
RUN
Type a number [Esc]
Error No 17
Escape at line 20

The example below has been further expanded to include error trapping. The only 'predictable'
error is that the user will try a negative number. Any other error is unacceptable, so it is reported
and the program aborted. Consequently, when [ESC] is used to abort the program, it is reported
as an error. However, a further test for ERR=17 could be included so that the program would halt
on ESCAPE without an error being reported.

BBC BASIC(ZSO) Reference Manual for 288, 2nd edition 41

5 ON ERROR GOTO 1 0 0

10 REPEAT

20 INPUT "Type a number “ Hum
3 0 PRINT num," " , S Q R (n u m)

4 0 PRINT

5 0 UNTIL FALSE

6O
7O .

1 0 0 dummy = I N K E Y (O)

110 PRINT

120 IF ERR=21 THEN PRINT "NO nega t i ves " :GOTO 10

130 REPORTzPRINT " a t l ine " ;ERL

140 END

RUN
Type a number 5

5 223606798
Type a number 2

2 1.41421356
Type a number -1

-1
No negatives
Type a number 4

4 2
Type a number [Esc]
Escape at line 20

The above example is very simple and was chosen for clarity. In practice, it would be better to test
for a negative number before using SQR rather than trap the '-ve root' error.

A more realistic example is the evaluation of a user-supplied HEX number, where trapping 'Bad
hex' would be much easier than testing the input string beforehand.

10 ON ERROR GOTO 1 0 0

2 0 REPEAT

3O INPUT "Type a HEX number " input$
4O num=EVAL("&"+input$)
5 0 PRINT input$,num

6 0 PRINT

7O UNTIL FALSE

8 0

9O .

l O O dummy = I N K E Y (O)

110 PRINT

120 IF ERR=28 THEN PRINT "Not h e x " : G O T O 2 0

130 REPORTzPRINT " a t l ine " ;ERL

1 4 0 END

BBC BAS|C(280) Reference Manual for 288, 2nd edition 42

Procedures and Functions

Introduction

Procedures and functions are similar to subroutines in that they are 'bits' of program which
performs a discrete function. Like subroutines, they can be performed (called) from several places
in the program. However, they have two great advantages over subroutines: you can refer to them
by name and the variables used within them can be made private to the procedure or function.

Arguably, the major advantage of procedures and functions is that they can be referred to by
name. Consider the two similar program lines below.

100 IF name$="ZZ" THEN GOSUB 500 ELSE GOSUB 800
100 IF name$="ZZ" THEN PROC_end ELSE PROC_print

The first statement gives no indication of what the subroutines at 500 and 800 actually do. The
second, however, tells you what to expect from the two procedures. This enhanced readability
stems from the choice of meaningful names for the two procedures.

A function often carries out a number of actions, but it always produces a single result. For
instance, the 'built in' function INT returns the integer part of its argument.

age=INT (months/ 1 2)
A procedure on the other hand, is specifically intended to carry out a number of actions, some of
which may affect program variables, but it does not directly return a result.

Whilst BBC BASIC(280) has a large number of predefined functions (INT and LEN for example) it
is very useful to be able to define your own to do something special. Suppose you had written a
function called FN_discount to calculate the discount price from the normal retail price. You could
write something similar to the following example anywhere in your program where you wished this
calculation to be carried out.

discount_price=FN_discount (r e ta i l _p r i ce)

It may seem hardly worth while defining a function to do something this simple. However, functions
and procedures are not confined to single line definitions and they are very useful for improving the
structure and readability of your program.

Names

The names of procedures and functions MUST start with PROC or FN and, like variable names,
they cannot contain spaces. (A space tells BBC BASIC(280) that it has reached the end of the
word.) This restriction can give rise to some pretty unreadable names. However, the underline
character can be used to advantage. Consider the procedure and function names below and
decide which is easier to read.

PROCPRINTDETAILS FNDISCOUNT
PROC_print_details FN_discount

Function and procedure names may end with a '$'. However, this is not compulsory for functions
which return strings.

BBC BASIC(280) Reference Manual for 288, 2nd edition 43

Functions and Procedure Definitions

Starting a Definition
Functions and procedure definitions are 'signalled' to BBC BAS|C(280) by preceding the function
or procedure name with the keyword DEF. DEF must be at the beginning of the line. If the
computer encounters DEF during execution of the program, the rest of the line is ignored.
Consequently, you can put single line definitions anywhere in your program.

The Function/Procedure Body

The 'body' of a procedure or function must not be executed directly - it must be performed (called)
by another part of the program. Since BBC BAS|C(280) only skips the rest of the line when it
encounters DEF, there is a danger that the remaining lines of a multi-Iine definition might be
executed directly. You can avoid this by putting multi-line definitions at the end of the main program
text after the END statement. Procedures and functions do not need to be declared before they are
used and there is no speed advantage to be gained by placing them at the start of the program.

Ending a Definition

The end of a procedure definition is indicated by the keyword ENDPROC. The end of a function
definition is signalled by using a statement which starts with an equals (=) sign. The function
returns the value of the expression to the right of the equals sign.

Single Line Functions/Procedures
For single line definitions, the start and end are signalled on the same line. The first example below
defines a function which returns the average of two numbers. The second defines a procedure
which clears from the current cursor position to the end of line on a 40 column screen.

5 0 0 DEF FN_average (n1 , n 2) = (n l+n2) / 2
120 DEF PROC_clear:PRINT SPC (40—POS) ; :ENDPROC

Extending the Language

You can define a whole library of procedures and functions and include them in your programs. By
doing this you can effectively extend the scope of the language. For instance, BBC BAS|C(280)
does not have a 'clear to end of screen' command. Some computers will perform this function on
receipt of a sequence of control characters and in this case you can use VDU or CHR$ to send the
appropriate codes. However, many computers do not have this facility and a procedure to clear to
the end of the screen would be useful. The example below is a procedure to clear to the end of
screen on a computer with a 94 by 8 display. In order to prevent the display from scrolling, you
must not write to the last column of the last row. The three variables used (i, x, and y) are declared
as LOCAL to the procedure (see later).

1 0 0 DEF PROC_Clear_to_end

l l O LOCAL i , x , y

120 X=POS:y=VPOS

130 REM I f not las t l ine, print l ines o f spaces which
140 REM wil l wrap around and end up on l as t line
150 IF y<7 FOR i=y TO 6 :PRINT S P C (9 4) ; : N E X T

160 REM Print spaces t o end—l o f l as t l ine.
1 7 0 PRINT S P C (9 3 - x) ;

1 8 0 PRINT T A B (x , y) ;
1 9 0 ENDPROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 44

Passing Parameters
When you define a procedure or a function, you list the parameters to be passed to it in brackets.
For instance, the discount example expected one parameter (the retail price) to be passed to it.
You can write the definition to accept any number of parameters. For example, we may wish to
pass both the retail price and the discount percentage. The function definition would then look
something like this:

DEF FN_discount (p r ice , pcent) =price* (1—pcent /100)

In this case, to use the function we would need to pass two parameters.

90
lOO re ta i l_pr ice=26.55
l l O discount_price=FN_discount(retai l_price,25)
120

or

90
lOO p r i ce=26 .55
l l O discount=25
120 p r ice=FN_discount (pr ice ,d iscount)

130

or

90
100 p r i ce=FN_d iscount (26 .55 ,25)
110

Formal and Actual Parameters

The value of the first parameter in the line using the procedure or function is passed to the first
variable named in the parameter list in the definition, the second to the second, and so on. This is
termed 'passing by value'. The parameters declared in the definition are called 'formal parameters
and the values passed in the lines which perform (call) the procedure or function are called 'actual
parameters'. There must be as many actual parameters passed as there are formal parameters
declared in the definition. You can pass a mix of string and numeric parameters to the same
procedure or function and a function can return either a string or numeric value, irrespective of the
type of parameters passed to it. However, you must make sure that the parameter types match up.
The first example below is correct; the second would give rise to an 'Arguments at line 10' error
message and the third would cause a 'Type mismatch at line 10' error to be reported.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 45

Correct

10 PROC_pr in t i t (1 , "FRED" ,2)

2 0 END

3 0 :

4O DEF PROC_print i t (numl,name$,num2)

50 PRINT num1,name$,num2
6 0 ENDPROC

Arguments Error

10 P R O C _ p r i n t i t (l , " F R E D " , 2 , 4)

2 0 END

3 0 :

4O DEF PROC_print i t (numl,name$,num2)

50 PRINT num1,name$,num2
6 0 ENDPROC

Type Mismatch

10 PROC_pr in t i t (l , "FRED" , " J IM")

2 0 END

3 0 :

4O DEF PROC_print i t (numl,name$,num2)

5 0 PRINT num1,name$,num2

6O ENDPROC

Local Variables

You can use the statement LOCAL to define variables which are only known locally to individual
procedures and functions. In addition, formal parameters are local to the procedure or function
declaring them. These variables are only known locally to the defining procedure or function. They
are not known to the rest of the program and they can only be changed from within the procedure
or function where they are defined. Consequently, you can have two variables of the same name,
say FLAG, in various parts of your program, and change the value of one without changing the
other. This technique is used extensively in the example file handling programs in this manual.

Declaring variables as local, creates them locally and initialises them to zero/null.

Variables which are not formal variables or declared as LOCAL are known to the whole program,
including all the procedures and functions. Such variables are called GLOBAL.

Re-entrant Functions/Procedures

Because the formal parameters which receive the passed parameters are local, all procedures and
functions can be re- entrant. That is, they can call themselves. But for this feature, the short
example program below would be very difficult to code. It is the often used example of a factorial
number routine. (The factorial of a number n is n * n-1 * n-2 *....* 1. Factorial 6, for instance, is
6*5*4*3*2*1).

BBC BAS|C(280) Reference Manual for 288, 2nd edition 46

10
20
3O
4O
50
6O
7 0 :

80
90

100
110
120

REPEAT

INPUT "Enter an INTEGER l e s s than 3 5 "num

UNTIL INT(num)=num AND num<35

fact=FN_fact_num(num)
PRINT num, fac t

END

DEF FN_fact_num(n)
IF n=l OR n=O THEN =1

REM Return with 1 i f n= 0 or 1
=n*FN_fact_num(n—l)
REM E lse go round again

Since 'n' is the input variable to the function FN_fact_num, it is local to each and every use of the
function. The function keeps calling itself until it returns the answer 1. It then works its way back
through all the calls until it has completed the final multiplication, when it returns the answer. The
limit of 35 on the input number prevents the answer being too big for the computer to handle.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 47

Assembler

Introduction
BBC BAS|C(280) includes a Z80 assembler. This assembler is similar to the 6502 assembler on
the BBC Micro and it is entered in the same way. That is, T enters assembler mode and '1' exits
assembler mode.

This section illustrates the way the BBC BAS|C(280) assembler functions; it does not provide
sufficient information to enable you to write assembler programs that interface with the 288
operating system or hardware. In order to successfully write assembler language programs for the
288 you will need a considerable amount of technical information about the machine. This
information is available in the 288 Developers’ Notes, available on the cambridgez88.jira.com
wiki.

The 288 is a sophisticated computer which is capable of holding several programs in memory
concurrently. This makes incorrectly written assembler language programs potentially dangerous.
Whilst the 288’s operating system is quite robust, you could cause the 288 to enter an undefined
state if your program does not correctly interface with it. If this happens, you may corrupt all the
data and programs in RAM and you will need to perform a soft or hard reset. A hard reset will
cause all the programs and data in RAM to be lost and there is a possibility that a soft reset may
leave the computer in an unstable condition which will lead to an eventual software failure.
If you wish to develop assembler language programs, we suggest you do so on a computer which
does not does not hold programs or data that you cannot afford to lose. It would also be wise to
download your program to another computer or an EPROM before testing it. If you do not take
these precautions, you may eventually lose some irreplaceable programs or data.
We recommend using the Z88 emulator, Ov, for assembler language application testing, which
also includes debugging tools such as instruction single stepping and breakpoints, memory
viewing and editing.

Instruction mnemonics

A" standard Zilog mnemonics are accepted: 'ADD', 'ADC' and 'SBC', must be followed by 'A' or
'HL'. For example
ADD A,C
is accepted but
ADD C
is not. However, the brackets around the port address in 'IN' and 'OUT' are optional; thus both
OUT (5) , A and OUT 5 , A
are accepted. The instruction ' IN F, (C) ' is not accepted but the equivalent object code is
produced from 'IN (HL) , (C) ' .
The pseudo-operations ‘DEFB’, ‘DEFW’ and ‘DEFM’ are included. ‘DEFM’ is like ‘EQUS’ in the
6502 version.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 48

Assembler Statements

An assembly language statement consists of three elements; an optional label, an instruction and
an operand. A comment may follow the operand field. The instruction following a label must be
separated from it by at least one space. Similarly, the operand must also be separated from the
instruction by a space. Statements are terminated by a colon (:) or end of line (CR).

Labels

Any BBC BAS|C(280) numeric variable may be used as a label. These (external) labels are
defined by an assignment (count=23 for instance). Internal labels are defined by preceding them
with a full stop. When the assembler encounters such a label, a BASIC variable is created
containing the current value of the Program Counter (P%). (The Program Counter is described
later.)

In the example shown later under the heading ‘The Assembly Process’, two internal labels are
defined and used. Labels have the same rules as standard BBC BAS|C(280) variable names; they
should start with a letter and not start with a keyword.

Comments

You can insert comments into assembly language programs by preceding them with a semicolon
(;) or a back-slash (\). In assembly language, a comment ends at the end of the statement. Thus,
the following example will work (but it's a bit untidy):

[; s t a r t assembly language program

e t c

LD A , B ; In—l ine commentzPOP HL ; g e t s t a r t address

RET NZ ;Return i f f i n ished:JR loop ; e l s e go back

e t c

; e n d assembly language p r o g r a m z]

Byte, Word and String Constants
You can store constants within your assembly language program using the define byte (DEFB),
define word (DEFW) and define message (DEFM) pseudo-operation commands. These will create
1 byte, 2 byte and ‘string’ items respectively.

Define Byte - DEFB
DEFB can be used to set one byte of memory to a particular value. For example.

. d a t a DEFB 15

DEFB 9

will set two consecutive bytes of memory to 15 and 9 (decimal). The address of the first byte will be
stored in the variable 'data'.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 49

Define Word - DEFW

DEFW can be used to set two bytes of memory to a particular value. The first byte is set to the
least significant byte of the number and the second to the most significant byte. For example,

. d a t a DEFW & 9 0 F

will have the same result as the Byte Constant example.

String Constant - DEFM
DEFM can be used to load a string of ASCII characters into memory. For example,

JR continue; jump round the data
. s t r i ng DEFM "This i s a t e s t message"
DEFB &D

.Continue; and continue the process

will load the string 'This is a test message' followed by a carriage-return into memory. The address
of the start of the message is loaded into the variable 'string'. This is equivalent to the following
program segment:

JR cont inue; jump round the data

. s t r i ng ; leave assembly and load the str ing

]
$P%="This i s a t e s t message" REM s tar t ing at P%
P%= %+LEN($P%)+1 REM ad just P% t o next f r ee byte

[
OPT o p t ; r e s e t OPT

.cont inue; and continue the program

Defined storage
Unfortunately, there is no ‘define storage’ directive. A second DIM statement may be used, or, for
small amounts of storage, you can use DEFM with a dummy string. For example:

DEFM STRING$(100, “ “)

will reserve 100 bytes of storage.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 50

Reserving Memory

The Program Counter
Machine code instructions are assembled as if they were going to be placed in memory at the
addresses specified by the program counter, P%. Their actual location in memory may be
determined by 0% depending on the OPTion specified (see below). You must make sure that P%
(or 0%) is pointing to a free area of memory before your program begins assembly. In addition,
you need to reserve the area of memory that your machine code program will use so that it is not
overwritten at run time. You can reserve memory by using a special version of the DIM statement
or by changing HIMEM or LOMEM.

Using DIM to Reserve Memory
Using the special version of the DIM statement to reserve an area of memory is the simplest way
for short programs which do not have to be located at a particular memory address. (See the
keyword DIM for more details.) For example,

DIM code 2 0 : REM Note the absence o f b r a c k e t s

will reserve 21 bytes of code (byte 0 to byte 20) and load the variable 'code' with the start address
of the reserved area. You can then set P% (or 0%) to the start of that area. The example below
reserves an area of memory 100 bytes long and sets P% to the first byte of the reserved area.

DIM s o r t % 9 9

P % = s o r t %

Moving HIMEM to Reserve Memory
If you are going to use a machine code program in a number of your BBC BAS|C(280) programs,
the simplest way is to assemble it once, save it using *SAVE and load it from each of your
programs using *LOAD. In order for this to work, the machine code program must be loaded into
the same address each time. The most convenient way to arrange this is to move HIMEM down by
the length of the program and load the machine code program in to this protected area.
Theoretically, you could raise LOMEM to provide a similar protected area below your BBC
BAS|C(280) program. However, altering LOMEM destroys ALL your dynamic variables and is more
risky.

Length of Reserved Memory
You must reserve an area of memory which is sufficiently large for your machine code program
before you assemble it, but you may have no real idea how long the program will be until after it is
assembled. How then can you know how much memory to reserve? Unfortunately, the answer is
that you can't. However, you can add to your program to find the length used and then change the
memory reserved by the DIM statement to the correct amount.

In the example below, a large amount of memory is initially reserved. To begin with, a single pass
is made through the assembly code and the length needed for the code is calculated (lines 100 to

BBC BAS|C(280) Reference Manual for 288, 2nd edition 51

120). After a CLEAR, the correct amount of memory is reserved (line 140) and a further two
passes of the assembly code are performed as usual. Your program should not, of course,
subsequently try to use variables set before the clear statement. If you use a similar structure to
the example and place the program lines which initiate the assembly function at the start of your
program, you can place your assembly code anywhere you like and still avoid this problem.

1 0 0 DIM f r e e —1, code HIMEM—free—lOOO

110 PROC_ass(O)
120 L%=P%—code
130 CLEAR

140 DIM code L%
150 P R O C _ a s s (O)

160 PROC_ass(2)

Put the r e s t o f your program he re .

1 0 0 0 DEF PROC_ass(op t)

10010 P%=Code

10020 [OPT opt

Assembler code program.

l lOOO]
l l O l O ENDPROC

Initial Setting of the Program Counter
The program counters, P%, and 0% are initialised to zero. Using the assembler without first
setting P% (and 0%) is liable to corrupt the operating system.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 52

The Assembly Process

OPT
The only assembly directive is OPT. As with the 6502 assembler, 'OPT' controls the way the
assembler works, whether a listing is displayed and whether errors are reported. OPT should be
followed by a number in the range 0 to 7. The way the assembler functions is controlled by the
three bits of this number in the following manner.

Bit 0 - LSB
Bit 0 controls the listing. If it is set, a listing is displayed.

Bit 1

Bit 1 controls the error reporting. If it is set, errors are reported.

Bit 2
Bit 2 controls where the assembled code is placed. If bit 2 is set, code is placed in memory starting
at the address specified by 0%. However, the program counter (P%) is still used by the assembler
for calculating the instruction addresses.

Assembly at a Different Address
In general, machine code will only run properly if it is in memory at the addresses for which it was
assembled. Thus, at first glance, the option of assembling it in a different area of memory is of little
use. However, using this facility, it is possible to build up a library of machine code utilities for use
by a number of programs. The machine code can be assembled for a particular address by one
program without any constraints as to its actual location in memory and saved using *SAVE. This
code can then be loaded into its working location from a number of different programs using
*LOAD.

OPT Summary

Code Assembled Starting at P%

The code is assembled using the program counter (P%) to calculate the instruction addresses and
the code is also placed in memory at the address specified by the program counter.

OPT 0 reports no errors and gives nolisting.
OPT 1 reports no errors, but gives a listing.
OPT 2 reports errors, but gives no listing.
OPT 3 reports errors and gives a listing.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 53

Code Assembled Starting at 0%
The code is assembled using the program counter (P%) to calculate the instruction addresses.
However, the assembled code is placed in memory at the address specified by 0%.

OPT 4 reports no errors and gives no
OPT 5 reports no errors, but gives a listing.
OPT 6 reports errors, but gives no listing.
OPT 7 reports errors and gives a listing.

How the Assembler Works

The assembler works line by line through the machine code. When it finds a label declared it
generates a BBC BAS|C(280) variable with that name and loads it with the current value of the
program counter (P%). This is fine all the while labels are declared before they are used. However,
labels are often used for forward jumps and no variable with that name would exist when it was
first encountered. When this happens, a 'No such variable' error occurs. If error reporting has not
been disabled, this error is reported and BBC BAS|C(280) returns to the direct mode in the normal
way. If error reporting has been disabled (OPT O, 1, 4 or 5), the current value of the program
counter is used in place of the address which would have been found in the variable, and
assembly continues. By the end of the assembly process the variable will exist (assuming the code
is correct), but this is of little use since the assembler cannot 'back track' and correct the errors.
However, if a second pass is made through the assembly code, all the labels will exist as variables
and errors will not occur. The example below shows the result of two passes through a (completely
futile) demonstration program. Twelve bytes of memory are reserved for the program. (If the
program was run, it would 'doom-loop' from line 50 to 70 and back again.) The program disables
error reporting by using OPT 1.

10 DIM code 12
20 FOR opt=l TO 3 STEP 2
3O P%=code
4O [OPT opt

5 0 . j i m JR f r e d

60 DEFW &2345
70 . f r e d JR j im
80]
90 NEXT

This is the first pass through the assembly process (note that the 'JR fred' instruction jumps to
itself):

3E7B OPT opt

3E7B 18 FE . j i m JR f red
3E7D 4 5 2 3 DEFW & 2 3 4 5

3E7F 18 FA . f r e d JR j im

This is the second pass through the assembly process (note that the 'JR fred' instruction now
jumps to the correct address):

BBC BAS|C(280) Reference Manual for 288, 2nd edition 54

3E7B OPT opt

3E7B 18 02 . j i m JR f red
3E7D 45 23 DEFW &2345
3E7F 18 FA . f r e d JR j i m

Generally, if labels have been used, you must make two passes through the assembly language
code to resolve forward references. This can be done using a FOR...NEXT loop. Normally, the first
pass should be with OPT 0 (or OPT 4) and the second pass with OPT 2 (OPT 6). If you want a
listing, use OPT 3 (OPT?) for the second pass. During the first pass, a table of variables giving the
address of the labels is built. Labels which have not yet been included in the table (forward
references) will generate the address of the current op-code. The correct address will be
generated during the second pass.

Saving and Loading Machine Code Programs
As mentioned earlier, you can use machine code routines in a number of BBC BASIC(280)
programs by using *SAVE and *LOAD. The safest way to do this is to write a program which
consists of only the machine code routines and enough BBC BASIC(280) to assemble them. They
should be assembled 'out of the way' at the top of memory (each routine starting at a known
address) and then *SAVEd. (Don't forget to move HIMEM down first.) The BBC BASIC(280)
programs that use these routines should move HIMEM down to the same value before they *LOAD
the assembly code routines into the address at which they were originally assembled. *SAVE and
*LOAD are explained below.

*SAVE
Save an area of memory to disk. You MUST specify the start address (aaaa) and either the length
of the area of memory (llll) or its end address+1 (bbbb).

*SAVE u f sp aaaa + l l l l
*SAVE u f sp aaaa bbbb
OSCLI "SAVE " + < s t > + " " + S T R $ ~ (< n >) + " + " + S T R $ ~ (< n >)

*SAVE "WOMBAT" &8FOO + 8 0

*SAVE "WOMBAT" &8FOO & 8 F 8 O

OSCLI "SAVE "+u fn$+" " + S T R $ ~ (a d d) + " + " + S T R $ ~ (l e n)

*LOAD
Load the specified file into memory at hexadecimal address 'aaaa'. The load address MUST
always be specified. OSCLI may also be used to load a file. However, you must take care to
provide the load address as a hexadecimal number in string format.

*LOAD u f sp aaaa
OSCLI "LOAD "+<s t r>+" "+STR$~<num>

*LOAD “ :RAM.0 /WOMBAT” & 8 F 0 0

OSCLI "LOAD "+f_name$+" "+STR$~(s t r t _add ress)

BBC BASIC(280) Reference Manual for 288, 2nd edition 55

Saving and loading machine code files with PROC_save & PROC_Ioad
*LOAD and *SAVE commands are only available with Z88 Patch, either installed manually with
CHAIN command or when you are using OZ ROM V4.3 or later. See section “ nstalling 288 Patch
with Proqram Editor and other commands” on how to install the Z88 Patch.

Use the following two procedures in your machine code programs, as an alternative to *LOAD and
*SAVE:

10 REM Procedures t o subst i tu te f o r *LOAD and *SAVE
2 0 REM R . T . R u s s e l l , June 1 9 8 8

1 0 0 DIM fname 2 5 5
200 END

6 0 0 0 0 DEF PROC_load($ fname,E%) :LOCAL H%, % , D % , B % , C % : L % = f n a m e
60010 H%=L% DIV 256:D%=E% DIV 256:B%=255:C%=255:CALL &FEA3:ENDPROC
6 0 0 2 0 DEF P R O C _ s a v e ($ f n a m e , E % , C %) : L O C A L H%, %, % ,B%:L%=fname
6 0 0 3 0 H%=L% DIV 2 5 6 : D % = E % DIV 2 5 6 : B % = C % DIV 2 5 6 : C A L L &FEA6:ENDPROC

Using PROC_save
Save an area of memory to a file. You MUST specify the start address (aaaa) and the length of the
area of memory (1111). Both examples below uses hexadecimal notation.

PROC_save(“u fsp ” , &aaaa , & l l l l)
P R O C _ s a v e (“ W O M B A T " , & 8 F O O , & 8 0)

Using PROC_Ioad
Load the specified file into memory at hexadecimal address ‘aaaa’. The load address MUST
always be specified.

P R O C _ l o a d (“ u f s p ” , & a a a a)
PROC_load(“WOMBAT” ,&8F00)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 56

Conditional Assembly and Macros

Introduction

Most machine code assemblers provide conditional assembly and macro facilities. The assembler
does not directly offer these facilities, but it is possible to implement them by using other features
of BBC BASIC(Z80).

Conditional Assembly
You may wish to write a program which makes use of special facilities and which will be run on
different types of computer. The majority of the assembly code will be the same, but some of it will
be different. In the example below, different output routines are assembled depending on the value
of 'flag'.

DIM code 2 0 0

FOR pass=0 TO 3 STEP 3
[OPT p a s s

. s t a r t — — —

— — — code — — —
_ _ _ fl

IF f lag [OPT p a s s : — code fo r routine 1 —:]
IF NOT f lag [OPT p a s s : — code f o r rout ine 2 — :]

[OPT p a s s

.more_code — — —
- - - code - - -

NEXT

Macros

Within any machine code program it is often necessary to repeat a section of code a number of
times and this can become quite tedious. You can avoid this repetition by defining a macro which
you use every time you want to include the code. The example below uses a macro to pass a
character to the screen or printer. Conditional assembly is used within the macro to select either
the screen or the auxiliary output, depending on the value of op_f|ag.

It is possible to suppress the listing of the code in a macro by forcing bit 0 of OPT to zero for the
duration of the macro code. This can most easily be done by ANDing the value passed to OPT
with 6.

BBC BASIC(ZSO) Reference Manual for 288, 2nd edition 57

This is illustrated in PROC_screen and PROC_aux in the example below.

DIM code 200
op_flag=TRUE

FOR pass=0 TO 3 STEP 3
[OPT p a s s

. s t a r t — — —

— — — code — — —

OPT FN_select (op_f lag) ; Include code depending on op_f lag

— — — code — — —
_ _ _ :]

NEXT

END

REM Include code depending on value o f op_f lag

DEF FN_se lec t (op_ f lag)

IF op_flag PROC_screen ELSE PROC_print
=pass
REM Return original value o f OPT. This i s a
REM b i t a r t i f i c ia l , but necessary t o insert
REM some BBC BASIC code in the assembly c o d e .

DEF PROC_screen

[OPT pass AND 6
RST &20 : DEFB &27 ; OS_Out: A = character t o send t o screen

]
ENDPROC

DEF PROC_print
[OPT p a s s AND 6

; some code t o send charac ter t o the pr in ter

]
ENDPROC

The use of a function call to incorporate the code provides a neat way of incorporating the macro
within the program and allows parameters to be passed to it. The function should return the
original value of OPT.

Managing system error events on the Z88

Warning
If you write an application which contains bugs or tries to circumnavigate the operating system,
then it is likely that all the other applications in the 288 will be affected.
The effect may not be immediate, some indiscretions take weeks or even months to become
apparent, but will usually be in the form of a system crash. You must always remember that the
resources of the 288 are not devoted exclusively to your application and therefore only use legal
interfaces.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 58

All internal applications follow all the rules and use no ‘back door’ techniques.
If you wish to write more than the simplest assembler code programs for the 288, you will need a
considerable amount of technical information about the machine. This information is available in
the Developers’ Notes on the cambridge288.jira.com wiki.

Error handling

If your assembler language program makes any use at all of the 288’s facilities, it will be possible
to suspend it. Under these circumstances, it is imperative that your program includes error
handling code.
The following assembler language ‘wrap around’ provides the minimum acceptable error handling
capability. It is also an example of how to use a macro for OZ system call API and how to open
files to read date stamp properties.
The ‘wrap around’ recognises and acts on the following events:

0 An Escape condition (the [ESC] key having been pressed whilst escape detection is
enabled).

0 The [INDEX] having been pressed or another application / popdown being activated
0 The a key having been pressed.
0 The process having been killed (normally from INDEX)

You may wish to develop your own error handler, but you should always use one. If you don’t, you
could run into trouble.

. J
AUTO

DIM code 512 : REM space f o r program
GN_Esp=&4C09 : REM re turn pointer t o s ys tem e r ro r message
GN_Soe=&3CO9 : REM Wri te st r ing at extended address t o standard
output
GN_Nln=&2E09 : REM car r iage re turn, l i ne feed t o s t d . output
GN_Sop=&3A09 : REM output s t r ing t o s t d . output
GN_Opf=&6009 : REM open f i le
OS_Erh=&75 : REM i ns ta l l e r ro r handler
OS_Esc=&6F : REM examine special condition
GN_Err=&4A09 : REM s tandard sys tem e r ro r box
GN_Sdo=&OE09 : REM date and time t o standard output
OS_Dor=&87 : REM DOR in ter face
dr_rd=&09 : REM read DOR record
dr_ f re=&05 : REM f r ee DOR handle
op_dor=&06 : REM open f i l e f o r DOR a c c e s s
rc_qui t=&67 : REM KILL request er ror code
rc_esc=&Ol : REM escape detect ion er ror code

FOR p a s s = 0 TO 2 STEP 2
P%=code
[

OPT p a s s
LD H L , O
ADD H L , S P \ get current BASIC s t a c k po inter
LD (b s t k) , H L \ preserve i t
LD S P , (& 1 F F E) \ i n s ta l l sys tem (s a f e) s t a c k pointer
XOR A
LD B , A
LD HL,errhan \ address o f e r r o r handler
OPT FNsys(OS_Erh) \ i ns ta l l new e r ro r handler
LD (o b o u) , A \ save o ld e r r o r handler c a l l level
LD (o e r r) , H L \ save o ld e r ro r handler address

\ Here i s the ca l l t o your assembler language routine which should be
\ included a t the end o f this code.
CALL main \ ca l l main routine

BBC BAS|C(280) Reference Manual for 288, 2nd edition 59

. e x i t
LD
LD

LD

OPT
LD

RET

. e r r h
RET

CP
JR
O P T

LD
OR
RET

. e r r l
CP
JR

LD
LD
OPT

LD
LD

LD
OR
SCF
JP

. e r r 2
O P T

OPT
O P T

OR
RET

. b s t k

.obou

. o e r r

H L , (o e r r)
A , (o b o u)
B , O
FNsys(OS_Erh)
S P , (b s t k)

an
Z
rc_esc
N Z , e r r 1
FNsys(OS_Esc)
A , r c _ e s c
A

rc_quit
N Z , e r r 2

H L , (o e r r)
A , (o b o u)
FNsys(OS_Erh)

S P , (b s t k)
H L , (o e r r)

A, rc_quit
A

(HL)

FNsys(GN_Esp)
FNsys(GN_Soe)
FNsys(GN_Nln)
A

DEFW 0
DEFB 0
DEFW 0

/
/

/

/
/

/

/

/
/

/
/

/

/
/

/
/

address o f o ld e r ro r handler
o l d ca l l leve l

r e s t o r e previous e r ro r handler
r e s t o r e BASIC s t a c k po inter
re turn t o BBC BASIC in terpreter

ESC p ressed?

acknowledge ESC

re turn rc_esc back t o main program
Fc = 0 , F 2 = 0

KILL reques t?

re - ins ta l l o ld e r ro r handler
o l d ca l l leve l

instal l BASIC s tack pointer

reload A with RC_QUIT
F z = 0
Fc = 1
jump t o B A S I C ' s e r r o r handler

wr i te e r r o r message i f poss ib le
Get e x t . po in ter t o s ys tem e r ro r message
Wr i te e r r o r message t o s t d . output
New line t o s td . output
Fc = 0

s torage fo r BASIC s tack pointer
s to rage f o r o ld ca l l l eve l
s t o r a g e f o r o ld e r r o r handler address

\ _

\ main routine s ta r t s here
.main
LD

LD
LD

LD

LD
OPT
JR
O P T

RET

.open
LD

LD

LD

LD
OPT
LD

O P T

LD
O P T

LD

O P T

HL,sc ra tch_ l
DE,sc ra tch_2
C , 4 O
B , 0
a , op_dor
FNsys(GN_Opf)
NC,opened_OK
FNsys(GN_Err)

ed_OK
A,dr_rd
B , A S C " U "
C , 6
DE,sc ra tch_ l
FNsys(OS_Dor)
A , d r _ f r e
FNsys(OS_Dor)
HL,sc ra tch_2
FNsys(GN_Sop)
HL , tab_s t r
FNsys(GN_Sop)

/
/

/
/

/

/
/

/
/

/
/

/

/
/

/

holds address o f f i l e t o open
explicit name bu f fe r
s i z e o f exp l ic i t name b u f f e r
HL st r ing pointer i s loca l
get DOR handle
o p e n . . .

repor t e r r o r in standard window

read DOR r eco rd
read update informat ion
3 by te internal date, 3 by te in t . time
s t o r e returned informat ion a t (DE)
f e t c h update date

f r ee DOR handle
display explicit filename
t o standard output

tab t o column 4 0

BBC BAS|C(280) Reference Manual for 288, 2nd edition 60

LD HL,scratch_1
OPT FNsys(GN_Sdo) \ output returned update date
OPT FNsys(GN_Nln) \ display newline
RET \ back t o BASIC

. s c r a t c h _ l DEFM S T R I N G $ (4 0 , " X ")

. s c r a t c h _ 2 DEFM S T R I N G $ (4 0 , " X ")

. t a b _ s t r DEFM C H R $ l + " 2 X " + C H R $ (3 2 + 4 0) + C H R $ 0

\ main routine ends here
\ _

]
NEXT p a s s

CLS
PRINT "Read File Update Date and Time"
INPUT "F i lename: "A$
IF L E N (A $) > 4 O THEN PRINT "S t r i ng t o o l o n g " : END

A$=A$+CHR$O : REM null-terminate filename str ing
$scratch_l=A$
CALL code
END

DEF F N s y s (a r g)
IF arg>255 THEN PROC_Rst20Defw(arg) ELSE PROC_Rst20Defb(arg)
=pass

DEF PROC_Rst20Defw(arg)
[OPT p a s s

RST & 2 0 : DEFW a rg
]
ENDPROC
DEF PROC_Rst20Defb (a rg)
[OPT p a s s

RST & 2 0 : DEFB arg
]
ENDPROC

You can test the error handling code by replacing the above main routine with the following
program as the other ‘main’ routine (also remove the filename input code after the assembler
section which is no longer necessary).

.main
LD B ,1O \ Loop 10 times
. l o o p
LD A , B \ loop value
ADD A,ASC”O”—1 \ convert t o Asc i i digit
OPT FNsys(OS_Out) \ d isp lay digit t o s t d . output
\
. inp
OPT FNsys(OS_In) \ Read a character f rom keyboard
JR C , inp \ i f Fc = 1, read e r r o r code
DJNZ loop
RET

Try running the complete program and observe the effect of:
o Suspending (eg. activate INDEX) and then either killing or reentering
o Pressing [ESC]
0 Switching the Z88 off and on (both [SHIFT] keys)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 61

Statements and functions

Introduction
The commands and statements are listed alphabetically for ease of reference; they are not
separated into two sections.

All statements can also be used as direct commands.

Where appropriate, the abbreviated form is shown to the right of the statement.

The associated keywords are listed at the end of each explanation.

If the lexical analyser tries to expand a line to more than 255 characters, a 'Line space' error will be
reported.

Syntax
Abbreviated definitions for the commands and statements in BBC BASIC(280) are given at the end
of the explanation for each keyword. Most of us have seen formal syntax diagrams and
Backus-Naur Form (BNF) definitions for languages, and many of us have found them to be
somewhat confusing. Consequently, we have attempted to produce something which, whilst being
reasonably precise, is readable by the majority of BBC BASIC(Z80) users. To those amongst you
who would have preferred 'the real thing' - we apologise.

Symbols

The following symbols have special meaning in the syntax definitions.

{ } The enclosed item may be repeated zero or more times.

[] The items enclosed are optional, they may occur zero or one time.

| Indicates alternatives; one of which must be used.

<stmt> Means a BBC BASIC(Z80) statement.

<var> Means a numeric or string variable.

<exp> Means an expression like Pl*radius*height+2 or
name$+"FRED"+CHR$(&OD). It can also be a single variable or constant
like 23 or "FRED".

<|-num> Means a line number in a BBC BAS|C(Z80) program.

<k-num> Means the number of one of the programmable keys.

<n-const> Means a numeric constant like '26.4' or '256'.

<n-var> Means a numeric variable like 'size' or 'weight'.

<numeric> Means a <n-const> or a <n-var> or an expression combining them. For
example: P|*radius+2.66

BBC BAS|C(280) Reference Manual for 288, 2nd edition 62

<s-const>

<string>

<s-var>

<str>

<t-cond>

<name>

<d:>

<afsp>

<ufsp>

<nchr>

Pl

Means a string constant like "FRED".

Means an unquoted string of characters.

Means a string variable like 'address$'.

Means a <s-const> or a <s-var> or an expression combining them. For
example: name$+add$+"Phone".

Means a 'testable condition'. In other words, something which is either
TRUE or FALSE. Since BBC BASIC does not have true Boolean variables,
TRUE and FALSE are numeric (with a value of -1 and 0). Consequently, a
<numeric> can be used anywhere a <t-cond> is specified.

Means a valid variable name.

Means a device drive name. eg. :RAM.O (See the ‘Operating System
Interface’ section for details of valid devices).

Means an ambiguous file specifier.

Means an unambiguous file specifier.

Means a character valid for use in a name. 0 to 9, A to Z, a to z and
underline.

The mathematical constant 1'[(3.14159 etc.).

BBC BAS|C(280) Reference Manual for 288, 2nd edition 63

ABS
A function giving the absolute value of its argument.

X = A B S (d e f i c i t)

length = A B S (X l — X 2)

This function converts negative numbers into positive ones. It can be used to give the difference
between two numbers without regard to the sign of the answer.

It is particularly useful when you want to know the difference between the two values, but you don't
know which is the larger. For instance, if X=6 and Y=10 then the following examples would give the
same result.

d i f fe rence ABS(X—Y)
ABS (Y—X) d i f fe rence

You can use this function to check that a calculated answer is within certain limits of a specified
value. For example, suppose you wanted to check that 'answer' was equal to 'ideal' plus or minus
(up to) 0.5. One way would be:

IF answer> idea l—O.5 AND answer< idea l+0.5 T H E N

However, the following example would be a more elegant solution.

IF A B S (a n s w e r - i d e a l) < 0 . 5 T H E N

Syntax

<n—var>=ABS(<numeric>)

Associated Keywords

SGN

BBC BAS|C(280) Reference Manual for 288, 2nd edition 64

ACS
A function giving the arc cosine of its argument in radians. The permitted range of the argument is
-1 to +1.

If you know the cosine of the angle, this function will tell you the angle (in radians). Unfortunately,
you cannot do this with complete certainty because two angles within the range +/- Pl (+/- 180
degrees) can have the same cosine. This means that one cosine has two associated angles.

The following diagram illustrates the problem:

Sine
Posifive CBS " arc.

c‘ — t
u _ 1h

Tangent Cfis' = ain'-
Pnsilive -

Within the four quadrants, there are two angles which have the same cosine, two with the same
sine and two with the same tangent. When you are working back from the cosine, sine or tangent
you don't know which of the two possible angles is correct.

By convention, ACS gives a result in the top two quadrants (0 to Pl - 0 to 180 degrees) and ASN
and ATN in the right-hand two quadrants (-P|/2 to +P|/2 - -90 to + 90 degrees).

In the example below, 'radian_ang|e' becomes equal to the angle (in radians) whose cosine is 'y'.

radian_angle=ACS (y)
You can convert the answer to degrees by using the DEG function (or multiplying by 180/Pl).

degree_angle=DEG (ACS (y))

Syntax

<n—var>=ACS (<numeric>)

Associated Keywords

ASN, ATN, SIN, COS, TAN, RAD, DEG

BBC BAS|C(280) Reference Manual for 288, 2nd edition 65

ADVAL

Not available on the Z88

BBC BAS|C(280) Reference Manual for 288, 2nd edition 66

AND (A.)
The operation of integer bitwise logical AND between two items. The 2 operands are
internally converted to four byte integers before the AND operation.

answer=num1 AND num2

char=byte AND & 7 F

IF (num AND & F 0)

tes t=(count=3 AND to ta l=5)

You can use AND as a logical operator or as a 'bit-by-bit' (bitwise) operator. The operands
can be boolean (logical) or numeric.

In the following example program segment, AND is used as a bitwise operator to remove the most
significant bit of a byte read from a file before writing it to another file. This is useful for converting
some word-processor files into standard ASCII format.

210 byte=BGET#inf i le AND & 7 F

2 2 0 BPUT#ou t f i l e ,by te

Unfortunately, BBC BASIC does not have true boolean variables; it uses numeric variables
and assigns the value 0 for FALSE and -1 for TRUE. This can lead to confusion at times.
(See NOT for more details.) In the example below, the operands are boolean (logical). In
other words, the result of the tests (IF) A=2 and (IF) B=3 is either TRUE or FALSE. The
result of this example will be TRUE if A=2 and B=3.

answer= (A=2 AND B=3)
The brackets are not necessary, they have been included to make the example easier to
follow.

The second example is similar to the first, but in the more familiar surroundings of an IF statement.

IF A=2 AND B=3 THEN 110

or
answer= A=2 AND B=3 (without brackets this time)
IF answer THEN 110

BBC BAS|C(280) Reference Manual for 288, 2nd edition 67

The final example, uses the AND in a similar fashion to the numeric operators (+, -, etc).

A=X AND 11

Suppose X was -20, the AND operation would be:

11111111 11111111 11111111 11101100
00000000 00000000 00000000 00001011
00000000 00000000 00000000 00001000 = 8

Syntax

<n—var>=<numeric> AND <numeric>

Associated Keywords

EOR, OR, FALSE, TRUE, NOT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 68

ASC
A function returning the ASCII character value of the first character of the argument string. If
the string is null then -1 will be returned.

A computer only understands numbers. In order to deal with characters, each character is
assigned a code number. For example (in the ASCII code table) the character 'A' is given the code
number 65 (decimal). A part of the computer generates special electronic signals which cause the
characters to be displayed on the screen. The signals generated vary according to the code
number.

You could use this function to convert ASCII codes to some other coding scheme.

ascii_code=ASC ("H") Result would be 72

X=ASC ("HELLO") Result would be 72

name$="FRED"

ascii_code=ASC (name$) Result would be 70

X=ASC"e" Result would be 101

X=ASC (MID$ (A$, pos i t ion)) Result depends on A$ and position.

ASC is the complement of CHR$.

Syntax

<n—var>=ASC (< s t r >)

Associated Keywords

CH R$, STR$, VAL

BBC BAS|C(280) Reference Manual for 288, 2nd edition 69

ASN
A function giving the arc sine of its argument in radians. The permitted range of the argument is -1
to +1.

By convention, the result will be in the range -P|/2 to +P|/2 (-90 to +90 degrees).

If you know the sine of the angle, this function will tell you the angle (in radians). Unfortunately, you
cannot do this with complete certainty because one sine has two associated angles. (See A08 for
details.)

In the example below, 'radian_angle' becomes equal to the angle (in radians) whose sine is 'y'.

radian_angle=ASN (y)

You can convert the answer to degrees by using the DEG function. (The DEG function is
equivalent to multiplying by 180/Pl.) The example below is similar to the first one, but the angle is
in degrees.

degree_angle=DEG (ASN (y))

Syntax

<n—var>=ASN (<numeric>)

Associated Keywords

ACS, ATN, SIN, COS, TAN, RAD, DEG

BBC BAS|C(280) Reference Manual for 288, 2nd edition 70

ATN
A function giving the arc tangent of its argument in radians. The permitted range of the argument is
from - to + infinity.

By convention, the result will be in the range -P|/2 to +P|/2 (-90 to +90 degrees).

If you know the tangent of the angle, this function will tell you the angle (in radians).

As the magnitude of the argument (tangent) becomes very large (approaches + or - infinity) the
accuracy diminishes.

In the example below, 'radian_angle' becomes equal to the angle (in radians) whose tangent is 'y'.

radian_angle=ATN (y)

You can convert the answer to degrees by using the DEG function. (The DEG function is
equivalent to multiplying by 180/Pl.) The example below is similar to the first one, but the angle is
in degrees.

degree_angle=DEG (ATN (y))

Syntax

<n—var>=ATN (<numeric>)

Associated Keywords

ACS, ASN, SIN, COS, TAN, RAD, DEG

BBC BAS|C(280) Reference Manual for 288, 2nd edition 71

AUTO (AU.)
A command allowing the user to enter lines without first typing in the number of the line. The line
numbers are preceded by the usual prompt (>).

You can use this command to tell the computer to type the line numbers automatically for you
when you are entering a program (or part of a program).

If AUTO is used on its own, the line numbers will start at 10 and go up by 10 for each line.
However, you can specify the start number and the value by which the line numbers will increment.
The step size can be in the range 1 to 255.

You cannot use the AUTO command within a program or a multi-statement command line.

You can leave the AUTO mode by pressing the escape key.

AUTO start_number , s tep_s i z e

AUTO offers line numbers 10, 20, 30

AUTO 100 starts at 100 with step 10

AUTO 100, 1 starts at 100 with step 1

AUTO , 2 starts at 10 with step 2

A hyphen is an acceptable alternative to a comma.

Syntax

AUTO [<n—cons t> [, < n — c o n s t >]]

Associated Keywords

None

BBC BAS|C(280) Reference Manual for 288, 2nd edition 72

BGET# (B.#)
A function which gets a byte from the file whose file handle is its argument. The file pointer is
incremented after the byte has been read.

E=BGET#D

auX=BGET#3

You must normally have opened a file using OPENOUT, OPENIN or OPENUP before you use this
statement. (See these keywords and the BBC BAS|C(280) Files section for details.)

You can use BGET# to read single bytes from a file. This enables you to read back small integers
which have been 'packed' into fewer than 5 bytes (see BPUT#). It is also very useful if you need to
perform some conversion operation on a file. Each byte read is numeric, but you can use
CHR$ (BGET#n) to convert it to a string.

The input file in the example below is a text file produced by a word-processor.

Words to be underlined are 'bracketed' with "S. The program produces an output file suitable for a
printer which expects such words to be bracketed by "Y. You could, of course, perform several
such translations in one program.

10 REM Open i / p and o / p f i l es . End i f e r r o r .
2 0 infile=OPENIN "WSFILE.DOC"

3 0 IF in f i le=O THEN END

4 0 OUtfile=OPENOUT "BROTH.DOC"

5 0 IF ou t f i le=0 THEN END

60 :
7O REM P r o c e s s f i l e , convert ing AS t o AY

8 0 REPEAT

9O temp=BGET#infile :REM Read by te
1 0 0 IF temp=&13 THEN temp=&l9 :REM Conver t AS

110 BPUT#outf i le,temp :REM Wri te by te
1 2 0 UNTIL temp=&lA :REM A Z

130 CLOSE#O :REM Close a l l f i les
1 4 0 END

BBC BAS|C(280) Reference Manual for 288, 2nd edition 73

To make the program more useful, it could ask for the names of the input and output files at 'run
time':

10 INPUT "Enter name o f INPUT f i le " in f i le$
20 INPUT "Enter name o f OUTPUT f i le " out f i le$
3O REM Open i / p and o / p f i l e s . End i f e r r o r .
4 0 in f i le=OPENIN(in f i le$)

5 0 IF in f i le=0 THEN END

6 0 ou t f i l e=OPENOUT(ou t f i l e$)

7 0 IF ou t f i le=0 THEN END

80
9O REM P r o c e s s f i l e , convert ing AS t o AY

l O O REPEAT

l l O temp=BGET#infile :REM Read by te
120 IF temp=&13 THEN temp=&l9 :REM Convert AS
130 BPUT#outf i le,temp :REM Wri te by te
1 4 0 UNTIL temp=&lA :REM A Z

150 CLOSE#O :REM Close a l l f i les
1 6 0 END

Syntax
<n—var>=BGET#<numeric>

Associated Keywords
OPENIN, OPENUP, OPENOUT, CLOSE#, PRINT#, |NPUT#, BGET#, EXT#, PTR#, EOF#

BBC BAS|C(280) Reference Manual for 288, 2nd edition

BPUT# (BP.#)
A statement which puts a byte to the data file whose file handle is the first argument. The second
argument's least significant byte is written to the file. The file pointer is incremented after the byte
has been written.

BPUT#E,32
BPUT#staf f_ f i le ,A/256
BPUT#4,prn

Before you use this statement you must normally have opened a file for output using OPENOUT or
OPENUP. See these keywords and the BBC BASIC(280) Files section for details.

You can use this statement to write single bytes to a disk file. The number that is sent to the file is
in the range 0 to 255. Real numbers are converted internally to integers and the top three bytes
are 'masked off'. Each byte written is numeric, but you can use ASC(character$) to convert (the
first character of) 'character$' to a number.

The example below is a program segment that 'packs' an integer number between 0 and 65535
(&FFFF) into two bytes, least significant byte first. The file must have already been opened for
output and the file handle stored in 'fnum'. The integer variable number% contains the value to be
written to the file.

100 BPUT#fnum,number% MOD 2 5 6
110 BPUT#fnum,number% DIV 2 5 6

Syntax

BPUT#<numeric>,<numeric>

Associated Keywords

OPENIN, OPENUP, OPENOUT, CLOSE#, PRINT#, |NPUT#, BGET#, EXT#, PTR#, EOF#

BBC BASIC(280) Reference Manual for 288, 2nd edition 75

CALL (CA.)
A statement to call a machine code subroutine.

CALL Muldiv,A,B,C,D
CALL &FFE3
CALL 12340,A$,M,J$

The processor's A, B, C, D, E, F, H and L registers are initialised to the least significant words of
A%, B%, 0%, D%, E%, F%, H% and L% respectively (see also USR).

Parameter Table

CALL sets up a table in RAM containing details of the parameters. The IX register is set to the
address of this parameter table.

Variables included in the parameter list need not have been declared before the CALL statement.
The parameter types are:

Code No Parameter Type

0: byte (8 bits) eg ?A%
4: word (32 bits) eg !A% or A%
5: real (40 bits) eg A
128: fixed string eg $A%
129: movable string eg A$

Number of parameters 1 byte (at IX)

Parameter type 1 byte (at |X+1)
Parameter address 2 bytes (at |X+2 |X+3 LSB first)

Parameter type) repeated as often as necessary.
Parameter address)

Except in the case of a movable string (normal string variable), the parameter address given is the
absolute address at which the item is stored. In the case of movable strings (type 129), it is the
address of a parameter block containing the current length, the maximum length and the start
address of the string, in that order

BBC BAS|C(280) Reference Manual for 288, 2nd edition 76

Parameter Formats

Integer variables are stored in two’s complement format with their least significant byte first.

Fixed strings are stored as the characters of the string followed by a carriage return (&0D).

Floating point variables are stored in binary floating point format with their least significant byte
first. The fifth byte is the exponent. The mantissa is stored as a binary fraction in sign and
magnitude format. Bit 7 of the most significant byte is the sign bit and, for the purposes of
calculating the magnitude of the number, this bit is assumed to be set to one. The exponent is
stored as a positive integer in excess 127 format. (To find the exponent subtract 127 from the value
in the fifth byte.)

If the exponent of a floating point number is zero, the number is stored in integer format in the
mantissa. If the exponent is not zero, then the variable has a floating point value. Thus, an integer
can be stored in two different formats in a real variable. For example, 5 can be stored as

& OO 0 0 0 0 0 5 OO Integer 5
or

& 2 0 OO 0 0 0 0 8 2 (. 5 + . 1 2 5) * 2 A 3 = 5

(the &20 becomes &AO because the MSB is always assumed)

In the case of a movable string (normal string variable), the parameter address points to the 'string
descriptor'. This descriptor gives the current length of the string, the number of bytes allocated to
the string (the maximum length of the string) and the address of the start of the string (LSB first).

See the Annex entitled ‘Format of Program and Variables in Memory’ for details of how
parameters are stored.

Syntax
CALL <numeric>{ , <n—var> | < s — v a r > }

Associated Keywords
USR

BBC BAS|C(280) Reference Manual for 288, 2nd edition 77

CHAIN (CH.)
A statement which loads and runs the program whose name is specified in the argument.

CHAIN "GAMEl"
CHAIN A$

The program file must be in tokenised format.

All but the static variables @% to Z% are CLEARed.

CHAIN sets ON ERROR OFF before chaining the specified program.

RUN may be used as an alternative to CHAIN.

You can use CHAIN (or RUN) to link program modules together. This allows you to write modular
programs which would, if written in one piece, be too large for the memory available.

Passing data between CHAINed programs can be a bit of a problem because COMMON variables
cannot be declared and all but the static variables are cleared by CHAIN.

If you wish to pass large amounts of data between CHAINed programs, you should use a data file.
However, if the amount of data to be passed is small and you do not wish to suffer the time penalty
of using a data file, you can pass data to the CHAINed program by using the indirection operators
to store them at known addresses. The safest way to do this is to move HIMEM down and store
common data at the top of memory.

The following sample program segment moves HIMEM down 100 bytes and stores the input and
output file names in the memory above HIMEM. There is, of course, still plenty of room for other
data in this area.

1 0 0 HIMEM=HIMEM-lOO

110 $HIMEM=in_file$
120 $(HIMEM+13)=out_file$
13o CHAIN "NEXTPROG"

Syntax
CHAIN < s t r >

Associated Keywords
LOAD, RUN, SAVE

BBC BAS|C(280) Reference Manual for 288, 2nd edition 78

CHR$
A function which returns a string of length 1 containing the ASCII character specified by the least
significant byte of the numeric argument.

A$=CHR$ (72)
B$=CHR$(12)
C$=CHR$ (A/200)

CHR$ generates an ASCII character (symbol, letter, number character, control character, etc) from
the number given. The number specifies the position of the generated character in the ASCII table
(See Annex A). For example:

char$=CHR$(65)

will set char$ equal to the character 'A'. You can use CHR$ to send a special character to the
terminal or printer. (Generally, VDU is better for sending characters to the screen.) For example,

CHR$(7)

will generate the ASCII character "G. So,

PRINT "ERROR"+CHR$ (7)

will print the message 'ERROR' and sound the PC's 'bell'. CHR$ is the complement of ASC.

Syntax

<s—var>=CHR$ (<numeric>)

Associated Keywords

ASC, STR$, VAL, VDU

BBC BAS|C(280) Reference Manual for 288, 2nd edition 79

CLEAR (CL.)
A statement which clears all the dynamically declared variables, including strings. CLEAR does not
affect the static variables.

The CLEAR command tells BBC BAS|C(280) to 'forget' about ALL the dynamic variables used so
far. This includes strings and arrays, but the static variables (@% to 2%) are not altered.

You can use the indirection operators to store integers and strings at known addresses and these
will not be affected by CLEAR. However, you will need to 'protect' the area of memory used. The
easiest way to do this is to move HIMEM down. See CHAIN for an example.

Syntax
CLEAR

Associated Keywords
None

BBC BAS|C(280) Reference Manual for 288, 2nd edition 80

CLOSE# (CLO.#)
A statement used to close a data file. CLOSE #0 will close all data files.
CLOSE#fi le_num
CLOSE#O
You use CLOSE# to tell BBC BASIC(ZSO) that you have completely finished with a data file
for this phase of the program. Any data still in the file buffer is written to the file before the file
is closed.

You can open and close a file several times within one program, but it is generally considered
'better form' not to close a file until you have finally finished with it. However, if you wish to CLEAR
the variables, it is simpler if you close the data files first.

You should also close data files before chaining another program. CHAIN does not automatically
close data files, but it does clear the variables in which the file handles were stored. You can still
access the open file if you have used one of the static variables (A% to Z%) to store the file
handle. Alternatively, you could reserve an area of memory (by moving HIMEM down for example)
and use the byte indirection operator to store the file handle. (See the keyword CHAIN for more
details.)

END or 'dropping off' the end of a program will also close all open data files. However, STOP does
not close data files.

Syntax
CLOSE#<numeric>

Associated Keywords

OPENIN, OPENUP, OPENOUT, PRINT#, |NPUT#, BPUT#, BGET#, EXT#, PTR#, EOF#

BBC BAS|C(280) Reference Manual for 288, 2nd edition 81

CLG
This clears the graphics window (only); it does not affect the position of the graphics cursor.
Note that CLS can be used to clear the text window and leave the graphics window
unchanged.

This statement is available when installed with 288 Patch via CHAIN command. See
“Installing Z88 Patch” section previously in this guide, on how to obtain the Z88 Patch.
Available by default when BBC BASIC(280) is used with 288 ROM release V4.3 and later.

Syntax
CLG

Associated Keywords

MODE, CLS

BBC BASIC(280) Reference Manual for 288, 2nd edition 82

CLS
A statement which clears the text area of the screen. The text cursor is moved to the 'home'
position (0,0) at the top left-hand corner of the text area.

Syntax

CLS

Associated Keywords
CLG

BBC BAS|C(280) Reference Manual for 288, 2nd edition 83

COLOUR
Sets the text foreground and background colours. If the parameter is less than 128, the colour of
the text is set. If the number is 128 or greater, the colour of the background is set.

Not available on the Z88

BBC BAS|C(280) Reference Manual for 288, 2nd edition 84

COS
A function giving the cosine of its radian argument.

X = C O S (a n g l e)

This function returns the cosine of an angle. The angle must be expressed in radians, not
degrees.

Whilst the computer is quite happy dealing with angles expressed in radians, you may prefer to
express angles in degrees. You can use the RAD function to convert an angle from degrees to
radians.

The example below sets Y to the cosine of the angle 'degree_angle' expressed in degrees.

Y = C O S (R A D (d e g r e e _ a n g l e))

Syntax

<n—var>=COS(<numeric>)

Associated Keywords

SIN, TAN, ACS, ASN, ATN, DEG, RAD

BBC BAS|C(280) Reference Manual for 288, 2nd edition 85

COUNT (cou.)
A function returning the number of characters sent to the output stream (VDU or printer) since the
last new line.

char_count=COUNT

Characters with an ASCII value of less than 13 (carriage return/new—line/enter) have no effect on
COUNT.

Because control characters above 13 are included in COUNT, you cannot reliably use it to find the
position of the cursor on the screen. If you need to know the cursor's horizontal position use the
POS function.

Count is NOT set to zero if the output stream is changed using the *OPT command.

The example below prints strings from the string array 'words$'. The strings are printed on the
same line until the line length exceeds 65. When the line length is in excess of 65, a new-line is
printed.

90 H . .
1 0 0 PRINT

110 FOR i=1 TO 1000
120 PRINT words$ (i) ;

130 IF COUNT>65 THEN PRINT

1 4 0 NEXT

150 u . .

Syntax
<n—var>=COUNT

Associated Keywords

POS

BBC BAS|C(280) Reference Manual for 288, 2nd edition 86

DATA (0.)
A program object which must precede all lists of data for use by the READ statement.

As for INPUT, string values may be quoted or unquoted. However, quotes need to be used if the
string contains commas or leading spaces.

Numeric values may include calculation so long as there are no keywords.

Data items in the list should be separated by a comma.

DATA 1 0 . 7 , 2 , H E L L O , " THIS IS A COW/LA, " , 1 /3 ,PRINT
DATA " This i s a str ing with leading spaces . "

You can use DATA in conjunction with READ to include data in your program which you may need
to change from time to time, but which does not need to be different every time you run the
program.

The following example program segment reads through a list of names looking for the name in
'name$'. If the name is found, the name and age are printed. If not, an error message is printed.

l O O DATA FRED, l7 ,B ILL ,21 ,ALL ISON,21 ,NOEL,32

l l O DATA J O A N , 2 6 , J O H N , l 9 , W E N D Y , 3 5 , Z Z Z Z , O

120 REPEAT

130 READ l i s t$,age
1 4 0 IF l is t$=name$ THEN PRINT name$,age

150 UNTIL list$=name$ OR l i s t$="ZZZZ"
1 6 0 IF l i s t $ = " Z Z Z Z " PRINT "Name no t in l i s t "

Syntax

DATA < s — c o n s t > | < n — c o n s t > { , < s — c o n s t > | < n — c o n s t > }

Associated Keywords

READ, RESTORE

BBC BAS|C(280) Reference Manual for 288, 2nd edition 87

DEF
A program object which must precede declaration of a user defined function (FN) or
procedure (PROC). DEF must be used at the start of a program line.

If DEF is encountered during execution, the rest of the line is ignored. As a consequence, single
line definitions can be put anywhere in the program.

Multi-Iine definitions must not be executed. The safest place to put multi-Iine definitions is at the
end of the main program after the END statement.

There is no speed advantage to be gained by placing function or procedure definitions at the start
of the program.

DEF FNMEAN
DEF PROCJIM

In order to make the text more readable (always a GOOD THING) the function or procedure
name may start with an underline.

DEF FN_mean
DEF PROC_Jim$

Function and procedure names may end with a '$'. This is not compulsory for functions
which return strings.

A procedure definition is terminated by the statement ENDPROC.

A function definition is terminated by a statement which starts with an equals (=) sign. The function
returns the value of the expression to the right of the equals sign.

For examples of function and procedure declarations, see FN and PROC. For a general
explanation of functions and procedures, refer to the Procedures and Functions sub-section in the
General Information section.

Syntax
DEF PROC<name>[(< s — v a r > |<r1—var>{ , < s — v a r > | < n — v a r > })]

DEF FN<name>[(< s — v a r > | < n — v a r > { , < s — v a r > | < n — v a r > })]

Associated Keywords
ENDPROC, FN, PROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 88

DEG
A function which converts radians to degrees.

degree_angle=DEG (P I / 2)
X=DEG (ATN (l))

You can use this function to convert an angle expressed in radians to degrees. One radian is
approximately 57 degrees (actually 180/PI). Pl/2 radians is 90 degrees and PI radians is 180
degrees.

Using DEG is equivalent to multiplying the radian value by 180/Pl, but the result is calculated
internally to a greater accuracy.

See ACS, ASN and ATN for further examples of the use of DEG.

Syntax
<n—var>=DEG (<numeric>)

Associated Keywords

RAD, SIN, COS, TAN, ACS, ASN, ATN, Pl

BBC BAS|C(280) Reference Manual for 288, 2nd edition 89

DELETE(DELJ
A command which deletes a group of lines from the program. Both start and end lines of the group
will be deleted.

You can use DELETE to remove a number of lines from your program. To delete a single line, just
type the line number followed by <Enter>.

The example below deletes all the lines between line 10 and 15 (inclusive).

DELETE 10 , 15

To delete up to a line from the beginning of the program, use 0 as the first line number. The
following example deletes all the lines up to (and including) line 120.

DELETE O, 120

To delete from a given line to the end of the program, use 65535 as the last line number. To delete
from line 2310 to the end of the program, type:

DELETE 2310, 65535

A hyphen is an acceptable alternative to a comma.

Syntax
DELETE < n — c o n s t > , < n — c o n s t >

Associated Keywords
EDIT, LIST, OLD, NEW

BBC BAS|C(280) Reference Manual for 288, 2nd edition 90

DIM
There are two quite different uses for the DIM statement: the first dimensions an array and
the second reserves an area of memory for special applications.

Dimensioning Arrays
The DIM statement is used to declare arrays. Arrays must be pre—declared before use and
they must not be re-dimensioned. Both numeric and string arrays may be multi dimensional.

DIM A (2) , A b (2 , 3) , A $ (2 , 3 , 4) , A % (3 , 4 , 5 , 6)

After DIM, all elements in the array are 0/null.

The subscript base is 0, so DIM X (12) defines an array of 13 elements.

Arrays are like lists or tables. A list of names is a single dimension array. In other words, there is
only one column - the names. Its single dimension in a DIM statement would be the maximum
number of names you expected in the table less 1.

If you wanted to describe the position of the pieces on a chess board you could use a two
dimensional array. The two dimensions would represent the row (numbered 0 to 7) and the column
(also numbered 0 to 7). The contents of each 'cell' of the array would indicate the presence (if any)
of a piece and its value.

DIM chess_board(7, 7)

Such an array would only represent the chess board at one moment of play. If you wanted to
represent a series of board positions you would need to use a three dimensional array. The
third dimension would represent the 'move number'. Each move would use about 320 bytes
of memory, so you can record 40 moves in about 12.5k bytes.

DIM chess_game (7 , 7 , 4 0)

Reserving an Area of Memory
A DIM statement is used to reserve an area of memory which the interpreter will not then
use. The variable in the DIM statement is set by BBC BAS|C(280) to the start address of this
memory area. This reserved area can be used by the indirection operators, machine code,
etc.

The example below reserves 68 bytes of memory and sets A% equal to the address of the first
byte. Thus A%?O to A%?67 are free for use by the program (68 bytes in all):

DIM A% 6 7

BBC BAS|C(280) Reference Manual for 288, 2nd edition 91

A 'DIM space' error will occur if a size of less than -1 is used (DIM P% -2). DIM P%-1 is a
special case; it reserves zero bytes of memory. This is of more use than you might think,
since it tells you the limit of the dynamic variable allocation. Thus,

DIM P% - l

PRINT HIMEM-P%

is the equivalent of PRINT FREE(O) in some other versions of BASIC. See also EXT#-1.
See the Assembler section for a more detailed description of the use of DIM for reserving
memory for machine code programs.

Syntax
DIM <n—var> | <s—var> (<numeric>{ , <numer ic>})

DIM <r1—var> <numeric>

Associated Keywords

CLEAR

BBC BAS|C(280) Reference Manual for 288, 2nd edition 92

DIV
A binary operation giving the integer quotient of two items. The result is always an integer.

X=A DIV B

y= (top+bo t tom+ l) DIV 2

You can use this function to give the 'whole number' part of the answer to a division. For
example,

2 1 DIV 4

would give 5 (with a 'remainder' of 1).

Whilst it is possible to use DIV with real numbers, it is really intended for use with integers. If you
do use real numbers, BBC BAS|C(280) converts them to integers by truncation before DIViding
them.

Syntax
<n—var>=<numeric> DIV <numeric>

Associated Keywords
MOD

BBC BAS|C(280) Reference Manual for 288, 2nd edition 93

DRAW
Draws a straight line (in black) between the current position of the graphics cursor and the
specified coordinates, then moves the graphics cursor to the specified position. This statement is
identical to PLOT 5,x,y.

This statement is available when installed with 288 Patch via CHAIN command.
See “Installing Z88 Patch” section previously in this guide, on how to obtain the Z88 Patch.

Available by default when BBC BAS|C(280) is used with 288 ROM release V4.3 and later.

Syntax

DRAW <numeric> , <numeric>

Associated Keywords

PLOT, MODE

BBC BAS|C(280) Reference Manual for 288, 2nd edition 94

*EDIT (*E.)
This command allows you to edit a specified program line. It results in the line being displayed with
the cursor positioned at the end, and you can then edit the line using any of the usual line-editing
features on the 288.

To enter the edited line into the program press ENTER; to abandon the edit and leave the line
unchanged press ESC.

You can also use *EDIT to concatenate two or more program lines, by specifying the first line and
last line separated by commas (e.g. *EDIT 10,30). This process will stop when the concatenated
line length exceeds 255. You will have to edit out the line numbers of the second and subsequent
lines (and delete the old lines afterwards).

*EDIT may be abbreviated to *E. (the dot is required).

This statement is available when installed with 288 Patch via CHAIN command.

See “Installing 288 Patch” section previously in this guide, on how to obtain the Z88 Patch.
Available by default when BBC BASIC(Z80) is used with 288 ROM release V4.3 and later.

Syntax

*EDIT <l—num>

*EDIT <l—num>, <l—num>

Associated Keywords

DELETE, LIST, OLD, NEW

BBC BAS|C(280) Reference Manual for 288, 2nd edition 95

ELSE(ELJ
A statement delimiter which provides an alternative course of action in |F...THEN, ON...GOSUB,
ON...GOTO and ON...PROC statements. In an IF statement, if the test is FALSE, the statements
after ELSE will be executed. This makes the following work:

IF A=B THEN B=C ELSE B=D

IF A=B THEN B=C:PRINT"WWW" ELSE B=D:PRINT"QQQ"

IF A=B THEN B=C ELSE IF A=C THEN

In a multi statement line containing more than one IF, the statement(s) after the ELSE delimiter will
be actioned if ANY of the tests fail. For instance, the example below would print the error message
'er$' if 'x' did not equal 3 OR if 'a' did not equal 'b'.
IF x=3 THEN IF a=b THEN PRINT a$ ELSE PRINT er$
If you want to 'nest' the tests, you should use a procedure call. The following example would print
'Bad' ONLY if x was equal to 3 AND 'a' was not equal to 'b'.

IF x=3 THEN PROC_ab_test

DEF PROC_ab_test

I F a=b THEN PRINT a $ E L S E PRINT e r $

ENDPROC

You can use ELSE with ON...GOSUB, ON...GOTO and ON...PROC statements to prevent an out
of range control variable causing an 'ON range' error.

ON act ion GOTO 100, 2 0 0 , 300 ELSE PRINT "Er ro r "
ON number GOSUB 1 0 0 , 2 0 0 , 3 0 0 ELSE PRINT " E r r o r "

ON va lue PROCa,PROCb,PROCC ELSE PRINT " E r r o r "

Syntax
IF <t—cond> THEN <stmt> ELSE <stmt>

ON <n—var> GOTO < l—num>{ ,< l—num>} ELSE <s tmt>

ON <n—var> GOSUB < l—num>{ ,< l—num>} ELSE <s tmt>

ON <n—var> PROC<name>{,PROC<name>} ELSE <s tmt>

Associated Keywords

IF, THEN, ON

BBC BAS|C(280) Reference Manual for 288, 2nd edition 96

END
A statement causing the interpreter to return to direct mode. There can be any number (>=0) of
END statements anywhere in a program. END closes all open data files.

END tells BBC BAS|C(280) that it has reached the end of the program. You don't have to use
END, just 'running out of program' will have the same effect, but it's a bit messy.

You can use END within, for instance, an |F...THEN...ELSE statement to stop your program if
certain conditions are satisfied. You should also use END to stop BBC BAS|C(280) 'running into
any procedure or function definitions at the end of your program.

Syntax
EN D

Associated Keywords
STOP

BBC BAS|C(280) Reference Manual for 288, 2nd edition 97

ENDPROC
A statement denoting the end of a procedure.

All local variables and the dummy arguments are restored at ENDPROC and the program returns
to the statement after the calling statement.

Syntax
EN DPROC

Associated Keywords
DEF, FN, PROC, LOCAL

BBC BAS|C(280) Reference Manual for 288, 2nd edition 98

ENVELOPE
A statement which is used, in conjunction with the SOUND statement, to control the pitch of a
sound whilst it is playing.

Not available on the 288

BBC BAS|C(280) Reference Manual for 288, 2nd edition 99

EOF#
A function which will return -1 (TRUE) if the data file whose file handle is the argument is at,
or beyond, its end. In other words, when PTR# points beyond the current end of the file.
When reading a serial file, EOF# would go true when the last byte of the file had been read.

EOF# is only true if PTR# is set beyond the last byte written to the file. It will NOT be true if an
attempt has been made to read from an empty block of a sparse random access file. Because of
this, it is difficult to tell which records of a random access file have had data written to them. These
files need to be initialised and the unused records marked as empty.

Writing to a byte beyond the current end of file updates the file length immediately, whether the
record is physically written to the disk at that time or not. However, the file must be closed in order
to ensure that all the data written to it is physically written to the file.

If you attempt to read beyond the current end of file, you will get an ‘End Of file’ error.

In an unexpanded 288, BBC BAS|C(280) has a workspace of 8Kbytes. In an expanded 288
(containing at least 128Kbytes in slot 0 or 1) the workspace is increased to 4OKbytes.

EOF#-1 returns TRUE for an expanded machine and FALSE for an unexpanded machine.

Syntax
<n—var>=EOF# (<numeric>)

Associated Keywords
OPENIN, OPENUP, OPENOUT, CLOSE#, PRINT#, |NPUT#, BPUT#, EXT#, PTR#

BBC BAS|C(280) Reference Manual for 288, 2nd edition 100

EOR
The operation of bitwise integer logical exclusive-or between two items. The two operands are
internally converted to 4 byte integers before the EOR operation. EOR will return a non-zero result
if the two items are different.

X=B EOR 4
IF A=2 EOR B=3 THEN 110

You can use EOR as a logical operator or as a 'bit-by-bit' (bitwise) operator. The operands can be
boolean (logical) or numeric.

Unfortunately, BBC BASIC does not have true boolean variables; it uses numeric variables and
assigns the value 0 for FALSE and -1 for TRUE. This can lead to confusion at times. (See NOT for
more details.)

In the example below, the operands are boolean (logical) and the result of the tests (IF) A=2 and
(IF) B=3 is either TRUE or FALSE.

The result of this example will be FALSE if A=2 and B=3 or A<>2 and B<>3. In other words, the
answer will only be TRUE if the results of the two tests are different.

answer : (A=2 EOR B = 3)

The brackets are not necessary, they have been included to make the example easier to follow.

The last example uses EOR in a similar fashion to the numeric operators (+, -, etc).

A=X EOR 11

Suppose X was -20, the EOR operation would be:

11111111 11111111 11111111 11101100
00000000 00000000 00000000 00001011
l l l l l l l l 11111111 11111111 11100111 = —25

Syntax
<n—var>=<numeric> EOR <numeric>

Associated Keywords
NOT, AN D, OR

BBC BAS|C(280) Reference Manual for 288, 2nd edition 101

ERL
A function returning the line number of the line where the last error occurred.

X=ERL

If there was an error in a procedure call, the line number of the calling line would be returned, not
the line number of the definition.

The number returned by ERL is the line number printed out when BBC BAS|C(280) reports an
error.

See the Error Handling sub-section for more information on error handling and correction.

Syntax

<n—var>=ERL

Associated Keywords

ON ERROR GOTO, ON ERROR OFF, REPORT, ERR

BBC BAS|C(280) Reference Manual for 288, 2nd edition 102

ERR
A function returning the error code number of the last error which occurred (see the Annex
entitled Error Messages and Codes).

X=ERR

Once you have assumed responsibility for error handling using the ON ERROR statement,
you can use this function to discover which error occurred.

See the Error Handling sub-section for more information on error handling and correction.

Syntax

<n—var>=ERR

Associated Keywords

ON ERROR GOTO, ON ERROR OFF, ERL, REPORT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 103

EVAL (EV.)
A function which applies the interpreter's expression evaluation program to the characters
held in the argument string.

X=EVAL ("X"Q+YAP")
X=EVAL"A$+B$"
X$=EVAL (A$)

In effect, you pass the string to BBC BAS|C(280)'s evaluation program and say 'work this
out'.

You can use this function to accept and evaluate an expression, such as a mathematical equation,
whilst the program is running. You could, for instance, use it in a 'calculator' program to accept and
evaluate the calculation you wished to perform. Another use would be in a graph plotting program
to accept the mathematical equation you wished to plot.

The example below is a 'bare bones' calculator program which evaluates the expression typed in
by the user.

10 PRINT "Th is program evaluates the express ion"

2 0 PRINT " y o u type in and p r in ts the a n s w e r "

3 0 REPEAT

40 INPUT "Enter an expression" exp$
50 IF exp$<>"END" PRINT EVAL exp$
6O UNTIL exp$="END"
7O END

You can only use EVAL to work out functions (like SIN, COS, etc). It won't execute
statements like MODE 0, PRINT, etc.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 104

In the following example, EVAL would print ‘Hello world!‘ if you entered ‘FN_FRED’ in
response to the prompt. The program will continue until an error occurs (pressing [ESC] for
example).

10 REPEAT
2 0 INPUT “Enter an exp ress ion : “ , a $
3 0 PRINT EVAL a $
4O UNTIL FALSE
5 0 :
6O DEF FN _FRED
70 PRINT “Hello Wor ld ! "
80 = - l

Example run (user entry in bold):
>RUN [ENTER]
Enter an express ion : 2*5[ENTER]

10

Enter an express ion : FN_FRED[ENTER]
Hello Wor ld !

Enter an express ion : JIM[ENTER]
No such variable a t line 2 0
>

Syntax

<n—var>=EVAL(<s t r>)

< s — v a r > = E V A L (< s t r >)

Associated Keywords
STR$, VAL

BBC BAS|C(280) Reference Manual for 288, 2nd edition 105

EXP
A function returning 'e' to the power of the argument. The argument must be < 88.7228392.
The 'natural' number, 'e', is approximately 2.71828183.

Y=EXP (Z)

This function can be used as the 'anti-log' of a natural logarithm. Logarithms are 'traditionally'
used for multiplication (by adding the logarithms) and division (by subtracting the
logarithms). For example,

10 l og l=LN(2 .5)
2 0 l o g 2 = L N (2)

30 log3=logl+log2
4 0 answer=EXP(log3)

5 0 PRINT answer

will calculate 2.5*2 by adding their natural logarithms and print the answer.

Syntax
<n—var>=EXP (<numeric>)

Associated Keywords
LN, LOG

BBC BAS|C(280) Reference Manual for 288, 2nd edition 106

EXT#
A function which returns the total length of the file whose file handle is its argument.

length=EXT#f_num

In the case of a sparse random-access file, the value returned is the complete file length
from byte zero to the last byte written. This may well be greater than the actual amount of
data in the file, but it is the amount of disk space allocated to the file by the 288’s operating
system.

The file must have been opened before EXT# can be used to find its length.

EXT#-1 returns an estimate of the amount of free memory in the 288. See the Annex entitled
‘Format of Program and Variables in Memory’ for more details.

Free memory is available to the device :RAM. — and to applications (such as PipeDream), but not
necessarily to the RAM filing system. Consequently, you cannot reliably use EXT#-1 to discover
how much space is left in the current filing system device. (:RAM. 0 for example).

Syntax

<n—var>=EXT# (<numeric>)

Associated Keywords

OPENIN, OPENUP, OPENOUT, CLOSE#, PRINT#, |NPUT#, BPUT#, BGET#, PTR#,
EOF#

BBC BAS|C(280) Reference Manual for 288, 2nd edition 107

FALSE (FA.)
A function returning the value zero.

10 f lag=FALSE

20 m
150 IF f l a g . . .

BBC BAS|C(280) does not have true Boolean variables. Instead, numeric variables are used and
their value is interpreted in a 'logical' manner.

A value of zero is interpreted as FALSE and NOT FALSE (in other words, NOT 0) is interpreted as
TRUE. In practice, any value other than zero is considered TRUE.

You can use FALSE in a REPEAT....UNT|L loop to make the loop repeat forever. Consider the
following example.

10 terminator=10
20 REPEAT: PRINT "An endless loop" : UNTIL terminator=0

Since 'terminator' will never be zero, the result of the test 'terminator=0' will always be FALSE.
Thus, the following example has the same effect as the previous one.

10 REPEAT: PRINT "An endless l o o p " : UNTIL FALSE

Similarly, since FALSE=0, the following example will also have the same effect, but its meaning is
less clear.

10 REPEAT: PRINT "An endless l o o p " : UNTIL 0

See the keyword AND for logical tests and their results.

Syntax
<n—var>=FALSE

Associated Keywords

TRUE, EOR, OR, AND, NOT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 108

FN
A keyword used at the start of all user declared functions. The first character of the function
name can be an underline (or a number)

If there are spaces between the function name and the opening bracket of the parameter list (if
any) they must be present both in the definition and the call. It's safer not to have spaces between
the function name and the opening bracket.

A function may be defined with any number of parameters of any type, and may return (using =) a
string or numeric result. It does not have to be defined before it is used.

A function definition is terminated by '=' used in the statement position.

The following examples show the '=' as part of a program line and at the start of a line. The first
two examples are single line function definitions.

DEF FN_mean(Ql,Q2,Q3,Q4)=(Q1+Q2+Q3+Q4) / 4
DEF FN_fact(N) IF N<2 =1 ELSE =N*FN_fact(N-1)

DEF FN_reverse(A$)
LOCAL B$,Z%
FOR Z % = l TO L E N (A $)

B$=MID$(A$,Z%,1)+B$
NEXT

=B$

Functions are re-entrant and the parameters (arguments) are passed by value.

You can write single line, multi statement functions so long as you have a colon after the definition
statement.

The following function sets the print control variable to the parameter passed and returns a null
string. It may be used in a PRINT command to change the print control variable (@%) within a print
list.

DEF FN_pf0rmat (N) : @ % = : = u n

BBC BAS|C(280) Reference Manual for 288, 2nd edition 109

Functions have to return an answer, but the value returned by this function is a null string.
Consequently, its only effect is to change the print control variable.

Thus the PRINT statement
PRINT FN_pformat (&9OA) X FN_p fo rmat (&2020A) Y

will print X in G9210 format and Y in F2210 format. See the keyword PRINT for print format
details.

Syntax
<n—var> | <s—var>=FN<name>[(< e x p > { , < e x p > })]

DEF FN<name>[(<n—Var> | < s — v a r > { , < n — v a r > | < s — v a r > })]

Associated Keywords
ENDPROC, DEF, LOCAL

BBC BAS|C(280) Reference Manual for 288, 2nd edition 110

FOR (F.)
A statement initialising a FOR...NEXT loop. The loop is executed at least once.

FOR temperature%=0 TO 9

FOR A (2 , 3 , 1) = 9 TO 1 STEP - 0 . 3

The FOR...NEXT loop is a way of repeating a section of program a set number of times. For
example, the two programs below perform identically, but the second is easier to
understand.

10 s t a r t = 4 : end=20: s tep=2

20 counter=start
3 0 PRINT coun te r , " " , c o u n t e r A Z

4O counter=counter+step

5 0 IF counter<=end THEN 3O

6O . . .

10 s t a r t = 4 : end=20: step=2
20 FOR counter=start TO end STEP step
3 0 PRINT c o u n t e r , " " , c o u n t e r A Z

4 0 NEXT

50 . . .

You can GOTO anywhere within one FOR...NEXT loop, but not outside it. This means you
can't exit the loop with a GOTO. You can force a premature end to the loop by setting the
control variable to a value equal to or greater than the end value (assuming a positive
STEP)

110 FOR I=l TO 2 0

120 X=AAI

130 IF X > l O O O THEN I = 2 0 : GOTO 150

1 4 0 PRINT I , X

150 NEXT

It is not necessary to declare the loop variable as an integer type in order to take advantage
of fast integer arithmetic. If it is an integer, then fast integer arithmetic is used automatically.
See Annex E for an explanation of how BBC BAS|C(280) recognises an integer value of a
real variable.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 111

Any numeric assignable item may be used as a control variable. In particular, a byte variable (?X)
may act as the control variable and only one byte of memory will be used. See the Indirection
sub-section for details of the indirection operators.

DIM X 0
FOR ?X=O TO 1 6 : PRINT ~ ? X : NEXT
DIM X 3
FOR !X=O TO 16 STEP 4 : PRINT ~ ! X : NEXT

Because a single stack is used, you cannot use a FOR...NEXT loop to set array elements to
LOCAL in a procedure or function.

Syntax
FOR <n—var>=<numeric> T O <numeric> [S T E P <numeric>]

Associated Keywords

TO, STEP, NEXT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 112

GCOL (GC.)
A statement which sets the graphics foreground or background logical colour to be used in all
subsequent graphics operations.

Not available on the 288

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 113

GET/GET$
A function and compatible string function that reads the next character from the keyboard
buffer (it waits for the character).

N=GET
N$=GET$

GET and GET$ wait for a 'key' (character) to be present in the keyboard buffer and then
return the ASCII number of the key (see Annex A) or a string containing the character of the
key. If there are any characters in the keyboard buffer when 3 GET is issued, then a
character will be returned immediately. See the keyword INKEY for a way of emptying the
keyboard buffer before issuing a GET.

GET and GET$ do not echo the pressed key to the screen. If you want to display the character for
the pressed key, you must PRINT it.

You can use GET and GET$ whenever you want your program to wait for a reply before
continuing. For example, you may wish to display several screens of instructions and allow the
user to decide when he has read each screen.

REM F i r s t sc reen o f ins t ruc t ions

CLS

PRINT

PRINT " P r e s s any key t o continue " ;

temp=GET

REM Second screen o f instruct ions
CLS

The values returned by the cursor and other ‘special’ keys are listed below. Many of the keys
return 2 bytes, a zero byte followed by another value.

Keys Normal with with with

Codes [SHIFT] 0 El
[ENTER] 13 0,209 0,193 0,177
[TAB] 9 0,210 0,194 0,178
[DEL] 127 0,211 0,195 0,179

<::- 0,252 0,248 0,244 0,240
=> 0,253 0,249 0,245 0,241
11- 0,254 0,250 0,246 0,242
1? 0,255 0,251 0,247 0,243
£ 163 126 (-) 30 158
= 61 43 0,0 Nothing
[5 PACE] 32 32 160 32
‘ 39 35 (“) 96 Nothing

BBC BAS|C(280) Reference Manual for 288, 2nd edition 114

GET can also be used to input data from an |/O port. Full 16-bit port addressing is available :

N=GET(X) :REM input f rom p o r t X

This is an addition to the original language specification.

Syntax
<n—var>=GET

<n—var>=GET(<numeric>)
<s—var>=GET$

Associated Keywords
PUT, INKEY, |NKEY$

BBC BAS|C(280) Reference Manual for 288, 2nd edition 115

GOSUB
A statement which calls a section of a program (which is a subroutine) at a specified line number.
One subroutine may call another subroutine (or itself).

GOSUB 4 0 0
GOSUB (4 * a n s w e r + 6)

The only limit placed on the depth of nesting is the room available for the stack.

You may calculate the line number. However, if you do, the program should not be RENUMBERed.
A calculated value must be placed in brackets.

Very often you need to use the same group of program instructions at several different places
within your program. It is tedious and wasteful to repeat this group of instructions every time you
wish to use them. You can separate this group of instructions into a small sub-program. This
sub-program is called a subroutine. The subroutine can be 'called' by the main program every time
it is needed by using the GOSUB statement. At the end of the subroutine, the RETURN statement
causes the program to return to the statement after the GOSUB statement.

Subroutines are similar to PROCedures, but they are called by line number not by name. This can
make the program difficult to read because you have no idea what the subroutine does until you
have followed it through. You will probably find that PROCedures offer you all the facilities of
subroutines and, by choosing their names carefully, you can make your programs much more
readable.

Syntax
GOSUB <l—num>

GOSUB (<numeric>)

Associated Keywords
RETURN, ON, PROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 116

GOTO (G.)
A statement which transfers program control to a line with a specified or calculated line number.

GOTO l O O
GOTO (X * l O)

You may not GOTO a line which is outside the current FOR...NEXT, REPEAT...UNT|L or GOSUB
loop.

If a calculated value is used, the program should not be RENUMBERed. A calculated value must
be placed in brackets.

The GOTO statement makes BBC BASIC(Z80) jump to a specified line number rather than
continuing with the next statement in the program.

You should use GOTO with care. Uninhibited use will make your programs almost impossible to
understand (and hence, debug). If you use REPEAT....UNT|L and FOR....NEXT loops you will not
need to use many GOTO statements.

Syntax

GOTO <l—num>

GOTO (<numeric>)

Associated Keywords
GOSUB, ON

BBC BAS|C(280) Reference Manual for 288, 2nd edition 117

HIMEM
A pseudo-variable which contains the address of the first byte that BBC BASIC(280) will not
use.

HIMEM must not be changed within a subroutine, procedure, function, FOR...NEXT,
REPEAT...UNT|L or GOSUB loop.

H IMEM=HIMEM- 4 0

BBC BASIC(ZBO) uses the computer's memory to store your program and the variables that
your program uses. The default value of HIMEM is the highest memory address available for
use by BBC BASIC(280). On an expanded 288 (one containing at least 128 Kbytes of RAM
in slot 0 or 1) HIMEM is initially set to &COOO. On an unexpanded 288, it is set to &4000.
In an unexpanded 288, BBC BASIC(Z80) has a workspace of 8 Kbytes. In an expanded
288, the workspace is increased to 40 Kbytes.

If you want to use a machine code subroutine or store some data for use by a CHAINed program,
you can move HIMEM down. This protects the area above HIMEM from being overwritten by BBC
BASIC(280). See the Assembler section and the keyword CHAIN for details.

If you want to change HIMEM, you should do so early in your program. Once it has been changed
it will stay at its new value until set to another value. Thus, if you wish to load a machine code
subroutine for use by several programs, you only have to change HIMEM and load the subroutine
once.

USE WITH CARE.

Syntax

HIMEM=<numeric>

<n—var>=HIMEM

Associated Keywords
LOMEM, PAGE, TOP

BBC BASIC(280) Reference Manual for 288, 2nd edition 118

IF
A statement which sets up a test condition which can be used to control the subsequent flow
of the program. It is part of the |F....THEN....ELSE structure.

IF length=5 THEN 110

IF A<C OR A>D GOTO 110

IF A>C AND C>=D THEN GOTO 110 ELSE PRINT "BBC"

IF A>Q PRINT"IT IS GREATER":A=1:GOTO 120

The word THEN is optional under most circumstances.

The IF statement is the primary decision making statement. The testable condition (A=B, etc) is
evaluated and the answer is either TRUE or FALSE. If the answer is TRUE, the rest of the line (up
to the ELSE clause if there is one) is executed. The '=' sign has two meanings. It can be used to
assign a value to a variable or as part of a test. The example shows the two uses in one program
line.

A=B=C

In English this reads "A becomes equal to the result of the test B=C". Thus if B does equal
C, A will be set to TRUE (-1). However, if B does not equal C, A will be set to FALSE (0). The
example below is similar, but A will be set to TRUE (-1) if 'age' is less than 21.

A=age<21

Since the IF statement evaluates the testable condition and acts on the result, you can use a
previously set variable name in place of the test. The two examples below will print 'Under
21' if the value of 'age' is less than 21.

IF age<21 THEN PRINT "Under 21"

f lag=age<21

IF f l a g THEN PRINT "Under 21"

Syntax
IF < t—cond> THEN < s t m t > { : < s t m t > } [ELSE < s t m t > { : < s t m t > }]

IF <exp> THEN < s t m t > { : < s t m t > } [ELSE < s t m t > { : < s t m t > }]
IF < t—Cond> GOTO <l—num> [ELSE <l—num>]

IF <exp> GOTO <l—num> [ELSE <l—num>]
IF <t—Cond> THEN <l—num> [ELSE <l—num>]
IF <exp> THEN <l—num> [ELSE <l—num>]

Associated Keywords

THEN, ELSE

BBC BAS|C(280) Reference Manual for 288, 2nd edition 119

INKEYIINKEY$
A function and compatible string function which does a GET/GET$, waiting for a maximum of
'num' clock ticks of 10ms each. If no key is pressed in the time limit, INKEY will return -1 and
|NKEY$ will return a null string. The INKEY function will return the ASCII value of the key
pressed.

key=INKEY (num)
N=INKEY (0)

N$=INKEY$ (100)

You can use this function to wait for a specified time for a key to be pressed. A key can be pressed
at any time before INKEY is used.

Pressed keys are stored in an input buffer. Since INKEY and |NKEY$ get a character from the
normal input stream, you may need to empty the input buffer before you use them. You can do this
with the following program line.

REPEAT UNTIL INKEY (O) =—1

The number in brackets is the number of 'ticks' (one hundredths of a second) which BBC
BAS|C(Z80) will wait for a key to be pressed. After this time, BBC BASIC(280) will give up
and return -1 or a null string. The number of 'ticks' may have any value between 0 and
32767.

INKEY with a negative argument is not available on the Z88.

Same key codes are returned as for GET. Please refer to GET reference for more details.

Syntax
<n—var>=INKEY (<numeric>)
<s—var>=INKEY$ (<numeric>)

Associated Keywords
GET, GET$

BBC BAS|C(280) Reference Manual for 288, 2nd edition 120

INPUT
A statement to input values from the console input channel (usually keyboard).

INPUT A, B, C, D$, "WHO ARE YOU" , W$, "NAME"R$

If items are not immediately preceded by a printable prompt string (even if null) then a '?' will
be printed as a prompt. If the variable is not separated from the prompt string by a comma,
the '?' is not printed. In other words: no comma - no question mark.

Items A, B, C, D$ in the above example can have their answers returned on one to four lines,
separate items being separated by commas. Extra items will be ignored.

Then WHO ARE YOU? is printed (the question mark comes from the comma) and W$ is input,
then NAME is printed and R$ is input (no comma - no '? ').

When the [ENTER] key is pressed to complete an entry, a new-line is generated. BBC BASIC has
no facility for suppressing this new-line, but the TAB function can be used to reposition the cursor.
For example,

INPUT T A B (O , 5) "Name ? " N $, T A B (2 0 , 5) "Age ? " A

will position the cursor at column 0 of line 5 and print the prompt Name ?. After the name
has been entered the cursor will be positioned at column 20 on the same line and Age ? will
be printed. When the age has been entered the cursor will move to the next line.

The statement

INPUT A

is exactly equivalent to

INPUT A s : A=VAL(A$)

Leading spaces will be removed from the input line, but not trailing spaces. If the input string
is not completely numeric, it will make the best it can of what it is given. If the first character
is not numeric, 0 will be returned. Neither of these two cases will produce an error indication.
Consequently, your program will not abort back to the command mode if a bad number is
input. You may use the EVAL function to convert a string input to a numeric and report an
error if the string is not a proper number or you can include your own validation checks.

INPUT A$
A=EVAL (A$)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 121

Strings in quoted form are taken as they are, with a possible error occurring for a missing
closing quote.

A semicolon following a prompt string is an acceptable alternative to a comma.

Syntax
INPUT [TAB (X [, Y])] [S P C (<numer i c>)] ['] [< s — C o n s t > [, | ;]]

<n—var> | < s — v a r > { , <n—var> | < s — v a r > }

Associated Keywords

INPUT LINE, |NPUT#, GET, INKEY

BBC BAS|C(280) Reference Manual for 288, 2nd edition 122

INPUT LINE
A statement of identical syntax to INPUT which uses a new line for each item to be input.
The item input is taken as is, including commas, quotes and leading spaces.

INPUT LINE A s

Syntax
INPUT L I N E [T A B (X [, Y])] [S P C (< n u m e r i c >)] ['] [< s — c o n s t > [, | ;]]

< s — v a r > { , < s — v a r > }

Associated Keywords
IN PUT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 123

INPUT#
A statement which reads data in internal format from a file and puts them in the specified
variables.

INPUT # E , A , B , C , D $, E $, F$
INPUT # 3 , aux$

It is possible to read past the end-of—file without an error being reported. You should always
include some form of check for the end of the file.

READ# can be used as an alternative to INPUT#.

Whilst BBC BASIC(280) stores numbers in internal format, text is stored in the usual way as a
string of characters followed by a carriage-return. Consequently, you can use the INPUT#
command to read text from, say, a PipeDream file.

See the ‘BBC BASIC(280) Files’ section for more details and numerous examples of the use of
INPUT#.

Syntax
INPUT #<numeric>, <n—var> | < s — v a r > { , <n—var> | < s — v a r > }

Associated Keywords

INPUT, OPENIN, OPENUP, OPENOUT, CLOSE#, PRINT#, BPUT#, BGET#, EXT#, PTR#,
EOF#

BBC BASIC(280) Reference Manual for 288, 2nd edition 124

INSTR
A function which returns the position of a sub-string within a string, optionally starting the
search at a specified place in the string. The leftmost character position is 1. If the sub-string
is not found, 0 is returned.

The first string is searched for any occurrence of the second string.

There must not be any spaces between INSTR and the opening bracket.

X = I N S T R (A $, B $)

posit ion=INSTR(word$,guess$)
Y = I N S T R (A $, B $, Z %) :REM START AT POSITION Z%

You can use this function for validation purposes. If you wished to test A$ to see if was one
of the set 'FRED BERT JIM JOHN', you could use the following:

set$="FRED BERT JIM JOHN"
IF I N S T R (s e t $, A $) PROC_Valid ELSE PROC_invalid

The character used to separate the items in the set must be excluded from the characters
possible in A$. One way to do this is to make the separator an unusual character, say
CHR$(127).

z$=CHR$ (1 2 7)

set$="FRED"+z$+"BERT"+z$+"JIM"+z$+"JOHN"

Syntax

<n—var>=INSTR (<s t r> , <s t r> [, <numer ic>])

Associated Keywords

LEFT$, M|D$, RIGHT$, LEN

BBC BAS|C(280) Reference Manual for 288, 2nd edition 125

INT
A function truncating a real number to the lower integer.

X=INT(Y)

INT (9 9 . 8) = 9 9
INT (—12) =—12
INT (—12 . l) = — l 3

This function converts a real number (one with a decimal part) to the nearest integer (whole
number) less than the number supplied. Thus,

INT(14.56)

gives 14, whereas

INT (—14.5)

gives -15.

Syntax

<n—var>=INT<numeric>

Associated Keywords

None

BBC BAS|C(280) Reference Manual for 288, 2nd edition 126

LEFT$
A string function which returns the left 'num' characters of the string. If there are insufficient
characters in the source string, all the characters are returned.

There must not be any spaces between LEFT$ and the opening bracket.

newstring$=LEFT$ (A$, num)
A$=LEFT$ (A$, 2)
A $ = L E F T $ (R I G H T $ (A $, 3) , 2)

For example,

10 name$="BBC B A S I C (Z 8 0) "

2 0 FOR i=3 TO LEN(name$)

3 0 PRINT L E F T $ (n a m e $, i)

4 0 NEXT

5 0 END

would print

BBC
BBCB
BBCBA
BBCBAS
BBCBASI
BBC BASIC
BBC B A S I C (
BBC B A S I C (Z
BBC B A S I C (Z 8
BBC B A S I C (Z 8 0
BBC B A S I C (Z 8 0)

Syntax

<s—var>=LEFT$(<str>,<numer ic>)

Associated Keywords

RIGHT$, M|D$, LEN, INSTR

BBC BAS|C(280) Reference Manual for 288, 2nd edition 127

LEN
A function which returns the length of the argument string.

X=LEN"fred"

X=LENA$
X=LEN(A$+B$)

This function 'counts' the number of characters in a string. For example,

length=LEN ("BBC BASIC (Z80) ")

would set 'Iength' to 17 since the string consists of the 14 characters of ‘BBC BASIC(280)’
followed by three spaces.

LEN is often used with a FOR....NEXT loop to 'work down' a string doing something with each
letter in the string. For example, the following program looks at each character in a string and
checks that it is a valid hexadecimal numeric character.

10 val id$="0123456789ABCDEF"
2 0 REPEAT

3O INPUT "Type in a HEX number" hex$
4O flag=TRUE

5 0 FOR i=1 TO L E N (h e X $)

6 0 IF I N S T R (V a l i d $, M I D $ (h e x $, i , l)) = O flag=FALSE

8 0 NEXT

9 0 IF NOT f lag THEN PRINT "Bad HEX"

100 UNTIL f lag

Syntax
<n—var>=LEN (< s t r >)

Associated Keywords
LEFT$, M|D$, RIGHT$, INSTR

BBC BAS|C(280) Reference Manual for 288, 2nd edition 128

LET
LET is an optional assignment statement.

LET is not permitted in the assignment of the pseudo-variables LOMEM, HIMEM, PAGE, PTR#
and TIME.

LET was mandatory in early versions of BASIC. Its use emphasised that when we write

X=X+4

we don't mean to state that X equals X+4 - it can't be, but rather 'Iet X become equal to what
it was plus 4':

LET X=X+4

Most modern versions of BASIC allow you to drop the 'LET' statement. However, if you are
writing a program for a novice, the use of LET makes it more understandable.

Syntax

[L E T] <var>=<exp>

Associated Keywords

None

BBC BAS|C(280) Reference Manual for 288, 2nd edition 129

LIST (L.)
A command which causes lines of the current program to be listed out to the screen with the
automatic formatting options specified by LISTO.

LIST lists the entire program
LIST , 111 lists up to line 111
LIST 111, lists from line 111 to the end
LIST 111, 222 lists lines 111 to 222 inclusive
LIST 100 lists line 100 only

A hyphen is an acceptable alternative to a comma.

The listing may be paused by pressing 0 and [SHIFT] keys together. With the standard CLI
active, the screen output will halt at the end of each page until the [SPACE] key is pressed.

Escape will abort the listing.

LIST may be included within a program, but it will exit to the command mode on completion of the
listing.

Syntax
L IST
L I S T <n—cons t>

L I S T < n — c o n s t > ,

L I S T , < n — c o n s t >

L I S T < n — c o n s t > , < n — c o n s t >

Associated Keywords
LISTO, OLD, NEW

BBC BAS|C(280) Reference Manual for 288, 2nd edition 130

LISTO
A command which controls the appearance of a LISTed program. The command controls the
setting of the three least significant bits of the format control byte which can, therefore, be
set to an integer 0 to 7 (0=a|| three bits 0, 7=a|| three bits 1).

Bit Settings

Bit 0 (L83)
If Bit 0 is set, a space will be printed between the line number and the remainder of the line.
(All leading spaces are stripped when the line is originally entered.)

Bit 1
If Bit 1 is set, two extra spaces will be printed out on lines between FOR and NEXT. Two
extra spaces will be printed for each depth of nesting.

Bit 2
If Bit 2 is set two extra spaces will be printed out on lines between REPEAT and UNTIL. Two
extra spaces will be printed for each depth of nesting.

The default setting of LISTO is 7. This will give a properly formatted listing. The indentation of the
FOR..NEXT and REPEAT..UNT|L lines is done in the correct manner, in that the NEXT is aligned
with the FOR and the REPEAT with the UNTIL.

LISTO 7

will give

10 A=20
2 0 TEST$="FRED"
3 0 FOR I=l TO A
4 0 Z = 2 A I
5 0 PRINT I , Z
6O REPEAT
7 0 PRINT TEST$
8O T E S T $ = L E F T $ (T E S T $, L E N (T E S T $) - l)
9 0 UNTIL L E N (T E S T $) = O

1 0 0 NEXT
110 END

BBC BAS|C(280) Reference Manual for 288, 2nd edition 131

at the other extreme

LISTO 0

lgNe

lOA=20
20TEST$="FRED"
3OFOR I=l TO A
4 O Z = 2 A I
50PRINT I , Z
6OREPEAT
7OPRINT TEST$

8 O T E S T $ = L E F T $ (T E S T $, L E N (T E S T $) - l)
90UNTIL L E N (T E S T $) = O

lOONEXT
l lOEND

and

LISTO 2

l g W e

10A=20
20TEST$="FRED"

30FOR I=l TO A
4 0 Z=2AZ

5 0 PRINT I , Z
6 0 REPEAT
7 0 PRINT TEST$
8 0 T E S T $ = L E F T $ (T E S T $, L E N (T E S T $) — l)
9O UNTIL L E N (T E S T $) = O

lOONEXT
l lOEND

Syntax
L I S T O < n — c o n s t >

Associated Keywords

HST

BBC BAS|C(280) Reference Manual for 288, 2nd edition 132

LN
A function giving the natural logarithm of its argument.

X=LN(Y)

This function gives the logarithm to the base 'e' of its argument. The 'natural' number, 'e', is
approximately 2.71828183.

Logarithms are 'traditionally' used for multiplication (by adding the logarithms) and division (by
subtracting the logarithms). For example,

10 l o g l = L N (2 . 5)
2 0 l o g 2 = L N (2)

3O log3=logl+log2
4O a n s w e r = E X P (l o g 3)

5 0 PRINT answer

will calculate 2.5*2 by adding their natural logarithms and print the answer.

Syntax
<n—var>=LN<numeric>

Associated Keywords
LOG, EXP

BBC BAS|C(280) Reference Manual for 288, 2nd edition 133

LOAD (L0.)
A command which loads a new program from a file and CLEARs the variables of the old
program. The program file must be in 'internal' (tokenised) format.

LOAD " PROGl "
LOAD A $

File names must conform to the standard Z88 format. If no device and/or path are given, the
current device and/or path are assumed. See the ‘Operating System Interface’ section for a
more detailed description of valid file names.

You use LOAD to bring a program in a file into memory. The keyword LOAD should be followed by
the name of the program file. If the program file is in the current directory, only the file name needs
to be given. If the program is not in the current directory, its full device, path and file name must be
specified. For example:

LOAD " :RAM. O/bbcprogs/demo"

would load the program 'demo' from the directory 'bbcprogs' on device :RAM. 0 .

Syntax

LOAD < s t r >

Associated Keywords

SAVE, CHAIN

BBC BAS|C(280) Reference Manual for 288, 2nd edition 134

LOCAL
A statement to declare variables for local use inside a function (FN) or procedure (PROC). A
null list of variables is not permitted.

LOCAL A$, x , Y%

LOCAL saves the values of its arguments in such a way that they will be restored at '=' or
ENDPROC.

If a function or a procedure is used recursively, the LOCAL variables will be preserved at each
level.

The LOCAL variables are initialised to zero/null.

See the keyword ON ERROR LOCAL for details of local error trapping.

Syntax

LOCAL <n—var> | < s - v a r > { , <n—var> | < s — v a r > }

Associated Keywords

DEF, ENDPROC. FN, PROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 135

LOG
A function giving the base-1O logarithm of its argument.

X = LOG (Y)

This function calculates the common (base 10) logarithm of its argument. Inverse logarithms
(anti-logs) can be calculated by raising 10 to the power of the logarithm. For example, if
x=LOG(y) then y=10"x.

Logarithms are 'traditionally' used for multiplication (by adding the logarithms) and division (by
subtracting the logarithms). For example,

10 l og l=LOG(2 .5)
20 log2=LOG(2)
3O log3=logl+log2
4O answer= lOA log3

5 0 PRINT answer

Syntax
<n—var>=LOG<numeric>

Associated Keywords
LN, EXP

BBC BAS|C(280) Reference Manual for 288, 2nd edition 136

LOMEM
A pseudo-variable which controls where in memory the dynamic data structures are to be
placed. The default is TOP, the first free address after the end of the program.

LOMEM=LOMEM+ l O 0

PRINT ~LOMEM :REM The ~ makes i t pr int in HEX.

Normally, dynamic variables are stored in memory immediately after your program. (See the
Annex entitled ‘Format of Program and Variables in Memory’.) You can change the address
where BBC BASIC(280) starts to store these variables by changing LOMEM.

USE WITH CARE.

Changing LOMEM in the middle of a program causes BBC BAS|C(Z80) to lose track of all the
variables you are using.

Syntax

LOMEM=<numeric>

<n—var>=LOMEM

Associated Keywords

HIMEM, TOP, PAGE

BBC BAS|C(280) Reference Manual for 288, 2nd edition 137

MID$
A string function which returns 'num' characters of the string starting from character 'start_posn'. If
'num' is not present or if there are insufficient characters in the string, then all the characters from
'start_posn' onwards are returned.

C$=MID$ (A $, s tar t_posn, num)

C$=MID$ (A$, Z)

You can use this function to select any part of a string. For instance, if

name$="BBC BASIC (Z 8 0) "
then

part$=MID$ (name$, 4 , 5)

would assign ‘BASIC’ to part$. If the last number is omitted or there are insufficient characters to
the right of the specified position, M|D$ returns with the right hand part of the string starting at the
specified position. Thus,

part$=MID$ (name$, 9)

would assign ‘(280)’ to part$.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 138

For example,

10 name$="BBC B A S I C (Z 8 0) "
2 0 FOR i=1 TO LEN(name$)

3 0 PRINT M I D $ (n a m e $, i , l O)

4 0 NEXT

would print

BBC B A S I C (
BC B A S I C (Z
C B A S I C (Z 8

B A S I C (Z 8 O
B A S I C (Z 8 0)

A S I C (Z 8 0)
S I C (2 8 0)
I C (Z 8 0)
C (Z 8 0)
(Z 8 0)
Z 8 0)
8 0)

0)
)

Syntax
< s — v a r > = M I D $ (< s t r > , < n u m e r i c > [, < n u m e r i c >])

Associated Keywords
LEFT$, RIGHT$, LEN, INSTR

BBC BAS|C(280) Reference Manual for 288, 2nd edition 139

MOD
A binary operation giving the signed remainder of the integer division.

X=A MOD B

MOD is defined such that,

A M O D B = A — (A D I V B) * B .

If you are doing integer division (DIV) of whole numbers it is often desirable to know the remainder.
(A 'teach children to divide' program for instance.) For example, 23 divided by 3 is 7, remainder 2.
Thus,

10 PRINT 2 3 DIV 3
2 0 PRINT 2 3 MOD 3

would print

You can use real numbers in these calculations, but they are truncated to their integer part before
BBC BAS|C(280) calculates the result. Thus,

10 PRINT 2 3 . 1 DIV 3 . 9
2 0 PRINT 2 3 . 1 MOD 3 . 9

would give exactly the same results as the previous example.

Syntax
<n—var>=<numeric> MOD <numeric>

Associated Keywords
DIV

BBC BAS|C(280) Reference Manual for 288, 2nd edition 140

MODE (M0.)
The MODE statement allows selection of the normal text-only mode (MODE 0) or a text-and-
graphics mode (MODE 1). In MODE 1 the display is split into two parts: a text-window on the left
and a graphics-window on the right. The text window consists of 8 rows of 50 characters, and the
graphics window is 64 pixels high by 256 pixels wide; you cannot (normally) mix text and graphics
in the same window.

Points in the graphics window are addressed as x,y coordinates from 0,0 (the bottom-left corner) to
255,63 (the top-right corner), although the origin can be moved using the PLOT -1 statement (q.v.).

Although MODE 1 sets up the window positions and sizes as described, it is possible to change
these using the VDU statement. However the method of doing this is outside the scope of this
reference guide. It is not advisable to cause the text and graphics windows to overlap, although
this may occasionally be useful.

MODE clears the display (both text and graphics windows), moves the text cursor to 0,0 (the top
left of the text window), resets the graphics origin and moves the graphics cursor to 0,0 (the bottom
left of the graphics window).

In MODE 0 (the normal 94-column text mode) the other graphics statements have no effect.

MODE cannot be used within a PROCedure, function, FOR..NEXT or REPEAT.. UNTIL loop.
Doing so will result in the 'Bad MODE' error (code 153).

MODE 1 changes the value of HIMEM address 2 Kbytes lower and MODE 0 changes the value of
HIMEM address 2 Kbytes higher (allocating and releasing a graphics buffer).

This statement is available when installed with 288 Patch via CHAIN command. See
“Installing 288 Patch” section previously in this guide, on how to obtain the 288 Patch.

Available by default when BBC BAS|C(280) is used with 288 ROM release V4.3 and later.

Syntax

MODE (<numeric>)

Associated Keywords

CLS,CLG

BBC BAS|C(280) Reference Manual for 288, 2nd edition 141

MOVE
Moves the graphics cursor to the specified coordinates, but does not affect what is displayed.

This statement is identical to PLOT 4,x,y.

This statement is available when installed with 288 Patch via CHAIN command. See
“Installing Z88 Patch” section previously in this guide, on how to obtain the Z88 Patch.

Available by default when BBC BASIC(Z80) is used with 288 ROM release V4.3 and later.

Syntax
MOVE <numeric> , <numeric>

Associated Keywords

DRAW, MODE, GCOL, PLOT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 142

NEW
A command which initialises the interpreter for a new program to be typed in. The old program may
be recovered with the OLD command provided no new program lines have been typed in or
deleted and no variables have been created.

NEW

This command effectively 'removes' a program from the computer's memory. In reality, the program
is still there, but BBC BAS|C(280) has been told to forget about it.

If you have made a mistake, you can recover your old program by typing OLD. However, this won't
work if you have begun to enter a new program.

Syntax

N EW

Associated Keywords
OLD

BBC BAS|C(280) Reference Manual for 288, 2nd edition 143

NEXT (N.)
The statement delimiting FOR...NEXT loops. NEXT takes an optional control variable.

NEXT
NEXT J

If the control variable is present then FOR...NEXT loops may be 'popped' automatically in
an attempt to match the correct FOR statement (this should not be necessary). If a matching
FOR statement cannot be found, a 'Can't match FOR' error will be reported.

Leaving out the control variable will make the program run quicker, but this is not to be
encouraged.

See the keyword FOR for more details about the structure of FOR....NEXT loops.

Syntax

NEXT [<n—var> { , < n — V a r > }]

Associated Keywords

FOR, TO, STEP

BBC BAS|C(280) Reference Manual for 288, 2nd edition 144

NOT
This is a high priority unary operator (the same priority as unary -). It causes a bit-by—bit binary
inversion of the numeric to its right. The numeric may be a constant, a variable, or a mathematical
or boolean expression. Expressions must be enclosed in brackets.

A=NOT 3
flag=NOT f lag
f lag=NOT(A=B)

NOT is most commonly used in an |F....THEN....ELSE statement to reverse the effect of the test.

IF NOT(ra te>5 AND TIME<lOO) THEN
IF NOT f lag THEN

BBC BAS|C(280) does not have true boolean variables; it makes do with numeric variables. This
can lead to confusion because the testable condition in an |F....THEN....ELSE statement is
evaluated mathematically and can result in something other than -1 (TRUE) or 0 (FALSE).

When the test in an |F....THEN....ELSE is evaluated, FALSE=O and anything else is considered to
be TRUE. If you wish to use NOT to reverse the action of an IF statement it is important to ensure
that the testable condition does actually evaluate to -1 for TRUE.

If the testable condition evaluates to 1, for example, the result of the test would be considered to
be TRUE and the THEN part of the |F....THEN....ELSE statement would be carried out. However,
using NOT in front of the testable condition would not reverse the action. NOT 1 evaluates to -2,
which would also be considered to be TRUE.

Syntax

<n—var>=NOT<numeric>

Associated Keywords

N ON E

BBC BAS|C(280) Reference Manual for 288, 2nd edition 145

OLD
A command which undoes the effect of NEW provided no lines have been typed in or
deleted, and no variables have been created.

OLD

OLD works even if BBC BAS|C(280) has been re-loaded and re-started from CP/M-80.
However, it will only work if no other programs have been run and BBC BAS|C(Z80) loads at
the same address as before.

Syntax
OLD

Associated Keywords
NEW

BBC BAS|C(280) Reference Manual for 288, 2nd edition 146

ON
A statement controlling a multi-way switch. The line numbers in the list may be constants or
calculated and the 'unwanted' ones are skipped without calculation. The ON statement is
used in conjunction with four other key-words: GOTO, GOSUB, PROC and ERROR. (ON
ERROR is explained separately.)

ON option GOTO 1 0 0 0 , 2 0 0 0 , 3 0 0 0 , 4 0 0 0
ON ac t ion GOSUB 1 0 0 , 3 0 0 0 , 2 0 0 , 5 0 0 0 , 3 0
ON choice PROC_add,PROC_find, PROC_delete

The ON statement alters the path through your program by transferring control to one of a
selection of line numbers depending on the value of a variable. For example,

200 ON number GOTO lOOO,2000 ,500 , lOO

would send your program to line 1000 if 'number' was 1, to line 2000 if 'number' was 2, to
line 500 if 'number' was 3 and to line 100 if 'number' was 4.

Exceptions may be trapped using the ELSE statement delimiter.

ON ac t ion GOTO 1 0 0 , 3 0 0 , 1 2 0 ELSE PRINT"I l legal"

If there is no statement after the ELSE, the program will 'drop through' to the following line if
an exception occurs. In the following two examples, the program would drop through to the
error handling part of the program if 'choice' or 'B-46' was less than one or more than 3.

ON choice PROC_add,PROC_find(a$),PROC_delete ELSE
PRINT "Il legal Choice — T r y again"

ON B - 4 6 GOSUB 1 0 0 , 2 0 0 , (C/ZOO) ELSE PRINT "ERROR"

You can use ON...GOTO, ON...GOSUB, and ON...PROC to execute the appropriate part of
your program as the result of a menu selection. The following skeleton example offers a
menu with three choices.

20 CLS
30 PRINT "SELECT THE ACTION YOU WISH TO TAKE"
40 PRINT " 1 OPEN A NEW DATA FILE"
5 0 PRINT " 2 ADD DATA TO THE FILE"

6 0 PRINT " 3 CLOSE THE FILE AND END" "

7 0 REPEAT

8 0 INPUT T A B (1 0 , 2 0) " W H A T DO YOU WANT ? "Choice

90 UNTIL choice>0 AND choice<4
100 ON choice PROC_open,PROC_add,PROC_close ELSE
110 e t c

BBC BAS|C(280) Reference Manual for 288, 2nd edition 147

Limitations

If a statement terminator (: or the token for ELSE) appears within the line, the interpreter
assumes that the ON... statement is terminated. For example, you cannot pass a colon as a
literal string parameter in an ON...PROC command. The program line

ON e n t r y P R O C _ s t a r t , P R O C _ a d d (" : ") , P R O C _ e n d

would be interpreted as

ON entry PROC_start ,PROC_add(":") ,PROC_end

and give rise to an interesting crop of error messages.

Syntax
ON <numeric> GOTO <l—num>{,< l—num>}

[ELSE < s t m t > { : < s t m t > }]

ON <numeric> GOSUB <l—num>{,<l—num>}
[ELSE < s t m t > { : < s t m t > }]

ON <numeric> P R O C < n a m e > [(< e x p > { , < e x p > })]
{ , PROC<name>[(< e x p > { , < e x p > })] }

[ELSE <s tmt>{ : < s t m t > }]

Associated Keywords
ON ERROR, ON ERROR LOCAL, GOTO, GOSUB, PROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 148

ON ERROR
A statement controlling error trapping. If an ON ERROR statement has been encountered,
BBC BASIC(ZBO) will transfer control to it (without taking any reporting action) when an error
is detected. This allows error reporting/recovery to be controlled by the program. However,
the program control stack is still cleared when the error is detected and it is not possible to
RETURN to the point where the error occurred.

ON ERROR OFF returns the control of error handling to BBC BASIC(Z80).

ON ERROR PRINT"SuiCide":END
ON ERROR GOTO 1 0 0
ON ERROR OFF

If there is an error in your error handling routine, your program will enter a loop. Unless you
take the precautions described below, the only way to escape from this is with a soft or hard
reset. You can avoid having to perform a reset by including a line such as:

dummy = INKEY (0)

at the beginning of your error handling routine. You can then exit from BBC BASIC(Z80) by
pressing the [INDEX] key and <>K|LL the offending instantiation of BBC BASIC(ZBO).

Error handling is explained more fully in the General Information section.

Syntax
ON ERROR < s t m t > { : < s t m t > }

ON ERROR OFF

Associated Keywords

ON, GOTO, GOSUB, PROC

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 149

OPENIN (OR)
A function which opens a file for reading and returns the file handle of the file. This number
must be used in subsequent references to the file with BGET#, |NPUT#, EXT#, PTR#, EOF#
or CLOSE#.

A returned value of zero signifies that the specified file was not found on the disk.

X=OPENIN " j im"
X=OPENIN A$
X=OPENIN (AS)
X=OPENIN ("FILEl")

The example below reads data from disk into an array. If the data file does not exist, an error
message is printed and the program ends.

10
20
30
4O
50
60
70

DIM p o s n (1 0) , n a m e $ (1 0)

fnum=OPENIN "TOPTEN"

IF fnum=0 THEN PRINT "NO TOPTEN d a t a " : END

FOR i=1 TO 10

I N P U T # f n u m , p o s n (i) , n a m e $ (i)

NEXT

CLOSE#fnum

You can also use OPENIN to access the devices :COM. 0, etc. See the ‘Operating System
Interface’ and ‘BBC BASIC(280) Files’ sections for more details.

Syntax

<n—Var>=OPENIN (< s t r >)

Associated Keywords

OPENOUT, OPENUP, CLOSE#. PTR#, PRINT#, |NPUT#, BGET#, BPUT#, EOF#

BBC BASIC(280) Reference Manual for 288, 2nd edition 150

OPENOUT
A function which opens a file for writing and returns the file handle of the file. This number
must be used in subsequent references to the file with BPUT#, PRINT#, EXT#, PTR# or
CLOSE#. If the specified file does not exist it is created. If the specified file already exists it
is truncated to zero length.

A returned value of zero indicates that the specified file could not be created.

X=OPENOUT (A$)
X=OPENOUT (" DATAFILE")
X=OPENOUT ("LPT l ")

You can also read from a file which has been opened using OPENOUT. This is of little use
until you have written some data to it. However, once you have done so, you can move
around the file using PTR# and read back previously written data.

Data is not written to the file at the time it is opened. Consequently, it is possible to successfully
open a file on a full device. Under these circumstances, a 'Device full' error would be reported
when you tried to write data to the file for the first time.

The example below writes the contents of two arrays (tables) to a file called 'TOPTEN'.

10 A=OPENOUT "TOPTEN"
20 FOR z=1 TO 10
30 PRINT#A,N(Z),N$(Z)
40 NEXT
50 CLOSE#A
6O END

You can also use OPENOUT to access the devices :COM. 0, :PRT . 0, etc. See the
‘Operating System Interface’ and ‘BBC BAS|C(280) Files’ sections for more details.

Syntax
<n—var>=OPENOUT (< s t r >)

Associated Keywords
OPENIN, OPENUP, CLOSE#, PTR#, PRINT#, |NPUT#, BGET#, BPUT#, EOF#

BBC BAS|C(280) Reference Manual for 288, 2nd edition 151

OPENUP
A function which opens a file (or device) for update (reading and writing) and returns the file
handle of the file. This number must be used in subsequent references to the file with
BGET#, BPUT#, |NPUT#, PRINT#, EXT#, PTR#, EOF# or CLOSE#.

A returned value of zero signifies that the specified file (or device) was not found.

X=OPENUP " j im"
X=OPENUP A$
X=OPENUP (A $)
X=OPENUP ("FILEl ")

See the random file examples F-RANDO in the ‘BBC BAS|C(280) Files’ section for examples
of the use of OPENUP.

You can also use OPENUP to access the devices :COM. 0, :PRT . 0, etc. See the ‘Operating
System Interface’ and ‘BBC BAS|C(280) Files’ sections for more details.

Syntax

<n—var>=OPENUP (< s t r >)

Associated Keywords

OPENIN, OPENOUT, CLOSE#. PTR#, PRINT#, |NPUT#, BGET#, BPUT#, EOF#

BBC BAS|C(280) Reference Manual for 288, 2nd edition 152

OPT
An assembler pseudo operation controlling the method of assembly. (See the Assembler
section for more details.) OPT is followed by an expression with the following meanings:

Code Assembled Starting at P%

Value Action

0 assembler errors suppressed;

1 assembler errors suppressed;

2 assembler errors reported;

3 assembler errors reported;

Code Assembled Starting at 0%

Value Action

4 assembler errors suppressed;

5 assembler errors suppressed;

6 assembler errors reported;

7 assembler errors reported;

The possible assembler errors are:

Out o f range — e r ro r code 4 0 .
No such variable — e r ror code 2 6 .

Syntax

OPT <numeric>

Associated Keywords

None

BBC BAS|C(280) Reference Manual for 288, 2nd edition

no listing.

listing.

no listing.

listing (default).

no listing.

listing.

no listing.

listing.

153

OR
The operation of bitwise integer logical OR between two items. The two operands are
internally converted to 4 byte integers before the OR operation.

IF A=2 OR B=3 THEN 110
X=B OR 4

You can leave out the space between OR and a preceding constant, but it makes your
programs difficult to read.

You can use OR as a logical operator or as a 'bit-by—bit' (bitwise) operator. The operands can be
boolean (logical) or numeric.

Unfortunately, BBC BASIC does not have true boolean variables; it uses numeric variables and
assigns the value 0 for FALSE and -1 for TRUE. This can lead to confusion at times. (See NOT for
more details.)

In the example below, the operands are boolean (logical). In other words, the result of the tests (IF)
A=2 and (IF) B=3 is either TRUE or FALSE. The result of this example will be TRUE if A=2 or B=3.

answer : (A=2 OR B = 3)

The brackets are not necessary, they have been included to make the example easier to
follow.

The last example, uses the OR in a similar fashion to the numeric operators (+, -, etc). Suppose X
was -20 in the following example,

A=X OR 11

the OR operation would be:

11111111 11111111 11111111 11101100
00000000 00000000 00000000 00001011
11111111 11111111 11111111 11101111 = —17

Syntax

<n—var>=<numeric> OR <numeric>

Associated Keywords

AND, EOR, NOT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 154

OSCLI
This command allows a string expression to be passed to the operating system. It
overcomes the problems caused by the exclusion of variables in the star (*) commands.
Using this statement, you can, for instance, erase and rename files whose names you only
know at run-time.

command$="DELETE PHONE.DTA"

OSCLI command$

command$="RENAME ADDRESS . DTA NAME . DTA"

OSCLI command$

See the Operating System Interface section for more details. If the command is not
recognised by the 288’s operating system, a ‘Bad command’ error will be reported.

Syntax
OSCLI <str>

Associated Keywords

All operating system (*) commands.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 155

PAGE (PA.)
A pseudo-variable controlling the starting address of the current user program area. It
addresses the area where a program is (or will be) stored.

PAGE=&3100
PRINT ~PAGE

PAGE=TOP+&100: REM Move t o s t a r t o f next page .

PAGE is automatically initialised by BBC BAS|C(Z80) to the address of the lowest available
page in RAM, but you may change it.

If you make PAGE less than its original value or greater than the original value of HIMEM, you will
get a 'Bad program' error when you try to enter a program line and you may well crash BBC
BAS|C(280).

If you make PAGE greater than HIMEM, a 'No room' error will occur if the program exits to
command level.

With care, several programs can be left around in RAM without the need for saving them.

USE WITH CARE.

Syntax
<r1—var>=PAGE

Associated Keywords

TOP, LOMEM, HIMEM

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 156

PI
A function returning 3.14159265.

X=PI

You can use PI to calculate the circumference and area of a circle. The example below
calculates the circumference and area of a circle of a given radius.

10
20
30
40
50

CLS
INPUT "What i s the radius o f the c i rc le " , r a d
PRINT "The c i rcumference i s : " ; 2 * P I * r a d

PRINT "The area i s : " ;P I* rad*rad
END

Pl can also be used to convert degrees to radians and radians to degrees.

radians=PI/ 18 0 *degrees
degrees=l80 /PI*radians

However, BBC BAS|C(280) has two functions (RAD and DEG) which perform these
conversions to a higher accuracy.

Syntax
<n—var>=PI

Associated Keywords
RAD, DEG

BBC BAS|C(280) Reference Manual for 288, 2nd edition 157

PLOT (PL.)
PLOT is a multi-purpose drawing statement. Three numbers follow the PLOT statement: the first
specifies the type of point, line, or triangle to be drawn; the second and third give the X and Y
coordinates to be used.

n action

-1 Move the graphics origin to x,y.

0 Move the graphics cursor relative to the last point.

1 Draw a line, in 'black', relative to the last point.

2 Draw a line, in 'inverse', relative to the last point.

3 Draw a line, in 'white', relative to the last point.

4 Move the graphics cursor to the absolute position x,y.

5 Draw a line, in 'black', to the absolute position x,y.

6 Draw a line, in 'inverse', to the absolute position x,y.

7 Draw a line, in 'white', to the absolute position x,y.

8-15 As 0-7. but plot the last point on the line twice (i.e. in the 'inverting'
modes omit the last point).

16-31 As 0-15, but draw the line dotted.

32-63 As 0-31, but plot the first point on the line twice (i.e. in the 'inverting'
modes omit the first point).

64-71 As 0-7, but plot a single point at x,y.

72-79 Draw a horizontal line left and right from the point x,y until the first 'lit'
pixel is encountered, or the edge of the window. This can be used to fill
shapes.

80-87 Plot and fill a triangle defined by the two previously visited points and the
point x,y.

88-95 Draw a horizontal line to the right of the point x,y until the first 'unlit' pixel
is encountered, or the edge of the window. This can be used to 'undraw'
things.

96-103 Plot and fill a rectangle whose opposite corners are defined by the last
visited point and the point x,y.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 158

This statement is available when installed with Z88 Patch via CHAIN command. See
“Installing 288 Patch” section previously in this guide, on how to obtain the 288 Patch.

Available by default when BBC BAS|C(280) is used with Z88 ROM release V4.3 and later.

Syntax
PLOT <numeric>, <numeric>, <numeric>

Associated Keywords
MODE, CLG, MOVE, DRAW, POINT, VDU, GCOL

BBC BAS|C(280) Reference Manual for 288, 2nd edition 159

POINT
This function returns the state of the pixel at the specified location, as 0 (unlit) or 1 (lit). If the
specified point is outside the graphics window (taking into account the position of the
graphics origin), or if MODE 0 is selected, the value -1 is returned.

This statement is available when installed with 288 Patch via CHAIN command. See
“Installing 288 Patch" section previously in this guide, on how to obtain the Z88 Patch.

Available by default when BBC BAS|C(280) is used with 288 ROM release V4.3 and later.

Syntax

<n—var>=POINT (<numeric>, <numeric>)

Associated Keywords

PLOT, DRAW, MOVE, GCOL

BBC BAS|C(280) Reference Manual for 288, 2nd edition 160

POS
A function returning the horizontal position of the cursor on the screen. The left hand column
is 0 and the right hand column is one less than the width of the display.

X=POS

COUNT will tell you the print head position of the printer. It is an uncertain indicator of the
horizontal position of the cursor on the screen. (See the keyword COUNT for details.)

See VPOS for an example of the use of POS and VPOS.

Syntax

<n—var>=POS

Associated Keywords

COU NT, TAB, VPOS

BBC BAS|C(280) Reference Manual for 288, 2nd edition 161

PRINT
A statement which prints characters on the screen. You can also echo the characters to the printer.
Printer echo on the Z88 is controlled with the following key sequences:

D + P Printer echo On. All characters sent subsequently to the screen are echoed to
the printer

D _ P Printer echo Off

General Information

The items following PRINT are called the print list. The print list may contain a sequence of string
or numeric literals or variables. The spacing between the items printed will vary depending on the
punctuation used. If the print list does not end with a semi-colon, a new-line will be printed after all
the items in the print list.

In the examples which follow, commas have been printed instead of spaces to help you count.

The screen is divided into zones (initially) 10 characters wide. By default, numeric quantities are
printed rightjustified in the print zone and strings are printed just as they are (with no leading
spaces). Numeric quantities can be printed leftjustified by preceding them with a semi-colon. In
the examples the zone width is indicated as 210, 24 etc.

210

012345678901234567890123456789
PRINT 2 3 . 1 6 2 , , , , 2 3 . l 6 2
PRINT "HELLO" HELLO

PRINT ; 2 3 . l 6 2 2 3 . 1 6 2

Initially numeric items are printed in decimal. If a tilde (~) is encountered in the print list, the
numeric items which follow it are printed in hexadecimal. If a comma or a semi-colon is
encountered further down the print list, the format reverts to decimal.

l
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

P R I N T ~ 1 0 5 8 / 5 8 I , I I I / I I I A I I I I I I I ’ 3 A / I I I I I I I 5 8

A comma (,) causes the cursor to TAB to the beginning of the next print zone unless the cursor is
already at the start of a print zone. A semi-colon causes the next and following items to be printed
on the same line immediately after the previous item. This 'no-gap' printing continues until a
comma (or the end of the print list) is encountered. An apostrophe (') will force a new line. TAB(X)
and TAB(Y,Z) can also be used at any position in the print line to position the cursor.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 162

l
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

PRINT "HELLO",24.2 HELLO , , , , , , 2 4 . 2
PRINT "HELLO";24.2 HELL024.2
PRINT ; 2 5 4.3,2 254.3 , , , , , , , , , 2
PRINT "HELLO"'2.45 HELLO

, , , , , , 2 . 4 5

Unlike most other versions of BASIC, a comma at the end of the print list will not suppress the new
line and advance the cursor to the next zone. If you wish to split a line over two or more PRINT
statements, end the previous print list with a semicolon and start the following list with a comma or
end the line with a comma followed by a semicolon.

210
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9

PRINT "HELLO" 1 2 ; H E L L O] ! I I I / I I 1 2 I I I I I I I I I I 2 3 ' 6 7

PRINT , 2 3 . 6 7

or

PRINT "HELLO" 1 2 , ;
PRINT 2 3 . 6 7

Printing a string followed by a numeric effectively moves the start of the print zones towards the
right by the length of the string. This displacement continues until a comma is encountered.

l

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
PRINT "HELLO"12 3 4 H E L L O , , , , , , , , 1 2 , , , , , , , , 3 4
PRINT "HELLO"12,34 H E L L O , , , , , , , , 1 2 , , , , , , , , 3 4

Print Format Control

Although PRINT USING is not implemented in BBC BASIC, similar control over the print format
can be obtained. The overall width of the print zones and print field, the number of figures or
decimal places and the print format may be controlled by setting the print variable, @%, to the
appropriate value. The print variable (@%) comprises 4 bytes and each byte controls one aspect
of the print format. @% can be set equal to a decimal integer, but it is easier to use hexadecimal,
since each byte can then be considered separately.

@%=&SSNNPPWW

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 163

Byte Range Default Purpose

88 00-01 00 STR$ Format Control

NN 00-02 00 Format Selection

PP ??-?? 09 Number of Digits Printed

WW 00-0F 0A(10) Zone and Print Field Width

STR$ Format Control - SS

SS effects the format of the string generated by the STR$ function. If 88 is 01 the string will be
generated according to the format set by @%, otherwise the G9 format will be used.

Format Selection - NN
Byte 2 selects the general format as follows:

00 General Format (G).
01 Exponential Format (E).
02 Fixed Format (F).

G Format Numbers that are integers are printed as such.
Numbers in the range 0.1 to 1 will be printed as such.
Numbers less than 0.1 will be printed in E format.
Numbers greater than the range set by Byte 1 will be printed in E format. In
which case, the number of digits printed will still be controlled by Byte 1, but
according to the E format rules.

The earlier examples were all printed in 69 format.

E Format Numbers are printed in the scientific (engineering) notation.

F Format Numbers are printed with a fixed number of decimal places.

Number of Digits - PP
PP controls the number of digits printed in the selected format. The number is rounded (NOT
truncated) to this size before it is printed. If PP is set outside the range allowed for by the selected
format, it is taken as 9. The effect of PP differs slightly with the various formats.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 164

Format Range Control Function

G 01-OA The maximum number of digits which can be printed, excluding the
decimal point, before changing to the E format.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
&O3OA — G3 l
(O O ' O O ' O 3 ' O A)
PRINT 1 0 0 0 . 3 1 , , , , , , , 1 E 3

PRINT 1 0 1 6 . 3 1 , , , , l . 0 2 E 3
PRINT 1 0 . 5 6 , , , , , , 1 0 . 6

E 01-FF The total number of digits to be printed excluding the decimal point and
the digits after the E. Three characters or spaces are always printed
after the E. If the number of significant figures called for is greater than
10, then trailing zeros will be printed.

01030A — E3210
(0 0 ' 0 1 ' 0 3 ' 0 A)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
PRINT 1 0 . 5 6 , , l . 0 6 E 1

&OlOFOA — E15210
(O O ' O l ' O F ' O A)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
PRINT 1 0 . 5 6 1.056000OOOOOOOOE1

F 00-OA The number of digits to be printed after the decimal point.

& 0 2 0 2 0 A — F2210
(0 0 ' 0 2 ' 0 2 ' 0 A)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
PRINT 1 0 . 5 6 , , , , , l O . 5 6
PRINT 1 0 0 . 5 8 6 4 , , , , l O O . 5 9
PRINT . 6 4 8 6 2 , , , , , , O . 6 5

BBC BAS|C(280) Reference Manual for 288, 2nd edition 165

Zone Width - WW

Byte 0 sets the width of the print zones and field.

&020208 — F228
(0 0 ' 0 0 ' 0 2 ' 0 8)

followed by

&020206 - F226
(0 0 ' 0 2 ' 0 2 ' 0 6)

PRINT l O . 2 , 3 . 8
PRINT l O . 2 , 3 . 8

01234567890123456789
r / , l O . 2 0 , , , , 3 . 8 O
, 1 0 . 2 0 , , 3 . 8 0

Changing the Print Control Variable
It is possible to change the print control variable (@%) within a print list by using the function:

DEF FN_p fo rma t (N) :@%= : = " "

Functions have to return an answer, but the value returned by this function is a null string.
Consequently, its only effect is to change the print control variable. Thus the PRINT statement

PRINT FN_pformat (&9OA) x FN_p fo rmat (&2020A)

will print x in 69210 format and y in F2210 format.

Examples

G 9 l
&OOO9OA
012345678901234
1111.11111
13.7174211
, 1 . 5 2 4 1 5 7 9
1.88167642E—2
2.09975158E—3

F2210
&OZOZOA
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
, , , l l l l . 1 l

I l r r r l 3 - 7 2

I I I I I I l ' 5 2

I I I I r I 0 - 0 2

I I I I I I O ' O O

GZZlO
&OOOZOA
012345678901234
, , , , , l . l E 3
, , , , , , , , l 4
, , , , , , , l . 5
, , , , 1 . 9 E — 2
, , , , 2 . l E - 3

E2210
& 0 1 0 2 A
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
, , , l . l E 3

. 4 E l

.5EO

.9E—2

. l E — 3

I I I

I I I

‘ ‘ ‘

N

H

H

H

‘ ~ ‘

BBC BAS|C(280) Reference Manual for 288, 2nd edition 166

The results obtained by running the following example program show the effect of changing the
zone width. The results for zone widths of 5 and 10 (&OA) illustrate what happens when the zone
width is too small for the number to be printed properly. The example also illustrates what happens
when the number is too large for the chosen precision.

10 t e s t = 7 . 8 1 2 3

2 0 FOR i=5 TO 2 5 STEP 5

3 0 PRINT

4O @%=&020200+i
50 PRINT " °o=&000";~@%
60 PRINT S T R I N G $ (3 , " 0 1 2 3 4 5 6 7 8 9 ")
70 FOR j=1 TO 10
8 0 PRINT t e s t A j

9 0 NEXT

1 0 0 PRINT '

110 NEXT

120 %=&90A

&00020205
012345678901234567890123456789

7 . 8 1
6 1 . 0 3
4 7 6 . 8 0
3 7 2 4 . 9 1
29100 .11
2 2 7 3 3 8 . 7 5
1 7 7 6 0 3 8 . 5 4
1 3 8 7 4 9 4 5 . 8 9
1 .083952398E8
8 .46816132E8

&0002020A
012345678901234567890123456789

7 . 8 1
6 1 . 0 3

4 7 6 . 8 0
3 7 2 4 . 9 1

29100 .11
2 2 7 3 3 8 . 7 5

1 7 7 6 0 3 8 . 5 4
1 3 8 7 4 9 4 5 . 8 9
1 .083952398E8
8 .46816132E8

BBC BAS|C(280) Reference Manual for 288, 2nd edition 167

&OOOZOZOF
012345678901234567890123456789

7 . 8 1
6 1 . 0 3

4 7 6 . 8 0
3 7 2 4 . 9 1

29100 .11
2 2 7 3 3 8 . 7 5

1 7 7 6 0 3 8 . 5 4
1 3 8 7 4 9 4 5 . 8 9

1 .083952398E8
8 .46816132E8

&00020214
O12345678901234567890123456789

7 . 8 1
6 1 . 0 3

4 7 6 . 8 0
3 7 2 4 . 9 1

29100 .11
2 2 7 3 3 8 . 7 5

1 7 7 6 0 3 8 . 5 4
1 3 8 7 4 9 4 5 . 8 9

1 .083952398E8
8 .46816132E8

&00020219
012345678901234567890123456789

7 . 8 1
6 1 . 0 3

4 7 6 . 8 0
3 7 2 4 . 9 1

29100 .11
2 2 7 3 3 8 . 7 5

1 7 7 6 0 3 8 . 5 4
l 3 8 7 4 9 4 5 . 8 9

1 .083952398E8
8 .46816132E8

Syntax

PRINT { [TAB (<numer ic>[, <numeric>])] [SPC (<numeric>]

[' 1 [,] [;] [~] [< s t r > | < n u m e r i c >] }

Associated Keywords

PRINT#, TAB, POS, STR$, WIDTH, INPUT, VDU

BBC BAS|C(280) Reference Manual for 288, 2nd edition 168

PRINT# (P.#)
A statement which writes the internal form of a value out to a data file (or device).

PRINT#E,A, B , C , D $, E $, F $

PRINT#4 , prn$

The format of the variables as written to the file differs from the format used on the BBC Micro. All
numeric values are written as five bytes of binary real data (see the Annex entitled ‘Format of
Program and Variables in Memory’). Strings are written as the bytes in the string (in the correct
order) plus a carriage return.

Before you use this statement, you must normally have opened a file using OPENOUT or
OPENUP.

You can use PRINT# to write data (numbers and strings) to a data file in the 'standard' manner. If
you wish to 'pack' your data in a different way, you should use BPUT#. You can use PRINT# and
BPUT# together to mix or modify the data format. For example, if you wish to write a 'compatible'
text file, you could PRINT# the string and BPUT# a line-feed. This would write the string followed
by a carriage-return and a line-feed to the file.

Remember, with BBC BAS|C(Z80) the format of the file is completely under your control.

Syntax

PRINT#<numeric>{ , <numeric> | < s t r > }

Associated Keywords

PRINT, OPENUP, OPENOUT, CLOSE#, |NPUT#, BPUT#, BGET#, EXT#, PTR#, EOF#

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 169

PROC
A keyword used at the start of all user declared procedures. The first character of a procedure
name can be an underline (or a number).

If there are spaces between the procedure name and the opening bracket of the parameter list (if
any) they must be present both in the definition and the call. It's safer not to have spaces between
the procedure name and the opening bracket.

A procedure may be defined with any number of parameters of any type.

A procedure definition is terminated by ENDPROC.

A procedure does not have to be declared before it is called.

Procedures are re—entrant and the parameters (arguments) are passed by value.

10 INPUT"Number o f d iscs " F

2 0 P R O C _ h a n o i (F , l , 2 , 3)

3O END

40 :
50 DEF PROC_hanoi(A,B,C,D)
6 0 IF A=O THEN ENDPROC

7O PROC_hanoi (A - l , B , D , C)

8 0 PRINT"Move d isk " ; A " f rom " ; B " t o " ; C

9 0 PROC_hanoi (A - l , D , C , B)

1 0 0 ENDPROC

See the ‘Procedures and Functions’ sub-section for more details.

Syntax

PROC<name>[(< e x p > { , < e x p > })]

Associated Keywords

DEF, ENDPROC, LOCAL

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 170

PTR#
A pseudo-variable allowing the random-access pointer of the file whose file handle is its argument
to be read and changed.

PTR#F=PTR#F+5 :REM Move pointer t o next number
PTR#F=recordnumber*recordlength

Reading or writing (using BGET#, BPUT#, |NPUT# or PRINT#) takes place at the current position
of the pointer. The pointer is automatically updated following a read or write operation.

You can use PTR# to select which item in a file is to be read or written to next. In a random file
(see the section on BBC BAS|C(280) Files) you use PTR# to select the record you wish to read or
write.

If you wish to move about in a file using PTR# you will need to know the precise format of the data
in the file.

A file opened with OPENUP may be extended by setting its pointer to its end (PTR#fnum =
EXT#fnum) and then writing to it. If you do this, you must remember to CLOSE the file when you
have finished with it in order to update the directory entry.

By using PTR# you have complete control over where you read and write data in a file. This is a
simple concept, but it may initially be difficult to grasp its many ramifications. The BBC BAS|C(280)
Files section has a number of examples of the use of PTR#.

PTR#-1 Returns the number of file handles still available for the entire 288 (notjust BBC
BAS|C(280)) and the ROM release number.

If you are going to display this information, you will need to do so in hexadecimal because the one
(4 byte) number contains two items of information. For example:

PRINT ~PTR#- l
5A0 O 0 4

The last 3 digits (least significant 2 bytes) are the ROM release number. The first 2 digits (most
significant 2 bytes) are the number of files handles still available for use by the filing system
(&5A=90).

Syntax

PTR#<numeric>=<numeric>
<n—var>=PTR#<numeric>

Associated Keywords
OPENIN, OPENUP, OPENOUT, CLOSE#, PRINT#, |NPUT#, BPUT#, BGET#, EXT#,
EOF#

BBC BAS|C(280) Reference Manual for 288, 2nd edition 171

PUT
A statement to output data to an output port. Full 16bit addressing is available.

PUT A , N :REM output N t o p o r t A .

This instruction gives direct access from BBC BAS|C(280) to the computer's |/O hardware.
Typically, you can use it to directly access |/O ports.

It is strongly recommended that you do not try to control the 288’s hardware with this command - a
mistake can be disastrous. However, if you insist on directly accessing the 288’s hardware, you will
need to study the Z88 Developers' Notes ‘Manipulating the Blink Registers’ section. This guide is
available online via cambridqe288.iira.com/wiki/spaces/DN.

This command is an addition to the original language specification and it cannot be guaranteed to
remain unchanged in future releases.

Syntax
PUT <numeric>,<numeric>

Associated Keywords
GET

BBC BAS|C(280) Reference Manual for 288, 2nd edition 172

RAD
A function which converts degrees to radians.

X=RAD(Y)
X=SIN RAD (9 0)

Unlike humans, BBC BAS|C(280) wants angles expressed in radians. You can use this function to
convert an angle expressed in degrees to radians before using one of the angle functions (SIN,
COS, etc).

Using RAD is equivalent to multiplying the degree value by Pl/180, but the result is calculated
internally to a greater accuracy.

See COS, SIN and TAN for further examples of the use of RAD.

Syntax
<n—var>=RAD<numeric>

Associated Keywords
DEG

BBC BAS|C(280) Reference Manual for 288, 2nd edition 173

READ
A statement which will assign to variables values read from the DATA statements in the program.
Strings must be enclosed in double quotes if they have leading spaces or contain commas.

READ C , D , A $

In many of your programs, you will want to use data values which do not change frequently.
Because these values are subject to some degree of change, you won't want to use constants. On
the other hand, you won't want to input them every time you run the program either. You can get
the best of both worlds by declaring these values in DATA statements at the beginning or end of
your program and READing them into variables in your program.

A typical use for DATA and READ is a name and address list. The addresses won't change very
often, but when they do you can easily amend the appropriate DATA statement.

See DATA for more details and an example of the use of DATA and READ.

Syntax

READ <n—var> | < s — v a r > { <n—var> | < s — v a r > }

Associated Keywords

DATA, RESTORE

BBC BAS|C(280) Reference Manual for 288, 2nd edition 174

REM
A statement that causes the rest of the line to be ignored thereby allowing comments to be
included in a program.

You can use the REM statement to put remarks and comments in to your program to help you
remember what the various bits of your program do. BBC BASIC(280) completely ignores anything
on the line following a REM statement.

You will be able to get away without including any REMarks in simple programs. However, if you go
back to a lengthy program after a couple of months you will find it very difficult to understand if you
have not included any REMs.

If you include nothing else, include the name of the program, the date you last revised it and a
revision number at the start of your program.

10 REM WSCONVERT REV 2 . 3 0

2 0 REM 5 AUG 8 4

30 REM Converts ' ha rd ' carr iage—returns t o ' s o f t '
40 REM ones in preparation fo r use wi th WS.

Syntax

REM any t e x t

Associated Keywords

None

BBC BASIC(280) Reference Manual for 288, 2nd edition 175

RENUMBER (REN.)
A command which will renumber the lines and correct the cross references inside a program.

The options are as for AUTO, but increments of greater than 255 are allowed.

You can specify both the new first number (n1) and/or the step size (s). The default for both the
first number and the step size is 10. The two parameters should be separated by a comma or a
hyphen.

RENUMBER
RENUMBER n1
RENUMBER n1 ,3
RENUMBER ,s

For example:

RENUMBER First number 10, step 10
RENUMBER 1000 First number 1000, step 10
RENUMBER 1 00 0—5 First number 1000, step 5
RENUMBER , 5 First number 10, step 5
RENUMBER —5 First number 10, step 5

RENUMBER produces error messages when a cross reference fails. The line number containing
the failed cross-reference is renumbered and the line number in the error report is the new line
number.

If you renumber a line containing an ON GOTO/GOSUB statement which has a calculated line
number, RENUMBER will correctly cope with line numbers before the calculated line number.
However, line numbers after the calculated line number will not be changed.

In the following example, the first two line numbers would be renumbered correctly, but the last two
would be left unchanged.

ON ac t ion GOSUB 1 0 0 , 2 0 0 , (t y p e * 1 0 + 3 0 0) , 4 0 0 , 5 0 0

RENUMBER may be used in a program, but it will exit to the command mode on completion.

Syntax

RENUMBER [< n — c o n s t > [, < n — c o n s t >]]

Associated Keywords

LIST

BBC BAS|C(280) Reference Manual for 288, 2nd edition 176

REPEAT (REP.)
A statement which is the starting point of a REPEAT...UNT|L loop. A single REPEAT may have
more than one UNTIL, but this is bad practice.

The purpose of a REPEAT...UNT|L loop is to make BBC BASIC(Z80) repeat a set number of
instructions until some condition is satisfied.

REPEAT UNTIL GET=l3 :REM wai t f o r CR

X=O
REPEAT

X=X+10
PRINT "What do you think o f i t s o f a r ? "

UNTIL X > 4 5

You must not exit a REPEAT...UNT|L loop with a GOTO. If you jump out of a loop with a GOTO
(How could you!!!) you should jump back in. If you mustjump out of the loop, you should use
UNTIL TRUE to 'pop' the stack. For (a ghastly) example:

10 i=1
20 REPEAT: REM Print 1 t o 100 unless
3O I=I+1: REM interrupted by the
40 PRINT i : REM space bar being pressed
5 0 X = I N K E Y (O) : REM Get a k e y

6 0 IF x=32 THEN l l O : R E M ex i t i f <SPACE>

7O UNTIL i= lOO
8 0 PRINT " * * * * "

9O END

lOO :
l l O UNTIL TRUE: REM Pop the s tack
120 PRINT "Forced e x i t " : R E M Car ry on w i th program

130 FOR j=lOOO TO 1005
1 4 0 PRINT j
150 NEXT

See the keyword UNTIL for ways of using REPEAT...UNT|L loops to replace unconditional GOTOs
for program looping.

See the sub-section on ‘Program Flow Control’ in the ‘General Information’ section for more details
on the working of the program stack.

Syntax
REPEAT

Associated Keywords

U NTI L

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 177

REPORT (REPO.)
A statement which prints out the error string associated with the last error which occurred.

You can use this statement within your own error handling routines to print out an error message
for those errors you are not able to cope with.

The example below is an error handling routine designed to cope only with the <ESCAPE> key
being pressed. All other errors are reported and the program terminated.

10 ON ERROR GOTO 1 0 0 0

2 0

9 7 0

9 8 0 END

9 9 0 :

1 0 0 0 PRINT

1010 IF ERR=17 THEN PRINT "<ESCAPE> ignored" :GOTO 2 0

1 0 2 0 REPORTzPRINT " a t l ine " ;ERL

See the sub-section on ‘Error Handling’ and the keywords ERR, ERL and ON ERROR for more
details.

Syntax
REPORT

Associated Keywords

ERR, ERL, ON ERROR

BBC BAS|C(280) Reference Manual for 288, 2nd edition 178

RESTORE (RES.)
RESTORE can be used at any time in a program to set the line where DATA is read from.

RESTORE on its own resets the data pointer to the first data item in the program.

RESTORE followed by a parameter sets the data pointer to the first item of data in the specified
line (or the next line containing a DATA statement if the specified line does not contain data). This
optional parameter for RESTORE can specify a calculated line number.

RESTORE
RESTORE lOO
RESTORE (1 0 * A + 2 0)

You can use RESTORE to reset the data pointer to the start of your data in order to re-use it.
alternatively, you can have several DATA lists in your program and use RESTORE to set the data
pointer to the appropriate list.

Syntax

RESTORE [<l—num>]
RESTORE [(<numeric>)]

Associated Keywords
READ, DATA

BBC BAS|C(280) Reference Manual for 288, 2nd edition 179

RETURN (R.)
A statement causing a RETURN to the statement after the most recent GOSUB statement.

You use RETURN at the end of a subroutine to make BBC BAS|C(280) return to the place in your
program which originally 'called' the subroutine.

You may have more than one return statement in a subroutine, but it is preferable to have only one
entry point and one exit point (RETURN).

Try to structure your program so you don't leave a subroutine with a GOTO. If you do, you should
always return to the subroutine and exit via the RETURN statement. If you insist on using GOTO
all over the place, you will end up confusing yourself and maybe confusing BBC BAS|C(280) as
well. The sub-section on ‘Program Flow Control’ explains why.

Syntax
RETU RN

Associated Keywords
GOSUB, ON GOSUB

BBC BAS|C(280) Reference Manual for 288, 2nd edition 180

RIGHT$
A string function which returns the right 'num' characters of the string. If there are insufficient
characters in the string then all are returned.

There must not be any spaces between the RIGHT$ and the opening bracket.

A$=RIGHT$ (A$, num)
A$=RIGHT$ (A $, 2)
A$=RIGHT$ (LEFT$ (A$, 3) , 2)

For example,

10 name$="BBC B A S I C (Z 8 0) "
2 0 FOR i=3 TO LEN(name$)
30 PRINT RIGHT$(name$, i)
4 0 NEXT

would print

8 0)
2 8 0)
(Z 8 0)
C (Z 8 0)
I C (Z 8 0)
S I C (Z 8 0)
A S I C (Z 8 0)
B A S I C (Z 8 0)

B A S I C (Z 8 0)
C B A S I C (Z 8 0)
BC B A S I C (Z 8 0)
BBC B A S I C (Z 8 0)

Syntax
<s—var>=RIGHT$(<str>,<numer ic>)

Associated Keywords

LEFT$, M|D$

BBC BAS|C(280) Reference Manual for 288, 2nd edition 181

RND
A function which returns a random number. The type and range of the number returned depends
upon the optional parameter.

RND returns a random integer 1 - &FFFFFFFF.

RND (n) returns an integer in the range 1 to n (n>1).

RND (1) returns a real number in the range 0.0 to .99999999.

If n is negative the pseudo random sequence generator is set to a number based on n and n is
returned.

If n is 0 the last random number is returned in RND(1) format.

X=RND(l)
X%=RND
N=RND (6)

The random number generator is initialised by RUN (or CHAIN). Consequently, RND will return
zero until the RUN (or CHAIN) command is first issX=RND(1)

Syntax

<n—var>=RND[(<numeric>)]

Associated Keywords

None

BBC BAS|C(280) Reference Manual for 288, 2nd edition 182

RUN
Start execution of the program.

RUN

RUN is a statement and so programs can re-execute themselves.

All variables except @% to 2% are CLEARed by RUN.

If you want to start a program without clearing all the variables, you can use the statement

GOTO nnnn

where nnnn is the number of the line at which you wish execution of the program to start.

RUN “filename” can be used as an alternative to CHAIN "filename".

Syntax
RUN [< S t r >]

Associated Keywords
NEW, OLD, LIST, CHAIN

BBC BAS|C(280) Reference Manual for 288, 2nd edition 183

SAVE (SA.)
A statement which saves the current program area to a file, in internal (tokenised) format.

SAVE " FRED . BBC"
SAVE A $

You use SAVE to save your program for use at a later time. The program must be given a name
(file-specifier) and this name becomes the name of the file in which your program is saved.

The name (file-specifier) must follow the normal naming conventions of 288 filing system for
folders and filenames. See the Operating System Interface section for a description of a
file-specifier (name).

Syntax
SAVE < S t r >

Associated Keywords

LOAD, CHAIN

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 184

SGN
A function returning -1 for negative argument, 0 for zero argument and +1 for positive argument.

X=SGN (Y)

resul t=SGN (a n s w e r)

You can use this function to determine whether a number is positive, negative or zero.

SGN returns:

+1 for positive numbers

0 for zero

-1 for negative numbers

Syntax
<n—var>=SGN (<numeric>)

Associated Keywords
ABS

BBC BAS|C(280) Reference Manual for 288, 2nd edition 185

SIN
A function giving the sine of its radian argument.

X=SIN(Y)

This function returns the sine of an angle. The angle must be expressed in radians, not degrees.

Whilst the computer is quite happy dealing with angles expressed in radians, you may prefer to
express angles in degrees. You can use the RAD function to convert an angle from degrees to
radians.

The example below sets Y to the sine of the angle 'degree_ang|e' expressed in degrees.

Y=S IN (RAD (degree_angle))

Syntax

<n—var>=SIN (<numeric>)

Associated Keywords

COS, TAN, ACS, ASN, ATN, DEG, RAD

BBC BAS|C(280) Reference Manual for 288, 2nd edition 186

SOUND
A statement which generates sounds using the internal loudspeaker.

Not available on the Z88

BBC BAS|C(280) Reference Manual for 288, 2nd edition 187

SPC
A statement which prints a number of spaces to the screen (or currently selected console
output stream). The argument specifies the number of spaces (up to 255) to be printed.

SPC can only be used within a PRINT or INPUT statement.

PRINT DATE; SPC (6) ;SALARY

INPUT S P C (l O) "What i s your name " ,name$

Syntax
PRINT SPC (<numeric>)

INPUT SPC (<numeric>)

Associated Keywords
TAB, PRINT, INPUT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 188

SQR
A function returning the square root of its argument.

X=SQR(Y)

If you attempt to calculate the square root of a negative number, a '-ve root' error will occur.
You could use error trapping to recover from this error, but it is better to check that the
argument is not negative before using the SQR function.

Syntax
<n—var>=SQR (<numeric>)

Associated Keywords
None

BBC BAS|C(280) Reference Manual for 288, 2nd edition 189

STEP(SJ
Part of the FOR statement, this optional section specifies step sizes other than 1.

FOR i=1 TO 20 STEP 5

The step may be positive or negative. STEP is optional; if it is omitted, a step size of +1 is
assumed.

You can use this optional part of the FOR...TO...STEP...NEXT structure to specify the amount by
which the FOR...NEXT loop control variable is changed each time round the loop. In the example
below, the loop control variable, 'cost' starts as 20, ends at 5 and is changed by -5 each time round
the loop.

10 FOR c o s t = 2 0 TO 5 STEP - 5

2 0 PRINT c o s t , c o s t * l . l 5

3 0 NEXT

Syntax

FOR <n—var>=<numeric> T O <numeric> [S T E P <numeric>]

Associated Keywords

FOR, TO, NEXT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 190

STOP
Syntactically identical to END, STOP also prints a message to the effect that the program
has stopped.

You can use STOP at various places in your program to aid debugging. If your program is going
wrong, you can place STOP commands at various points to see the path taken by your program.
(TRACE is generally a more useful aid to tracing a program's flow unless you are using formatted
screen displays.)

Once your program has STOP’ed you can investigate the values of the variables to find out why
things happened the way they did.

STOP DOES NOT CLOSE DATA FILES. If you use STOP to exit a program for debugging, CLOSE
all the data files before RUNning the program again. If you don't you will get some most peculiar
error messages.

Syntax
STOP

Associated Keywords
EN D

BBC BAS|C(280) Reference Manual for 288, 2nd edition 191

STR$
A string function which returns the string form of the numeric argument as it would have
been printed.

If the most significant byte of @% is not zero, STR$ uses the current @% description when
generating the string. If it is zero (the initial value) then the GQ format (see PRINT) is used.

If STR$ is followed by ~ (tilde) then a hexadecimal conversion is carried out.

A $ = S T R $ (P I)
B $ = S T R $ ~ (1 0 0) :REM B $ Wi l l be " 6 4 "

The opposite function to STR$ is performed by the VAL function.

Syntax

<s—var>=STR$ [~] (<numeric>)

Associated Keywords

VAL, PRINT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 192

STRING$
A function returning N concatenations of a string.

A$=STRING$ (N, "hello")
B$=STRING$ (10, "—*—")
C$=STRING$(%, S$)

You can use this function to print repeated copies of a string. It is useful for printing headings
or underlinings. The last example for PRINT uses the STRING$ function to print the column
numbers across the page. For example,

PRINT STRING$ (4 , "—=*=—")

would print

and

PRINT STRING$ (3 , " 0 1 2 3 4 5 6 7 8 9 ")

would print

012345678901234567890123456789

Syntax
<s—var>=STRING$ (<numeric>, < s t r >)

Associated Keywords
None

BBC BAS|C(280) Reference Manual for 288, 2nd edition 193

TAB
A keyword available in PRINT or INPUT.

There are two versions of TAB: TAB(X) and TAB(X,Y) and they are effectively two different
keywords.

TAB(X) is a printer orientated statement. The number of printable characters since the last
new-line (COUNT) is compared with X. If X is equal or greater than COUNT, sufficient spaces to
make them equal are printed. These spaces will overwrite any characters which may already be on
the screen. If X is less than COUNT, a new-line will be printed first.

TAB(X,Y) is a screen orientated statement. It will move the cursor on the screen to character cell
X,Y (column X, row Y) if possible. No characters are ovenNritten and COUNT is NOT updated.
Consequently, a TAB(X,Y) followed by a TAB(X) will give unpredictable (at first glance) results.

The leftmost column is column 0 and the top of the screen is row 0.

PRINT T A B (l O) ; A $
PRINT TAB(X,Y) ;B$

Syntax
PRINT TAB (<numeric> [, <numeric>])

INPUT TAB (<numeric> [, <numeric>])

Associated Keywords
POS, VPOS, PRINT, INPUT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 194

TAN (T.)
A function giving the tangent of its radian argument.

X = TAN (Y)

This function returns the tangent of an angle. The angle must be expressed in radians, not
degrees.

Whilst the computer is quite happy dealing with angles expressed in radians, you may prefer to
express angles in degrees. You can use the RAD function to convert an angle from degrees to
radians.

The example below sets Y to the tangent of the angle 'degree_ang|e' expressed in degrees.

Y=TAN (RAD (degree_angle))

Syntax
<n—var>=TAN<numeric>

Associated Keywords

COS, SIN, ACS, ATN, ASN, DEG, RAD

BBC BAS|C(280) Reference Manual for 288, 2nd edition 195

THEN(THJ
An optional part of the IF... THEN ELSE statement. It introduces the action to be taken if
the testable condition evaluates to TRUE.

IF A=B THEN 3 0 0 0
IF A=B THEN PRINT "Equal" ELSE PRINT "Help"

You need to use THEN if it is followed by:

A line number.
IF a=b THEN 320

A 'star' (*) command.
IF a=b THEN *DIR

An assignment of a pseudo-variable.
IF a=b THEN TIME=O

or you wish to exit from a function as a result of the test. This is because BBC BAS|C(280)
can't work out what you mean in these circumstances if you leave the THEN out.

IF A=B PRINT "Equal" ELSE PRINT "Help"

DEF FN_tes t (num)

IF a=b THEN =num: REM THEN required on this line
=num/256

Syntax
IF < t—cond> THEN < s t m t > { : < s t m t > } [ELSE < s t m t > { : < s t m t > }]

Associated Keywords
IF, ELSE

BBC BAS|C(280) Reference Manual for 288, 2nd edition 196

TIME (Tl.)
A pseudo-variable which reads and sets the elapsed time clock.

X=TIME
TIME=1 0 0

You can use TIME to set and read BBC BAS|C(280)’s internal clock. The value of the clock
is returned in centi-seconds (one-hundredths of a second) and it is quite accurate. A delay
loop such as

REPEAT UNTIL TIME = T
is likely to fail. The compound condition test

REPEAT UNTIL TIME >= T
should always be used.

On starting BBC BAS|C(280), TIME may be found to be ‘stuck’ at a large value. To cure this,
it should be initialised (TlME=0), for example.

The following example is a simple program to provide a 24 hour clock. Lines 20 to 40 get the
correct time, lines 50 and 60 calculate the number of centi-seconds and set TIME, and lines
110 to 130 convert the value in TIME to hours, minutes and seconds. Line 90 stops the time
being printed unless it has changed by at least one second.

10 CLS

2 0 INPUT "HOURS " , H

3 0 INPUT "MINUTES " , M

4 0 INPUT "SECONDS " , S

5 0 PRINT "PUSH ANY KEY TO SET THE TIME " ; : X = G E T

6 0 T I M E = ((H * 6 0 + M) * 6 0 + S) * 1 0 0

7O T=O

8 0 REPEAT

9 0 IF TIME DIV 100=T DIV 1 0 0 THEN 150

1 0 0 T=TIME

110 S = (T DIV 1 0 0) MOD 6 0

120 M = (T DIV 6 0 0 0) MOD 6 0

130 H = (T DIV 3 6 0 0 0 0) MOD 2 4

1 4 0 PRINT T A B (O , 2 3) H ; " : " ; M ; " : " ; ;
150 UNTIL FALSE

Syntax

TlME=<numeric>
<n-var>=T|ME

Associated Keywords

TIM E$

BBC BAS|C(280) Reference Manual for 288, 2nd edition 197

TIME$
A 24 character long string pseudo-variable which reads and sets the system clock. The
format of the character string is:

Day date Month year , h h z m m z s s
Where:

Day is the day of the week in full (Monday, Tuesday, etc)
date is the day of the month (1st, 2nd, etc)
Month is the month name (January, February, etc)
year is the year (1986, 1987, etc)
hh is hours (00 to 23)
mm is minutes (00 to 59)
ss is seconds (00 to 59)

clock$=TIME$
TIME$=”Sunday 2nd February 1 9 8 6 , 1 8 : 3 3 : 3 0 ”

The date or both date and time may be set as shown below:

TIME$=”Day date Month year ”
TIME$=”Day date Month year , h h z m m z s s ”

When setting the clock, the day of the week may be omitted.

The 288 is remarkable in that it will accept almost any date format. The following examples
demonstrate this to some extent. Neither of them conforms to the default format, but they
work. The first example below sets only the date and the second sets the date and the time.

TIME$=”2 Feb 86"
clock$=”Mon 0 3 Feb l 9 8 6 , 2 2 : 3 1 : 1 5 ”
TIME$=clock$

In general, you will find it easier to use []T (Clock popdown) to set the date and time.

If the Z88 cannot make sense of the string, or the day/date is impossible, a ‘Bad syntax’
error will be reported.

Syntax

TIME$=<str>

<s—var>=TIME$

Associated Keywords

TIM E

BBC BAS|C(280) Reference Manual for 288, 2nd edition 198

TO
The part of the FOR TO STEP statement which introduces the terminating value for the loop.
When the loop control variable exceeds the value following 'TO' the loop is terminated. For
example,

10 FOR i=1 TO 5 STEP 1 . 5

20 PRINT i
3 0 NEXT
40 PRINT I I * * * * * * * * * * I I

5 0 PRINT i

will print

1
2 . 5

4
* * * * * * * * * *

5 . 5

Irrespective of the initial value of the loop control variable and the specified terminating value, the
loop will execute at least once. For example,

10 FOR i= 20 TO 10
20 PRINT i
30 NEXT

will print

20

Syntax
FOR <n—var>=<numeric> T O <numeric> [S T E P <numeric>]

Associated Keywords
FOR, NEXT, STEP

BBC BAS|C(280) Reference Manual for 288, 2nd edition 199

TOP
A function which returns the value of the first free location after the end of the current program.

The length of your program is given by TOP-PAGE.

PRINT TOP-PAGE

Syntax
<n-var>=TOP

Associated Keywords
PAGE, HIMEM, LOMEM

BBC BAS|C(280) Reference Manual for 288, 2nd edition 200

TRACE (TR.)
TRACE ON causes the interpreter to print executed line numbers when it encounters them.

TRACE X sets a limit on the size of line numbers which will be printed out. Only those line
numbers less than X will appear. If you are careful and place all your subroutines at the end of the
main program, you can display the main structure of the program without cluttering up the trace
with the subroutines.

TRACE OFF turns trace off. TRACE is also turned off if an error is reported or you press <Esc>.

Line numbers are printed as the line is entered. For example,

10 FOR Z=O TO 2 : Q = Q * Z : N E X T

2 0 END

would trace as
[1 0] [2 0] >_

whereas

10 FOR z=o TO 2
20 Q=Q*Z:NEXT
3 O END

would trace as
[1 0] [2 0] [2 0] [2 0] [3 0] >_

and
10 FOR z=o TO 3
2 0 Q = Q * Z

3 0 NEXT

4 0 END

would trace as
[1 0] [2 0] [3 0] [2 0] [3 0] [2 0] [3 0] [4 0] >_

Syntax
TRACE ON | OFF | <l—num>
TRACE O N I O F F I (<numeric>)

Associated Keywords

None

BBC BAS|C(280) Reference Manual for 288, 2nd edition 201

TRUE
A function returning the value -1.

10 f lag=FALSE

100 IF answer$=correct$ flag=TRUE

150 IF f lag PROC_got_it_right ELSE PROC_wrong

BBC BAS|C(280) does not have true Boolean variables. Instead, numeric variables are used and
their value is interpreted in a 'Iogical' manner. A value of 0 is interpreted as false and NOT FALSE
(in other words, NOT 0 (= -1)) is interpreted as TRUE.

In practice, any value other than zero is considered TRUE. This can lead to confusion; see the
keyword NOT for details.

See the Variables sub-section for more details on Boolean variables and the keyword AND for
logical tests and their results.

Syntax
<n—var>=TRUE

Associated Keywords

FALSE

BBC BAS|C(280) Reference Manual for 288, 2nd edition 202

UNTIL (u.)
The part of the REPEAT UNTIL structure which signifies its end.

You can use a REPEAT...UNT|L loop to repeat a set of program instructions until some condition is
met.

If the condition associated with the UNTIL statement is never met, the loop will execute for ever.
(At least, until [Esc] is pressed or some other error occurs.)

The following example will continually ask for a number and print its square. The only way to stop it
is by pressing [E s c] or forcing a 'Too big' error.

10 2:1
2 0 REPEAT

3 0 INPUT "Enter a number " num

4 0 PRINT "The square o f “ ; n u m ; " i s ";num*num

5 0 UNTIL z=0

Since the result of the test 2:0 is ALWAYS FALSE, we can replace 2:0 with FALSE. The program
now becomes:

2 0 REPEAT

3O INPUT "Enter a number " num

4 0 PRINT "The square o f " ; num; " i s ";num*num

50 UNTIL FALSE

This is a much neater way of unconditionally looping than using a GOTO statement. The program
executes at least as fast and the section of program within the loop is highlighted by the
indentation.

See the keyword REPEAT for more details on REPEAT...UNT|L loops. See the Variables
sub-section for more details on Boolean variables and the keyword AND for logical tests and their
results.

Syntax
UNTIL < t—cond>

Associated Keywords
REPEAT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 203

USR
A function which allows a machine code routine to return a value directly.

USR calls the machine code subroutine whose start address is its argument. The processor's A, B,
C, D, E, F, H and L registers are initialised to the least significant words of A%, B%, C%, D%, E%,
F%, H% and L% respectively (see also CALL).

USR provides you with a way of calling a machine code routine which is designed to return one
integer value. Parameters are passed via the processor's registers and the machine code routine
returns a 32-bit integer result composed of the processor's HLH'L' registers. The HL register forms
the most significant word of the result.

X=USR (l i f t_down)

Unlike CALL, USR returns a result. Consequently, you must assign the result to a variable. It may
help your understanding if you look upon CALL as the machine code equivalent to a PROCedure
and USR as the equivalent to Function.

Syntax
<n—Var>=USR (<numeric>)

Associated Keywords
CALL

BBC BAS|C(280) Reference Manual for 288, 2nd edition 204

VAL

A function which converts a character string representing a number into numeric form.

X=VAL (A$)

VAL makes the best sense it can of its argument. If the argument starts with numeric characters
(with or without a preceding sign), VAL will work from left to right until it meets a non numeric
character. It will then 'give up' and return what it has got so far. If it can't make any sense of its
argument, it returns zero.

For example,

PRINT VAL ("—123. 45 . 67ABC")

would print

—123 . 4 5

and
PRINT VAL ("A+123 . 4 5 ")

would print

0

VAL will NOT work with hexadecimal numbers. You must use EVAL to convert hexadecimal
number strings.

Syntax
<n—var>=VAL (< s t r >)

Associated Keywords
STR$, EVAL

BBC BAS|C(280) Reference Manual for 288, 2nd edition 205

VDU (v.)
A statement which takes a list of numeric arguments and sends their least-significant bytes as
characters to the display.

A 16-bit value can be sent if the value is followed by a ';'. It is sent as a pair of characters, least
significant byte first.

VDU 8 , 8 :REM cursor l e f t two p l aces .
VDU & O A O D ; & O A O D ; :REM CRLF t w i c e

The bytes sent using the VDU statement do not contribute to the value of COUNT, but may well
change POS and VPOS.

You can use VDU to send characters direct to the current output stream without having to use a
PRINT statement. It offers a convenient way of sending a number of control characters to the
screen.

It also differs from PRINT CHR$(n) in that you cannot use it to end codes or characters to the
printer.

Syntax

VDU <numeric>{ , | ;<numeric>} [;]

Associated Keywords

CH R$

BBC BAS|C(280) Reference Manual for 288, 2nd edition 206

VPOS
A function returning the vertical cursor position. The top of the screen is line 0.

Y=VPOS

You can use VPOS in conjunction with POS to return to the present position on the screen after
printing a message somewhere else. The example below is a procedure for printing a 'status'
message at line 23. The cursor is returned to its previous position after the message has been
printed.

1 0 0 0 DEF PROC_message(message$)

1010 LOCAL x , y
1020 x=POS
1030 y=VPOS
1040 PRINT TAB(O,23) CHR$(7) ;message$;
1 0 5 0 PRINT T A B (x , y) ;

1 0 6 0 ENDPROC

Syntax

<n—var>=VPOS

Associated Keywords

POS

BBC BAS|C(280) Reference Manual for 288, 2nd edition 207

WIDTH (w.)
A statement controlling output overall field width.

WIDTH 80

If the specified width is zero (the initial value) the interpreter will not attempt to control the overall
field width.

WIDTH n will cause the interpreter to force a new line after n MOD 256 characters have been
printed.

WIDTH also affects the output to the printer.

Syntax
WIDTH <numeric>

Associated Keywords
COU NT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 208

The Screen Driver
Introduction
As with the BBC Micro, the VDU command may be used to send characters to the 288 Screen
Driver. Since the 288 is very different to the BBC Micro, there are considerable differences in the
action of the VDU commands.

In many ways the VDU command is similar to a PRINT CHR$(num) command, but it involves less
typing and a number of characters may be easily sent. It is most often used for sending characters
that control the action of the Screen Driver.

The VDU statement takes a list of numeric arguments (constants or variables) and sends their
least significant bytes as characters to the screen.

A 16 bit value (word) can be sent if the value is followed by a semi-colon. It is sent as a pair of
characters, the least significant byte first.

You cannot use the VDU command to send control sequences to a device (:PRT . 0, for example).

This section lists and briefly describes the control codes and their function.

Char Number Meaning

NUL 0 Null - it does nothing

SOH 1 Escape character for screen. Preceed special functions. See the
‘Description of Escape Sequences’ sub-section

BEL 7 Bell - make a short ‘beep’

BS 8 Move the text cursor backwards one character

HT 9 Move the text cursor forwards one character

LF 10 Move the text cursor down one line

VT 11 Move the text cursor up one line

FF 12 Clear the text area - identical to CLS

CR 13 Move the text cursor to the start of the current line

DEL 127 Black square

Escape Sequences
The character ASCII code 1 (SOH) is used to introduce special character combinations called
‘Escape Sequences’ which print special characters on the screen, toggle the current printing mode,
position the cursor on the screen, define windows and perform various display control functions.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 209

Description of VDU Codes

VDU 0

Does nothing. In other words, it is ignored.

VDU 1

This is the ‘Escape’ code which introduces numerous screen printing and control sequences which
are described in the ‘Description of Escape Sequences’ sub-section.

VDU 7

VDU 7 causes a short ‘beep’ from the speaker.

VDU 8

VDU 8 moves the cursor one character to the left. If the cursor was at the start of a line, it moves to
the end of the previous line (right edge of the text window). If it was also at the top line of the text
window, and scroll is enabled, the window contents scrolls down. If a window has been defined,
the cursor is constrained to remain within the window.

VDU 9

VDU 9 moves the cursor down one line. If the cursor was on the bottom line of the window and
scroll is enabled, the window contents scrolls up. If a window has been defined, the cursor is
constrained to remain within the window.

VDU 10

VDU 10 moves the cursor down one line. If the cursor was on the bottom line of the window and
scroll is enabled, the window contents scrolls up. If a window has been defined, the cursor is
constrained to remain within the window.

VDU 12

VDU 12 clears the text window and moves the cursor to the top left corner of the window; it is
identical to CLS command.

VDU 13

VDU 13 moves the cursor to the left edge of the window, but does not move it vertically. If a
window has been defined, the cursor is constrained to remain within the window.

VDU 127

Prints a black square.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 210

Description of Escape Sequences

Introduction

The character ASCII code 1 is used as an ‘Escape’ character to introduce special code sequences
that:

Generate special characters
Position the cursor
Set text attributes
Define text justification
Define windows
Provide miscellaneous screen control operations

The escape character is followed by

A single character

or

A sequence of codes, the first of which specifies the number of parameters (bytes) to
follow.

The parameter count may take one of two forms.

It may be the ASCII code for a single decimal digit, “1” (49) to “9” (57).

or

It may be a binary number with bit 7 set (128 added to the number).

Most escape sequences have less than 10 following parameters, and the first method of specifying
the parameter count is generally used. Numbers, not characters, are used as parameters in the
VDU command, so the ASCII character ‘2’, for example, would appear as 50 (its ASCII value), or
as ASC”2”.

Where appropriate, the escape sequences are shown in 2 ways (both of which send identical code
sequences to the screen driver). The first is the easiest to remember since it uses characters that
are related to the name of the function the sequence is performing (a mnemonic). However, this
method uses the ASC function to convert the characters into their ASCII codes. The second
method uses the actual codes sent to the screen driver. Whilst this is more difficult to remember, it
involves less typing.

The following table lists the special display characters such as ‘INDEX’, ‘MENU’, ‘HELP’, etc. The
‘Code’ column shows both ASC code (where applicable) and the Screen driver mnemonic (see
Developers’ Notes).

BBC BAS|C(280) Reference Manual for 288, 2nd edition 211

Special characters

Code

SD_SPC

SD_ENT

SD_TAB

SD_DEL

SD_ESC

SD_MNU

SD_INX

SD_HLP

SD_OLFT

SD_ORGT

SD_ODWN

SD_OUP

SD_BLFT

SD_BRGT

SD_BDWN

SD_BUP

SD_PLFT

SD_PRGT

SD_PDWN

SD_PUP

Sequence

VDU 1,32

VDU 1,33

VDU 1,39

VDU 1,42

VDU 1,43

VDU 1,45

VDU 1,124

VDU 1,224

VDU 1,225

VDU 1,226

VDU 1,227

VDU 1,228

VDU 1,229

VDU 1,230

VDU 1,231

VDU 1,240

VDU 1,241

VDU 1,242

VDU 1,243

VDU 1,244

VDU 1,245

VDU 1,246

VDU 1,247

VDU 1,248

VDU 1,249

VDU 1,250

VDU 1,251

Value (H)

8:20

8:21

&27

&2A

&2B

&2D

&7D

&E0

&E1

&E2

&E3

&E4

&E5

&E6

&E7

&F0

&F1

&F2

&F3

&F4

&F5

&F6

&F7

&F8

&F9

&FA

&FB

Description

Exact symbol

Bell symbol

Grave accent

Square

Diamond

SHIFT symbol

Vertical unbroken bar

SPACE symbol

ENTER symbol

TAB symbol

DEL symbol

ESC symbol

MENU symbol

INDEX symbol

HELP symbol

Outline arrow Left

Outline arrow Right

Outline arrow Down

Outline arrow Up

Bullet arrow Left

Bullet arrow Right

Bullet arrow Down

Bullet arrow Up

Pointer arrow Left

Pointer arrow Right

Pointer arrow Down

Pointer arrow Up

BBC BAS|C(280) Reference Manual for 288, 2nd edition

Width Boldable

yes

yes

yes

yes

yes

yes

yes

yes

212

Box Characters

VDU 1, '2', '*', <char>

(where <char> is from 'A' to '0') draws various characters such as arrows or box construction
shapes (which are all boldable), with the following logic. Each of the bottom 4 bits of 'char'
represents a direction:

bit 0 decimal 1 Left
b i t 1 decimal 2 Down
b i t2 decimal 4 Right
bit 3 decimal 8 Up

If one bit is set, a pointer arrow in the relevant direction is drawn. If two bits are set, two sides of a
square or a line will be drawn. If three bits are set, a 'T' shape will be drawn. If all four bits are set, a
cross will be drawn.

For example, the corner generated:

VDU 1, ASC"2", ASC"*", ASC"F"

makes a reasonable logical NOT sign.

__ __f in: ii“: .. :
gjeféumfifififififi‘fifigfifigmffiéfiiwm
Bfifit-zmsmmat-Z‘a 5...:ms. " ‘-
13-} a £5

11:}?

This example, VDU 1,50,42,79 - without using ASC, will draw a cross:

gammy? 'i 5‘ . .7 F E “ ...m;mza

Here's the complete VDU's:

Code Up Left Down Right

VDU l ,ASC”2 ” ,ASC” * ” ,ASC”A” 0 0 0 1

VDU l ,ASC”2” ,ASC”*” ,ASC"B” 0 0 1 0

VDU l ,ASC”2” ,ASC”*” ,ASC”C” 0 0 1 1

VDU l ,ASC”2”,ASC”*" ,ASC”D” 0 1 0 0

VDU l ,ASC”2” ,ASC”*” ,ASC"E" 0 1 0 1

BBC BAS|C(280) Reference Manual for 288, 2nd edition

Symbol

Pointer arrow Right

Pointer arrow Down

Corner Down Right

Pointer arrow Left

Horizontal bar

213

VDU

VDU

VDU

VDU

VDU

VDU

VDU

VDU

VDU

VDU

To draw a horizontally and vertically divided window:

BBC BAS|C(280) Reference Manual for 288, 2nd edition

l,ASC”2”, ASC”*”,ASC”F”

l ,ASC”2 ” ,ASC” * " ,ASC”G”

l ’ A s C I I Z I I , A S C I I * I I , A S C N H I I

l,ASC”2”, ASC”*",ASC"I”

l ’ A s c n z n l A S C I I * I I ’ A S C I I J I I

l ’ A S C I I Z I I , A S C I I * I I ’ A S C I I K I I

l ,ASC”2 ” ,ASC” * " ,ASC”L ”

1 , ASC”2”, ASC”*” , ASC"M”

1 , ASC”2”, ASC”*” , ASC”N”

l ,ASC"2 ” ,ASC" * " ,ASC"O”

Corner Left Down

T Down

Pointer arrow Up

Corner Up Right

Vertical unbroken bar

T Right

Corner Up Left

TUp

T Left

Cross

214

Cursor Positioning

The cursor position, ie. the next print position, may be moved by the following sequences - x and y
are the column and row respectively, with (0,0) being the top left of the current window:

VDU 1, ASC"3", ASC"@", 32+x, 32+y movetox,y
VDU 1, Asc"2" , ASC”X”, 32+x horizontal tab
VDU 1, ASC”2” , ASC”Y”, 32+y vertical tab

The origin of the window (see later) is at the top left-hand corner; its coordinates are 0,0.

Display Attributes

These combinations toggle various display modes of the current window (applying to
subsequently written characters):

VDU 1, ASC”B” Bold
VDU 1, ASC”C” Cursor visible
VDU 1, ASC”F” Flash
VDU 1, ASC"G” Grey
VDU 1, ASC”L" Caps Lock
VDU 1, ASC”R” Reverse video
VDU 1, ASC"S" Vertical scrolling
VDU 1, ASC”T” Tiny font
VDU 1, ASC”U" Underline
VDU 1, ASC”W" Horizontal scrolling

With vertical scrolling on, the window scrolls when the cursor tries to go outside of the window else the
cursor wraps from top row to bottom row or vice versa.

With horizontal scrolling on, the row scrolls between the left and right margins when the cursor tries to
go outside of the window margins else the cursor wraps from left column to right column or vice versa.

Horizontal scrolling disable vertical scrolling.

Rather than toggling these modes, they may be set or reset explicitly by prefixing them with '+' (on) or '-'
(off), and a count byte of two to indicate that there are two parameters. For instance:

VDU 1, ASC"2",ASC"+",ASC"B"

sets bold on. When written in this form, modes may be combined in a list, for example:

VDU 1, ASC”5",ASC”-”,ASC"B”, ASC"F", ASC”T", ASC"U"

resets the bold, flash, tiny, underline toggles. Finally SD_DTS (&7F) deletes all toggle settings, ie. sets all
toggles to off:

VDU 1, SD_DTS

BBC BAS|C(280) Reference Manual for 288, 2nd edition 215

Changing Display Attributes

The display modes are usually set at the time of writing text to the screen, however it is possible to
apply various effects to text already present. This approach is used in the menu system to highlight
commands and by the Filer to highlight files. The technique can only be used with the hardware
attributes ie. flash, grey, inverse and underline. The two commands, apply and eor, work over the
next <n> characters where <n> is the second parameter and offset from 32:

VDU 1, ASC”2”, ASC”A”, 32+<n> Apply toggles

VDU 1, ASC”2", ASC”E”, 32+<n> EOR toggles

The following sequence inverts a 20 character bar at cursor position (0,0):

VDU 1, ASC”2", ASC”+", ASC”R”, 1, ASC”3", ASC”@”, 32, 32, 1, ASC”2”, ASC”E”, 52

Cancelling Display Attributes

All the attributes can be set back to the system default (off) with the command:

VDU 1 , 127

Changing Display Attributes

It is possible to change the 'hardware' attributes (flash, grey, reverse and underline) of text already
printed on screen.

Sequence Description

VDU l , ASC"2 " , ASC"A" , 32+n Apply the current toggles over the next 'n'
characters

VDU l , 5 0 , 6 5 , 32+n

VDU 1 , ASC"2" , ASC"E" , 32+n Invert (EOR) the current toggles over the t next
'n' characters

VDU l , 5 0 , 6 9 , 32+n

The 'current toggles' are the current toggle settings, not the attributes of the character under the
cursor.

For example, the following code sequence would invert the first 20 characters on line 0 starting at
column 0.

PRINT TAB (O , 0) ;

VDU l , 5 0 , 4 3 , 82 :REM se t invert toggle

VDU l , 5 0 , 6 5 , 5 2 : REM Apply toggle f o r 2 0 (5 2 = 3 2 + 2 0) charac ters

BBC BAS|C(280) Reference Manual for 288, 2nd edition 216

The last 2 lines could be combined as:

VDU l , 5 0 , 4 3 , 8 2 , 1, 5 0 , 6 5 , 52

Text Justification and Margins

You can control how the text is positioned within a window with the following justification Escape
sequences.

Sequence Description

VDU 1 , ASC”2”, ASC"J" , ”N" Set normal justification (the default).
VDU 1, 50, 74, 78

VDU l , ASC”2” , ASC"J" , ”C” Centre text between the margins.
VDU l , 5 0 , 7 4 , 6 7

VDU 1 , ASC”2” , Asc"J" , ”L" Left align the text.
VDU 1, 50, 74, 76

VDU 1 , ASC”2” , ASC"J" , ”R” Right align the text.
VDU 1, 5 0 , 7 4 , 82

VDU 1,ASC”2”, ASC"L" , 32+n Set the left margin to 'n'. (Notice no parameter
VDU 1, 76, 32+n count.)

VDU l ,ASC”2”,ASC"R",32+n
VDU l , 8 2 , 3 2 , +n Set the right margin to 'n'. (Notice no parameter

count)

Windows

Up to 6 display windows may be defined by the user on the 288; they are referred to by a single
ASCII character '1' to '6'. Windows '7' and '8' are used by the 288 operating system. Window '7' is
the 'Topic' area and window '8' is used by a number of system calls for error processing.

Windows 'remember' their attribute settings (see earlier), but if a window area is overwritten then
the window's contents are lost.

The OZ window contains special characters which control the scanning of the screen and if these
are disturbed, the display will not work properly. Consequently it is very important that windows do
not go beyond the width of the screen and overwrite the ‘OZ.' window. To avoid this, windows
should not be more than 94 6-pixel characters from the edge of the application window (104 6-pixel
characters from the leftmost edge of the screen).

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 217

Defining a Window

The following Escape sequence command defines a window.

VDU l A S C ” 7 ” , A S C ” # ” , n , 3 2 + x , 3 2 + y , 32+w, 32+h, t
VDU 1, 5 5 , 3 5 , n , 3 2 + X , 32+y , 32+w, 32+h, t

Where 'n' is the ASCII code for the window number (49 to 54).
'x' is the start column (left-hand) of the window.
'y' is the start row (top) of the window.
'w' is the width of the window.
'h' is the height of the window.

't' is the 'type' of window, made up as follows:

bit-O = 1 sets left and right vertical bars on.
bit-1 = 1 sets the shelf brackets on.
bits-2 to 6 are ignored.
bit-7 must be set to 1.

The 'x ' and 'y' parameters are usually relative to the top left-hand corner of the applications area.
They may be made absolute (relative to the top left-hand corner of the screen) by using 128+x and
128+y in the Escape sequence. The 'type' parameter is optional. If the parameter count is set to 54
(ASC"6") it may be omitted and a window without bars or brackets will be defined.

Selecting a Window

Once defined, output may be directed to window ‘n’ (‘1’ to ‘6' - ASCII 49 to 54) with the following
Escape sequences:

Sequence

VDU l,ASC”2”,ASC”H”,ASC”n”
VDU 1,50,72, n

VDU l ,ASC”2” ,ASC"I " ,ASC” I1”
VDU 1 , 5 0 , 7 3 , r1

VDU l ,ASC”2 ” ,ASC”C” ,ASC”n ”
VDU 1 , 5 0 , 6 7 , 11

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition

Description

Direct output to window ‘n’ maintaining
(Holding) the display attributes previously set
for this window

Direct output to window ‘n’ resetting
(Initializing) the display attributes for this
window to their default value (cursor off,
scrolling desabled, etc).

Direct output to window ‘n’ resetting the display
attributes for this window to their default value
and clear the window.

218

The Z88 system uses windows extensively. The filer, for example, uses a window with ‘shelf
brackets’ and tiny/inverted/underlined text to produce a banner heading for the window. The
following BBCBAS|C(Z80) program demonstrates a ‘bannered’ window.

REM Define window 1 t o be 40 wide and 8 high
REM with l e f t and right bars and shel f b racke ts
REM s tar t ing a t x=1, y=O wi th re fe rence t o the
REM applications a rea .

VDU 1 , 5 5 , 3 5 , 4 9 , 3 3 , 3 2 , 7 2 , 4 0 , l 3 l

REM Select window 1 and rese t i t s attr ibutes

VDU 1 , 5 0 , 7 3 , 4 9

REM Set window at t r ibutes t o Tiny Font,
REM Underline, Inverse Video

VDU l , 5 2 , 4 3 , 8 4 , 8 5 , 8 2

REM Centre the tex t in the window

VDU 1 , 5 0 , 7 4 , 6 7

REM Print window t i t l e in cent re o f f i r s t l ine

PRINT T A B (0 , 0) ; " C e n t r a l Window T i t l e " ; T A B (0 , 0) ;

REM Apply current toggles over next 4 0 characters

VDU 1 , 5 0 , 6 5 , 7 2

REM Redefine window t o exclude top line (window
REM t i t l e a r e a) . This t ime, only l e f t and right
REM s ide—bars a re spec i f ied (1 2 9)

VDU 1 , 5 5 , 3 5 , 4 9 , 3 3 , 3 3 , 7 2 , 3 9 , 1 2 9

REM Select window 1 and rese t i t s attr ibutes

VDU 1 , 5 0 , 7 3 , 4 9

REM Display the cursor and enable vert ical
REM scrol l ing

VDU l , 5 1 , 4 3 , 6 7 , 8 3

BBC BAS|C(280) Reference Manual for 288, 2nd edition 219

User Defined Characters

You can define characters based on a 6x8 matrix with the following Escape sequence:

VDU l , 138 ,ASC"=" , char_code, r 0 , r1, r 2 , r 3 , r 4 , r 5 , r 6 , r 7

VDU l , 138 , 61, char_code, r 0 , r1 , r 2 , r 3 , r 4 , r 5 , r 6 , 1:7

The character code, char code, must be between 64 (‘@') and 127 ([DEL]).

The parameters ‘r0' to 'r7' are the numeric values of the top to bottom rows of the character with
bit-7 set. Their values must, therefore, lie between 128 (bit-7 set to 1) and 191 (bit-7 and bits 1 to 5
set to 1). Bit-5 is the left-hand bit and bit-0 the right. The standard characters have their left-hand
column (bit-5) blank. If user-defined characters are to be mixed with standard characters, they
should follow this convention.

Notice that the parameter count is 10 and it is consequently specified in the 'alternative' way.

If a lesser number of parameters are specified, the unspecified rows will be set to O. This is useful,
since many characters have a blank bottom row.

User defined characters co-exist with standard characters, they do not overwrite them as on the
BBC Micro.

Printing User Defined Characters

User defined characters may be printed using the following Escape sequence:

VDU l , A S C " 2 " , A S C " ? " , char_code
VDU 1, 5 0 , 6 3 , char_code

Limitations

On an unexpanded 288 (one without 128k or more in slot 1), only 16 characters may be defined
without encroaching on the PipeDream map. Characters above the limit of 16 may be
overwritten by map information when PipeDream is run. If the PipeDream map width is less than
65 pixels, then all the User Defined Characters may be used.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 220

Miscellaneous Functions

Window Scrolling

The following Escape sequences control window scrolling.

Sequence Description

VDU 1,254 Scroll current window downwards

VDU 1,255 Scroll current window upwards.

Grey Window

The following Escape sequences control window greying.

Sequence Description

VDU 1, ASC"2" , ASC"G", ASC"+" Grey the current window
VDU 1,50,71,43

VDU 1 ’ ASC"2", ASC"G" ’ ASC"_II Ungrey the current window

VDU 1,50,71,45

Multiple Output

The following Escape sequences send the same code a number of times.

Sequence Description

VDU 1, 51, 32+n,m Output 'n' copies of the code 'm'.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 221

Multiple Bell

The following Escape sequences rings the 'bell' a number of times.

Sequence Description

VDU 1,52,33,32+r, 32+s, 32+m Generate a series of r 'beeps' m*10
milliseconds long with a wait of s*10
milliseconds between each 'beep'.

VDU 1 52 33 35 82,232 For example, this VDU command Wi” SOUFId

3 'beeps' of 2 seconds each with 1/2 a
second between each 'beep'.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 222

Operating System Interface

Introduction

As with the BBC micro computer, the star (*) commands provide access to the operating system.
Since the BBC operating system is very different to the 288's, there are considerable differences in
the star commands.

When a star command is issued, BBCBAS|C(ZBO) passes it to the 288's operating system for
action. If it is not recognised, a 'Bad command' error is reported.

File Specifiers

File and device specifiers must comply with the standard 288 filer conventions. These conventions
are described at Appendix D to the 288 manual and summarised briefly below.

[: d e v i c e] [/] [p a t h /] filename .ex tens ion

:device The memory bank where the file is located or the name of a physical device.
This can be:

:RAM.0 RAM in slot 0 (internal memory).
:RAM.1 RAM in slot 1 (external memory).
:RAM.2 RAM in slot 2 (external memory).
:RAM.3 RAM in slot 3 (external memory).
:RAM.- Any RAM memory (RAM.0 to RAM.3). Used by the CLI for

temporary files. Lost on reset.
:SCR.0 Screen
:ROM.0 ROM.
:PTR.0 Printer.(Seria| port via the printer driver so that any special

codes and escape sequences are interpreted.)
:COM.O Communications (serial) port, but NOT via the printer

dflven
:INP.O Standard input
:OUT.0 Standard output
:NUL.0 Null. (Absorbs output and acts like an empty file on input.)

The final .0 of a device name may be omitted if the device is unique. For example, :COMO may be
abbreviated to :COM

There is a bug in versions of the filer up to and including version 3 that will cause the 288 to crash
if you use the device :RAM.- and then perform a soft reset whilst any files are still present in the
device. You can avoid this problem by deleting any files in :RAM.- as soon as you have finished
with them.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 223

path The list of directories which must be followed in order to find the specified file. The
names of each directory in the path must be separated by the slash (divide)
character. If the path is omitted, the current directory on the specified drive is
assumed.

BBCBASIC/PROGS

f i lename The name of the file. The length of the name must not exceed 12 characters.

extension The optional extension of the file. If an extension is used; it must be separated
from the filename by a full-stop.

The standard 288 'wild-cards' may be used when an ambiguous file specifier is acceptable.

? Allow any single character in this position. If this is used as the last character in the
name, a null character will be accepted.

Allow any character (including a null) from the position of the ‘4' to the end of the name or
extension.

// Matches any number of directories (or none).

Symbols
The following symbols and abbreviations are used as part of the explanation of the operating
system commands.

ufsp Unambiguous file specifier
(:device/path/name.extension).

str A string constant. For example: "FRED".

string A string constant or variable or an expression combining
them. For example: name$+"Phone".

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 224

Accessing Star Commands

The star commands may be accessed directly or via the OSCLI statement. The 2 examples below

both delete the file 'WOMBAT'.

* DE LE TE WOMBAT

OSCLI ("DELETE WOMBAT")

Syntax

A star command must be the last (or only) command on a program line and its argument may not
be a variable. If you need to use one of these commands with a variable as the argument, use the
OSCLI statement. Examples of the use of the OSCLI statement are given later.

Case Conversion

Star commands and their associated qualifiers are converted from lower-case to upper-case if
necessary. For example, *delete wombat is converted to *DELETE WOMBAT. This is in keeping
with the general 288 philosophy and the BBC Micro's machine operating system (MOS).

Star Commands

*CLI

Pass the following string to the Command Line Interpreter (CLI) for action. The use of the CLI is

explained later in this section..

*CLI s t r ing

*CLI .D 1000 (Delayfor10 seconds)

See the 'Command Line Interpreter' sub-section for more details.

*DELETE
Delete the specified file.

*DELETE ufsp

*DELETE GAMEl

This command will delete only one file at a time; wild-cards are not permitted in the file specifier. If
you wish to delete more than one file, you should use the 'Erase' function of the 'Filer'.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 225

*ERASE

This command is synonymous with *DELETE .

*NAME

Assign a 'name' to the current instantiation of BBCBASIC(280).

*NAME s t r ing

The list of suspended activities shown when the 288's index is selected has space for 'Your
Reference' for each of the suspended activities. This reference may be up to 15 characters long.
The *NAME command allows you to specify the reference for the current instantiation of
BBCBASIC(280). If the reference exceeds 15 characters, it is truncated. For example:

*NAME This i s the f i r s t instant iat ion

would appear in the list of suspended activities as:

*SPOOL and *EXEC

*SPOOL and *EXEC are not available on the 288. However, you can perform similar functions using the
CLI as shown below. (The '+'represents the '=/+' key - you don't have to use the [SHIFT] key.)

>LIST III +S [ENTER] The equivalent of *SPOOL. It produces a text file of the
............ program called S.SGN in :RAM.- . Remember to delete it
............ when you have finished with it.

Use PipeDream to add '.J' as the first line. Remember to load and save the file in plain text mode. You
can now use the command

>*CLI . * :RAM. —/S . SGN [ENTER]

to '*EXEC' the file back into BBCBASIC(280)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 226

You can use this technique to produce a text file for extensive editing in PipeDream.

*RENAME

Rename a file. OSCLI can also be used to rename a file. Using OSCLI has the
advantage that the file names may be string variables.

*RENAME ufspold ufspnew
OSCLI "RENAME "+s t r ing+" " + s t r i n g

*RENAME OLDFILE NEWFILE

*OSCLI ("RENAME "+f_namel$+" "+f_namel$+".BAK")
*OSCLI(“RENAME "+fname1$+" "+fname2$)

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 227

The Command Line Interpreter (CLI)

The 288 Command Line Interpreter (CLI) is very powerful. It 'sits' between the keyboard and the
current application and interprets the keys that you press. In most cases, the characters for the
keys that you press are passed directly to the application that is currently active. However, some
keys, [INDEX] El and <> for example, have a particular significance to the CLI and they cause
subsequent key presses to be interpreted as CLI commands and actioned accordingly. For
example, pressing the El key followed by the F key will take you into the filer popdown.

You can use the CLI to make changes to the way the Z88 behaves. Any such changes are
confined to the application that was active at the time.

The CLI takes its input from the keyboard or from a file. Thus, the CLI acts in many ways like a
programming language for controlling the way the computer functions.

CLI Command Files

The CLI may receive commands from a file as well as from the keyboard (or the current input
stream). For example, from within the FILER popdown, the following key sequence

0 EXprnt . c l i

will invoke (run) the CLI command file ‘pmt.c|i'.

A CLI command file is terminated when the end of the file is reached or it is suspended (see later).
Control is then returned to the CLI.

You can use the command .*filename

within one CLI command file to invoke another CLI command file. When the second CLI command
file terminates, control is returned to the first CLI command file.

Cancelling a CLI File

The only way to cancel a CLI command file whilst it is running or suspended is by pressing the
[SHIFT] and [E80] keys together. Since this sequence cannot be represented in any other way
(see below), you cannot cancel a suspended CLI command file from within a program.

You can cancel all CLI command files by pressing <>[ESC].

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 228

Special Character Sequences

Some of the keys on the keyboard, '0' and '0' for example, have no ASCII code. However, some
way of representing these keys is required when input is taken from a CLI command file (or
redirected). The ASCII character sequences listed below represent many of the ‘non-printable'
keys. Unfortunately not all key sequences may be represented in this manner. For instance, there
is no way of representing [CAPS LOCK] key or <>[ESC].

Sequence Represents

Holding down the El key and pressing the next key in the sequence.
| Holding down the O key and pressing the next key in the sequence.
~A Pressing El and releasing it before pressing another key.
~C Pressing O and releasing it before pressing another key.
| [[ESCAPE] key.
~E [ENTER] key.
~s [SHIFT]. This is only generated if <SH|FT> would have any effect.
~I [INDEX] key.
~M [MENU] key.
~H [HELP] key.
~x [DELETE] key.
~U T (cursor up) key.
~D 1 (cursor down) key.
~L <— (cursor left) key.
~R —> (cursor right) key.
A single '#'.
| | A single 'I'.
~~ A single ‘~’.
~ . Used to generate a single at the beginning of a line without it being taken as

the start of a CLI command.
Treat the rest of the line as a remark.

File Control Commands

A full stop at the beginning of a line in a CLI command file introduces the IIO redirection and
additional file control commands as described below.

IIO Redirection

The standard input and output for the 288 initially come from and go to the keyboard and the
screen. In computerjargon, they are 'bound' to the keyboard and the screen.

You can change the input and output binding (redirect the |/O) with the following CLI commands:

.<filename Take input from the file (or device) 'filename'

.>filename Send output to the file (or device) 'filename'

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 229

Don't forget that as far as the 288 is concerned there is no difference between a 'real' file and a
device. For example, the device :COM.0 is treated in the same way as a file by the 288.

In addition to completely redirecting the input or output, you can also copy the input or output
stream to a file with the following CLI commands:

.T<filename Send a copy of the input to the file (or device) ‘filename'

.T>filename Send a copy of the output to the file (or device) ‘filename'

The previous output redirection commands apply to the standard output. If you want to redirect the
Printer output, you may so do with the following CLI commands:

.=fi|ename Redirect the pre-filter output to the file (or device) ‘filename'

.T=filename Send a copy of the pre-filter output to the file (or device) 'filename'

Additional CLI File Commands

The following additional commands are only effective from within a CLI file or from redirected
input.

Sequence Effect

. 8 Suspend the current CLI, but maintain all re-bindings

.D Delay for 'n' centiseconds. If [ESC] is pressed during a delay, all subsequent
delays for that CLI will fail.

. J Jammer. Ignore all special sequences for the rest of the CLI. For example,
after this command, #P will generate the characters ‘#P' and not invoke
PipeDream.

. * f i l e Invoke (run) the CLI command file 'file'.

Re-binding Within a CLI Command File

Any re—bindings are in effect only for the duration of the CLI command file. You may suspend a
CLI command file and maintain the bindings with the ‘ . 8' command. However, once you have
done so, the only way of cancelling the CLI is by pressing [SHIFT]/[ESCAPE] on the keyboard.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 230

Accessing The CLI From BBCBASIC(280)

You can access the CLI from within BBCBASIC(280) by using the *CLI or OSCLI commands. The
following examples perform identically and cause a 10 second delay.

*CLI . D 1 0 0 0

Or

OSCLI (" C L I . D 1 0 0 0 ")

You can invoke a CLI file from within BBCBASIC(280) using either the *CLI or OSCLI commands.
For example

*CLI . * f i l ename

Or

O S C L I (" C L I . * f i l e n a m e ")

will invoke the CLI command file 'filename'.

The advantage of using the OSCLI command is that you can use a variable for the file name and
the command does not need to be the last (or only) one on a line. For example, the following
command will invoke the CLI command file whose name is held in the variable ‘fname$’.

OSCLI("CL| .*"+fname$)

A command passed to the CLI is not executed until the CLI gains control, and this only happens
when input is expected from the keyboard (or redirected input file). This is no problem if you are in
BBCBASIC(280)'s immediate mode where the computer is waiting for you to type something.
However, if you are in a program, the commands queued to the CLI will not be actioned until the
program pauses for input, or ends and exits to immediate mode. You can force the CLI to look for
input by appending an |NKEY(O) command to the end of your OSCLI command line. For example,
the following command will invoke the CLI command file ‘prntr.c|i' and execute it, instigating the
redirection which it sets up.

OSCLI ("CL I . *p rn t r . c l i ") :dummy=INKEY (O)

The file 'prntr.c|i may be created using PipeDream and saved as a plain text file with the name
‘prntr.cli. The file contains the following commands, for example.

#+P

. S

The use of this file is explained more fully in the 'Printing' section of the manual.

Don't forget that the only way to remove a suspended CLI is by pressing [SHIFT]/[ESC] on the
keyboard. You cannot issue a command from within a program that will remove it. For this reason,

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 231

you should avoid the use of suspended CLI files wherever possible.

CLI Command Examples

Example 1

From within BBCBASIC(280), the following command line will enter the Panel popdown, turn
sound off and return to BASIC. The line may be included in a BBC BASIC program or entered in
the direct mode.

*CLI #S~R~R~DN~E

Example 2

As previously mentioned, CLI commands are not executed until control is passed to the CLI. You
can demonstrate this with a short program incorporating the previous example. When you RUN
the following program, you will notice that 'LINE 10' and 'LINE 30' are printed before the Panel
popdown is entered.

10 PRINT "LINE 10"
20 *CLI #S~R~R~DN~E
30 PRINT "LINE 30"

Changing line 20 to

OSCLI ("CLI #S~R~R~DN~E") :X=INKEY(O)

forces the execution of the CLI command before 'LINE 30' is printed.

Example 3

The following BBCBAS|C(280) program is the program line editor (by Cambridge Computer Ltd)
introduced in the ‘Program editor’ in the General Information section. It makes extensive use of
CLI commands. The listing below is interspersed with comments that do not form part of the
program.

You do not need to use this program when using ROM V4.3 or later. The *EDIT command is
available, replacing the need for this manual approach using the CLI.

The editor consists of 2 procedures. The first creates a CLI command file that lists the line to a file
and then calls the second procedure which cleans it up and uses it as redirected input before
exiting. The line to be edited is then left in the input buffer. The 288's line editor may then be used
to edit the line as if it had just been typed in.

60000 END

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 232

Make sure that the program does not end up here accidentally and then define the first procedure.

6 0 0 1 0 DEF PROCE(B)

6 0 0 2 0 REM Cambridge Computer L t d .

The procedure is called with the line number to edit. Make sure this is not zero.

60030 IF B=O THEN ENDPROC

Build a CLI command file in :RAM.0 for later execution. The file is called EE.CL|. It will contain the
following lines:

. > : RAM. O/E . CLI (This will send subsequent output to the file E.CL|)

. J (‘Jam' the CLI so that nothing is mistaken as a CLI command)

LIST ' l i ne number B a s an ASCII s t r i ng '
PROCF

60040 A=OPENOUT ":RAM.O/EE.CLI"
6 0 0 5 0 B $ = " : R A M . O / E . C L I "
60060 PRINT#A,".>"+B$
60070 PRINT#A, " . J " , "LIST"+STR$ (B) , "PROCF"
6 0 0 8 0 CLOSE#A

Execute the CLI command file ‘EE.CL|' and then return. The CLI command file is not actually
executed by the CLI until control is passed to it. As previously explained, this is when keyboard
input is expected. Consequently, the commands in the CLI command file will not be executed until
BBCBAS|C(280) returns to the immediate mode (after the ENDPROC).

6 0 0 9 0 *CLI . * : R A M . O / E E . C L I
6 0 1 0 0 ENDPROC

Having built the CLI command file EE.CL| and queued it for action by the CLI, PROCE terminates
and BBCBAS|C(280) returns to the immediate mode. When this happens, the CLI command file
EE.CL| is executed and it sends:

LIST nnn
The program l ine ' n n n '

to the file E.CL|. It then causes ‘PROCF' to be executed. This is the procedure where the line to
be edited is cleaned up and turned into an input file.

60110 DEF PROCF

Force a keyboard input to signal to the CLI that the command file EE.CL| has terminated.

60120 A=INKEY (0)

The line to be edited is the second line in the file E.CL|. Open the file, throw away the first line

BBC BAS|C(280) Reference Manual for 288, 2nd edition 233

(LIST ‘nnn'), read the line to be edited and close the file.

6 0 1 3 0 A=OPENIN B $
6 0 1 4 0 INPUT#A,A$,A$
6 0 1 5 0 CLOSE#A

We have the line that we want to edit in A$. Now we use it to write a file (E.CL| again) that we can
use as redirected input.

6 0 1 6 0 A=OPENOUT B $
6 0 1 7 0 P R I N T # A , " . J " , A $

Change the CR at the end of the line to a ‘null’. We are going to use the file as input and if we left
the CR at the end, the line would be entered before we had a chance to edit it.

6 0 1 8 0 PTR#A=PTR#A—l
6 0 1 9 0 BPUT#A,O
6 0 2 0 0 CLOSE#A

Get rid of the 'gash' file EE.CL| and move the cursor left ready for editing.

60210 *ERASE :RAM.0 /EE.CL I
6 0 2 2 0 VDU 8

Redirect input to be taken from the file ECU and exit.

6 0 2 3 0 OSCLI " *CL I .< "+B$
6 0 2 4 0 ENDPROC

The line to be edited is now in the input buffer and may be edited as if it had just been typed in.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 234

Printing

Introduction

There are several ways of sending output from BBCBASIC(280) to the printer, either by echoing
output to the screen or by directing the output exclusively to the printer.

This section describes the various ways of sending output to the printer along with the advantages
and drawbacks of each method. It also describes the 'Printer Filter' and the actions of the various
control codes and 'Escape' sequences.

Keyboard Control

You can echo characters which are sent to the screen to the printer. Printer echo is controlled with
the following key sequences.

Printer echo on. All subsequent characters
sent to the screen are echoed to the printer.

. 6 6 Printer echo off.

This is not quite as straightforward as it at first appears. In fact, EI+P starts a CLI command that
sends a copy of characters sent to the screen to the printer as well. The key sequence CI-P
removes that CLI command.

:=_I-:-.'—'EI-;r_'-:-:l:= r'I-:‘-'I--=I‘r1r_-';::
. KEY Y u m m m m m i l fl fi - 3“; I I M E : .

1 En? r ear: 1:
EH ID DB WE:

- a 1: u l a t e r DR
- a lender Ell:
-I'utk' ET-

Whilst the CLI command is active, the 'CLI' indicator appears in the OZ window and page-waits do
not occur during a program listing.

In addition to EI-P, you can cancel the E|+P CLI command in the normal way by pressing the
[SHIFT]/[ESCAPE] or <>[ESCAPE].

Using printer echo is an easy way of listing a program on the printer. In the following example, the
‘+’ represents the ‘=/+' key; you don't have to use the [SHIFT] key.

LISTD+P [ENTER]

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 235

From Within a Program

There are 2 ways of sending data to the printer from within a program. The first involves the use of
the Command Line Interpreter and the second used the BBCBASIC(280) command, PRINT#. The
former echoes characters sent to the screen to the printer. It provides all the normal
BBCBASIC(280) print control features, but it is more complicated to set up. The latter sends
characters to the printer only. It is simple to set up, but it becomes more difficult to use as the
complexity of the printed line increases.

Using the CLI

The use of the Command Line Interpreter is explained in Section Seven of your 288 manual
httpszllcambridge288.jira.com/wiki/x/RAAkAg and in the ‘Operating System Interface' section of
this manual.

Using CLI commands to send data to the printer has the advantage that the screen format is
duplicated on the printer and all BBCBASIC(280)'s print format controls work. You do not,
however, have access to the special print controls provided by the 288's Printer Filter and you are
left with a suspended CLI command file (explained in the 'Operating System Interface' section).
Consequently, this is the least favoured method unless you especially want to echo screen output
to the printer.

It is possible to emulate pressing the key sequences EI+P and EI-P from within BBCBASIC(280)
by sending these key sequences to the CLI. At first glance, the following program line should
work. Remember that the ‘#' symbol is interpreted as El by the CLI.

*CLI #+P

This does not achieve the desired effect within a program because the CLI command does not
become active until the next attempt to read a character from the keyboard. In order to activate
the CLI command, the line needs to have an INKEY command at the end. Since a star command
must be the last (or only) command in a program line, you need to use the OSCLI command to
pass the CLI command to the operating system. Thus, the line becomes;

OSCLI ("CL I # + P ") :dummy=INKEY (0)

Try this line out on the 288. You will see the CLI indicator in the status panel flash on and off again

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 236

indicating that a CLI command sequence is momentarily active. Unfortunately, the print echo is
only active whilst the CLI indicator is present, so this is not a lot of use to us!

In order to keep print echo active, we need to suspend the CLI command sequence after we have
issued the print echo command. Unfortunately, this needs 2 command lines and must be done
using a CLI command file.

You will need to use PipeDream to create the following CLI command file. Save it as ‘plain text’ to
a file named pon.cli.

#+P
. 8

Remember to save it as ‘plain text’ - you will get all sorts of interesting error messages if you don't.

Once you have created this file, you can turn the printer on and off from within your program with
the following program lines:

Printer On

OSCLI (" C L I . * :RAM. O / p o n . c l i ") :dummy=INKEY (0)

All subsequent PRINT statements will print to the screen and the printer.

The first line of the CLI file turns printer echo on by sending the command CI+P to the CLI. In order
to stop the printer echo being turned off at the end of the CLI command file, the CLI is suspended
with the ‘.8' command on the next line. Without the |NKEY(O) command at the end of the program
line, print echo would not be turned on until the program attempted to read from the keyboard or
the program terminated and BBCBASIC(Z80) returned to the immediate mode.

Remember, you cannot cancel a suspended CLI command file from within a program. The only
way is to press the [SHIFT]/[ESC] or <>[ESC] keys on the keyboard. Consequently, you should
avoid using this method of sending characters to the printer unless you really need to.

The use of CLI command files is explained more fully in the ‘Operating System Interface' section
of the manual.

Printer Off

OSCLI (" C L I # — P ") :dummy=INKEY (0)

Subsequent PRINT statements will now only print to the screen.

This line sends EI-P to the CLI and turns printer echo off. Unfortunately, this leaves the CLI
suspended and there is no way to reactivate it from within your program. You can, however,
reactivate the CLI manually by pressing [SHIFT]/[ESCAPE] when your program has terminated.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 237

You may not initially notice the effect of having a suspended CLI command file. However, when
you list a program you will find that the listing no longer pauses automatically after every page.

Using PRINT#

You can also send output to the printer using the devices (hardware names) :PRT.O and :COM.0.
The :PRT.0 device filters output through a 'filter' (device driver), the :COM.0 device sends output
direct to the printer (serial port).

This method of printing does allow you to make use of the 'Printer Filter', but as the complexity of
the line to be printed increases, this method becomes more difficult.

To send data to the printer in this way, you first open a file to the device and then use the PRINT#
statement to send the characters to be printed to the printer. Characters printed in this way do not
appear on the screen.

When you send characters to the printer device :PRT.O in this way, they are processed by the
Printer Filter and all the codes described in the 'Print Filter' sub-section are recognised and acted
upon.

If you are using the :PRT.0 device, you must send the printer-on Escape sequence ENQ [(ASCII
codes 5 & 91) to turn printing on before you send anything you want printed. Remember to turn
the printer off with the Escape sequence ENQ] (ASCII codes 5 & 93) when you have finished.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 238

The following example opens a file and prints to it via the Printer Filter. It uses some printer
Escape sequences which are discussed in the 'Printer Escape Sequences‘ sub-section and it
assumes that the Printer Editor has been used to set 'Off at CR' to ‘No' for bold and underline.

10
20
3O
4O
5O
6O
7O
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220

REM Open the pr inter f i l e

prntr=OPENOUT " : P R T "

ENQ$=CHR$ (5) :LF=1O

REM Send the Print F i l ter On Escape sequence
PRINT#prntr , ENQ$+" ["

REM Set bo ld print on

PRINT#prntr , ENQ$+"B"

REM S e t underline on

PRINT#prntr,ENQ$+"U"

REM Print 'Hello Wor ld ' and send a l ine—feed
PRINT#prntr,"Hello World":BPUT#prntr,LF

REM Send the Print F i l te r O f f Escape sequence
PRINT#prntr , E N Q $ + "] "

REM C lose the printer f i l e
CLOSE#prntr
END

PRINT# is intended for sending data to a file. Consequently, it works in a different way to PRINT.
Items separated by commas or spaces are treated as different data fields and a carriage-return is
sent between each field. Consequently, you need to build and send a complete line at a time. In
addition, you must explicitly send the line-feed character at the end of the line.

If you are using the :COM.O device, everything is sent to the printer and you don't need to turn it
on and off. However, you must send the printer specific control codes for underline, etc since the
Printer Filter is not being used.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 239

The Printer Filter

All output explicitly sent to the printer device :PRT.0 goes via the ‘Printer Filter'. This filter
examines every character to see if it has some special meaning or if it is to be translated into
another character or sequence of characters. The code translation and command codes may be
edited using the 'Printer Editor' (EIE) as described in your Z88 Users' Guide.

Most printers have a set of control codes that switch the printer into similar modes. However,
whilst most printers provide a number of similar modes, the codes used are often different. The
'Printer Filter' provides a universal set of print format controls which may be used irrespective of
the printer in use. Provided you use the 'Printer Editor' (EIE) to configure the Print Filter for your
printer, your programs will work in exactly the same way irrespective of the printer in use.

The 'Printer Filter On' and 'Printer Filter Off‘ Escape sequences also turn the printing on and off.
So remember to use them before and after printing.

The tables in the following sub-sections include program segments that will send the appropriate
codes to the printer file. These assume that the printer file handle is in the variable ‘pf' and that
ENQ$ is CHR$(5).

Printer Control Codes

Escape Sequence Meaning

PRINT#pf, ENQ$+" [" Printer ON.
BPUT#pf, 5:BPUT#pf, 91

PRINT#pf, ENQ$+"] " Printer OFF.
BPUT#pf, 5 : BPUT#pf, 93

PRINT#pf, ENQ$+"2P"+CHR$ (32+n) Set page length to 'n' lines.
BPUT#pf, 5 : BPUT#pf, 50 :BPUT#pf, 80 :BPUT#pf, 32+n

PRINT#pf, ENQ$+"2H"+CHR$ (32+n)
BPUT#pf, 5 : BPUT#pf, 50 :BPUT#pf, 72 :BPUT#pf, 32+n Microspace 'n' units of 1/120

inch.

PRINT#pf, ENQ$+"SS" BPUTfpf, 5 : BPUT#pf, 83
Reset attributes that would be

PRINT#pf, ENQW53$"+CHRS (x) +CHRS (y) reset by a new-line.
BPUT#pf, 5 : BPUT#pf, 51 :BPUT#pf, 36 : BPUT#pf, x : BP
UT#pf , y Send the hex values 'x' and 'y' to

the printer.

Attributes

The following codes toggle printer attributes such as bold print, underline, etc. These toggles can

BBC BAS|C(280) Reference Manual for 288, 2nd edition 240

be automatically reset at the next carriage-return by setting the 'Off at CR' option in the Printer
Editor to 'Yes'. By default, all the attribute toggles with the exception of ‘Alternate Font' (‘A') and
'User Defined' (‘E') are automatically reset when a carriage-return is sent.

Escape Sequence Meaning

PRINT#pf,ENQ$+"U" Undemne
BPUT#pf ,5 :BPUT#pf ,85

PRINT#pf, ENQ$+"B" Bold
BPUT#pf, 5 : BPUT#pf, 66

PRINT#pf, ENQ$+"X" Extended sequence
BPUT#pf, 5 :BPUT#pf88

PRINT#pf, ENQ$+" I " Italics
BPUT#pf, 5 : BPUT#pf, 73

PRINT#pf, ENQ$+"L" Subscript
BPUT#pf, 5 : BPUT#pf, 76

PRINT#pf, ENQ$+"R" Superscript
BPUT#pf5:13PUT#pf, 82

Escape Sequence Meaning

PRINT#pf, ENQ$+"A" Alternate font
BPUT#pf, 5 : BPUT#pf, 65

PRINT#pf, ENQ$+"E" User defined
BPUT#pf, 5 : BPUT#pf, 69

Unless you have used the Printer Editor to set 'Off at CR' to 'No', you should use the ‘BPUT#'
version of the commands. If you use the 'PRINT#' version of the commands, the terminating CR
will undo its effect (excepting Printer On/Off and Alternate and User Defined fonts).

Unlike the screen control codes, the printer control codes cannot be strung together or explicitly set
by preceding them with a '+' or ‘-’. Neither is there a 'reset all toggles' command.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 241

Untrapped Characters

The following control characters are not treated as commands by the Print Filter. Like the normal
printable characters (Space to Delete &20 to &7F) they may be translated, but they are otherwise
sent directly to the printer.

Name Hex Value

NUL &OO

BEL &07

BS &08

HT &09

LF &10

VT &OB

FF &OC

CR &OD

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 242

Printer Redirection

The 'Operating System Interface' section of the manual describes how input and output may be
redirected. The diagram below may help you to visualise how and where redirection takes place. It
also illustrates how the Printer Editor and the PANEL affect the output.

Application

" Output redirected
to the printer
f._>j:PRT} Redirected

printer output
[.=fi|ename]

Printér
Filter

Comms
Port

9 Pin B
Connector

Since you cannot issue CLI 'dot' commands from the keyboard, you will need to write a CLI
command file using PipeDream in order to redirect the printer input or output. The CLI command
file shown below would redirect printer output to a file called ‘pfile'.

.=pfile

.S

If this file had been saved (in ‘plain text’ format) as ‘predif, you could initiate printer output
redirection by issuing the command

OEXpredir

from the filer (CIF), or

*CLI . *predir

in the immediate mode from within BBCBAS|C(ZBO).

If you wished to issue the command from within a BBCBAS|C(Z80) program, you would need the
following program line.

OSCLI (" C L I . * p r e d i r ") :X=INKEY (0)

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 243

See the 'Operating System Interface' section of the manual for an explanation of CLI command
files.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 244

The Serial Port

Hardware Connections

288 9 Way D Type Printer
(Male) 25 Way D Type (Male)

1 Unswitched +5v at 10 uA output

2 TX Transmit data output 3 RX

3 RX Receive data input 2 TX

4 RTS Ready to send output 5 CTS

5 CTS Clear to send input 20 DTR

6 Reserved for future use

7 GND Signal ground 7 GND

8 DCD Data carrier detect input 20 DTR

9 DTR Data terminal output 6,8 DSR, DCD
ready

DTR is high when the Z88 is awake. The 288 is always awake when the screen is active. Even if
the 288 is asleep, it will wake every minute or so to carry out various housekeeping tasks
(checking the alarms, for example). At these times, DTR will go high.

Pin 1 can be used to indicate that power is available to the 288.

You can use the PANEL (EIS) to set up the parameters of the serial port (speed, parity, etc).

Flow Control

Output from and input to the serial port can be controlled either by software or hardware. The
hardware handshaking is always active, so if you only want to use software handshaking, you will
need to wire a cable to set the handshaking lines high at all times. You can do this by connecting
pins 5, 8 and 9 together on the 288 9—pin connector.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 245

Output

An external device (printer, modem, etc) can ask the 288 to stop sending by either bringing the
CTS line (pin 5) low or sending an XOFF (CHR$(19)) character to the Z88.

There is potentially a slight delay when using software handshaking. Transmission will stop only
after the XOFF character has been recognised and, since the 288 has an input buffer, this can
only happen after previously received characters have been processed. With hardware flow
control, transmission stops at the end of the next character.

Transmission is resumed when an XON (CHR$(17)) character is received or the CTS line is
brought high.

The output buffer is around 95 bytes long.

Input

If software flow control is used, the 288 will send XOFF to an external device once the receive
buffer is more than half full. Characters will continue to be received until there are only 15 spaces
left in the buffer. At this point, an XOFF character will be sent for every character subsequently
sent by the external device. If the receive buffer overflows, then the received data is lost. The 288
will send the XON character when the receive buffer has been cleared to less than half full.

If hardware flow control is used, the 288 will bring RTS low when the receive buffer becomes more
than half full and bring RTS high when the receive buffer is less than a quarter full.

The input buffer is around 127 bytes long.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 246

BBC BAS|C(280) Files
Introduction
These notes start with some basic information on files, and then go on to discuss program file
manipulation, simple serial files, random files and, finally, indexed files. The commands and
functions used are explained, and followed by examples.

If you are new to BBC BAS|C(280), or you are experiencing difficulty with disk files you might find
these notes useful. Some of the concepts and procedures described are quite complicated and
require an understanding of file structures. If you have trouble understanding these parts, don't
worry. Try the examples and write some programs for yourself and then go back and read the
notes again. As you become more comfortable with the fundamentals, the complicated bits
become easier.

The programs given in this manual are for demonstration and learning purposes; they are not
intended to be taken and used as working programs without modification to suit your needs. They
are definitely NOT copyright and, if you want to, you are free to incorporate any of the code in the
programs you write. Use them, change them, or ignore them as you wish. There is only one
proviso; the programs have been tested and used a number of times, but we cannot say with
certainty that they are bug free. Remember, debugging is the art of taking bugs out - programming
is the art of putting them in.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 247

The Structure of Files

If you understand the way files work, skip the next two paragraphs. If you understand random and
indexed files, skip the following two paragraphs as well.

Basics

Many people are confused by the jargon that is often used to describe the process of storing and
retrieving information. This is unfortunate, because the individual elements are very simple and the
most complicated procedures are only a collection of simple bits and pieces.

All computers are able to store and retrieve information from a non-volatile medium. In other
words, you don't lose the information when the power gets turned off. Remember, pressing both
[SHIFT] keys does not actually turn your 288 off; removing the batteries would. Audio cassettes
are used for small micro computers, diskettes for medium sized systems and magnetic tape and
large disks for big machines. Some computers, like the 288, are designed so that the contents of
RAM are not lost when the machine is ‘shut down’ (pressing both [SHIFT] keys). These
computers can use RAM instead of tape or disk as a non-volatile medium. RAM has several
advantages of disks. File access is very much quicker and there aren’t any disks to lose; spill
coffee over, etc.

In order to be able to find the information you want, the information has to be organised in some
way. All the information on one general subject is gathered together into a FILE. Within the file,
information on individual items are grouped together into RECORDS.

Serial (Sequential) Files

Look upon the cassette or diskette or the 288’s RAM as a drawer in a filing cabinet. The drawer is
full of folders called FILES and each file holds a number of enclosures called RECORDS.
Sometimes the files are in order in the drawer, sometimes not. If you want a particular file, you start
at the beginning of the drawer and search your way through until you find the file you want. Then
you search your way through the records in the file until you find the record you want.

This is very similar to the way a cassette is searched for a particular file. You put the cassette in
the recorder, type in the name of the file you want and push play. You then go and make a cup of
tea whilst the computer reads through all the files until it comes to the one you want. Because the
cassette is read serially from start to end, it's very difficult to do it any other way.

Life is easier with a computer that uses diskettes or RAM. There is an index which tells the
computer where to look for each of the files and the serial search for the file is not necessary.
However, once you have found the file, you still need to read through it to find the record you want.

There are a number of ways to overcome this problem. We will consider the two simplest; random
access (or relative) files and indexed files.

Random Access Files

The easiest way to find the record you want is to identify each record with a number, like an
account number. You can then ask for, say, the 23rd record. This is similar to turning to page 23 in
the account book. This works very well at first. Every time you get a new customer you start a new
page. Most of the pages have a lot of empty space, but you must have the same amount of space

BBC BAS|C(280) Reference Manual for 288, 2nd edition 248

available for each account, othenlvise your numbering system won't work. So, even at the start,
there are a lot of gaps.

What happens when you close an account? You can't tear out the page because that would upset
the numbering system. All you can do is draw a line through it - in effect, turn it into a blank page.
Before long, quite a number of pages will be 'blank' and a growing proportion of your book is
wasted.

With other forms of 'numbering', say by the letters of the alphabet, you could still not guarantee to
fill all the pages. You would have to provide room for the 28, but you may never get one. When you
started entering data, most of the pages would be blank and the book would only gradually fill up.

The same happens with this sort of file stored in the 288’s RAM. A random file which has a lot of
empty space in it is described as sparse. Most random files start this way and most never get more
than about V4 full. Count the number of empty 'slots' in your address book and see what proportion
this is of the total available.

Indexed Files

Suppose we want to hold our address book on the computer. We need a number of records each
holding the name, address, telephone number, etc of one person. In our address book, we have
one or two pages per letter of the alphabet and a number of 'slots' on each page. With this
arrangement, the names are in alphabetical order of their first letter. This is very similar to the way
the accounts book was organised except that we don't know the page number for each name.

If we had an index at the front of the book we could scan the index for the name and then turn to
the appropriate page. We would still be wasting a lot of space because some names, addresses
etc are longer than others and our 'slots' must be large enough to hold the longest.

Suppose we numbered all the character positions in the book and we could easily move to any
character position. We could write all the names, addresses, etc, one after the other and our index
would tell us the character position for the start of each name and address. There would be no
wasted space and we would still be able to turn directly to the required name.

What would happen when we wanted to cancel an entry? We would just delete the name from the
index. The entry would stay in its original place in the book, but we would never refer to it.
Similarly, if someone changed their address, we would just write the name and the new address
immediately after the last entry in the book and change the start position in the index. Every couple
of years we would rewrite the address book, leaving out those items not referenced in the index
and up-date the index (or write another one).

This is not a practical way to run a paper and pencil address book because it's not possible to turn
directly to the 3423rd character in a book, and the saving in space would not be worth the tedium
involved. However, with BBC BASIC you can turn to a particular character in a file and the tedium
only takes a couple of seconds, so it's well worth doing.

Files in BBC BAS|C(Z80)

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 249

Introduction

Conventional serial disk file procedures are little different from file procedures for cassette based
computers. With serial files the records need only be as large as the data to be stored and there
are no empty records. (The data item FRED only occupies 4 bytes whereas ERMINTRUDE
occupies 10 bytes.) Consequently serial files are the most space efficient way to hold data on a
disk (or any other storage media).

Serial files cannot be used to access particular records from within the file quickly and easily. In
order to do this with the minimum access time, random access files are necessary. However, a
random file generally occupies more space on the disk than a serial file holding the same amount
of data because the records must be a fixed length and some of the records will be empty.

Most versions of BASIC only offer serial and random files, but because of the way that disk files
are handled by BBC BASIC (both on the BBC computer and the 288 using BBC BAS|C(280)), it is
possible to construct indexed, and even linked, files as well. Indexed files take a little longer to
access than random files and it is necessary to have a separate index file, but they are generally
the best space/speed compromise for files holding a large amount of data.

How Data is Read/Written

As far as the programmer is concerned, data can be written to and read from a file a data item or a
character (byte) at a time. In fact, there is a buffer between the program and the operating system,
but this should only concern you when you are organising your program for maximum file access
efficiency.

Because of the character by character action of the write/read process, it is possible (in fact,
necessary) to keep track of your position within the file. BBC BASIC does this for you automatically
and provides a pointer PTR (a pseudo-variable) which holds the position of the NEXT character
(byte) to be written/read. Every time a character is written/read PTR is incremented by 1, but it is
possible to set PTR to any number you like. This ability to 'jump around' the file enables you to
construct both random (relative) and indexed files.

BBC BASIC provides the facility for completely free-format binary data files. Any file which can be
read by the computer, from any source and in any data format, can be processed using the BGET,
BPUT and PTR functions.

How Data is Stored

Data files written by the PRINT# statement and read by the |NPUT# statement have different
format to files produced by similar statements on the BBC Micro. This only becomes significant
when calculating record sizes for random access files. Record sizing is discussed at the ‘Random
(Relative) Files’ sub-section.

Numeric Data

In order to make the most efficient use of disk space and to preserve accuracy, numerics are
stored in a data file in binary format, not as strings of characters. To prevent confusion when
numerics are being read from a file, both integers and reals occupy 5 bytes (40 bits). If they were
stored as character strings they could occupy up to 10 bytes. For compatibility with other BASICS,
you can store numerics as strings by using the STR$ function.

How Strings are Stored

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 250

Strings are stored in a data file as the ASCII bytes of the string followed by a carriage-return. A
string, therefore, occupies one more byte than the length of the string. If no carriage-return (CR) is
found within 256 characters when reading a string value, a null string is returned.

If you need a line feed as well, it's no problem to add it using the Byte-Put function BPUT#.
Similarly, extraneous characters included in files produced by other programs can be read and, if
necessary, discarded using BGET#.

How Files are Referred To

We refer to a file (or device) by its name. Unfortunately, this is too complicated for the 288’s
Operating System. Consequently, the only time OZ refers to a file by its name is when it opens the
file. From then on, it refers to the file by the number it allocated to it when it was opened. This
number is called the 'file handle'.

The 288 Flling System

The 288 has a uniform device independent |/O system. Although procedures do exist that will
explicitly send data directly to, for example, the serial port, it is more logical to think of these
devices as ‘files’ and use the standard file |/O interface.

For example, to send data to the communications port (serial port without the printer filter), you can
open a file to :COM.0 and PRINT to itjust as if you were PRINTing to a file.

10 com=OPENOUT (“ : COM. 0 ”)

2O PRINT#com,”This i s going t o the comms device”
3 0 BPUT#com, lO : REM Send the l inefeed
4O CLOSE#Com

Remember, you need to explicitly send the line-feed. See the ‘Operating System Interface’ and
‘Printing’ sections for more details.

Logically, you can only write to and read from the |/O devices in a sequential manner. It makes no
sense, for example, to try to set the file pointer with PTR#.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 251

File Access Commands

Introduction

The commands and statements used in file manipulation are described below. They are not in
alphabetical order, but in the order you are likely to want to use them. Whilst these notes repeat
much of the material covered in the Statements and Functions section, additional information has
been added and they are presented in a more readable order.

Filenames

Please refer to your ‘Z88 Users’ Guide’ for a full explanation of device, directory and filenames.
The explanation below is only intended as a brief reference guide.

The 288’s operating system allows a composite file name in the following format:

: DEVI CENAME/ PATHNAME / FI LENAME . EXTENSION

The devicename is the name of a RAM memory or a physical device. This can be:

:RAM. 0 Files stored in RAM in slot 0 (internal memory)
:RAM. 1 Files stored in RAM in slot 1 (external memory)
:RAM. 2 Files stored in RAM in slot 2 (external memory)
:RAM. 3 Files stored in RAM in slot 3 (external memory)
:RAM. — Files stored in any RAM (:RAM.0 - :RAM.3).

Used by the CLI for temporary files. Lost on Reset
:SCR . 0 Screen
:ROM. 0—3 Application names available in internal ROM or external application cards,

such as EPROM or Flash cards.
:EPR. 0—3 Files stored on external EPROM or Flash Cards, formatted via Filer.

This device is only available in OZ V5.0 or later.
:PRT . 0 Printer. (Serial port via the printer driver so that any special codes and

escape sequences are interpreted)
:COM. 0 Communications (serial) port, but NOT via the printer driver.
: INP. 0 Standard input
:OUT . 0 Standard output.
:NUL . O Null. (Absorbs output and acts like an empty file on input.

The final .0 of a device name may be omitted if the device is unique. For example, :COM.O may be
abbreviated to :COM.

There is a bug in all ROM versions before V4.0, in the Filer popdown, that will cause the 288 to
crash if you use :RAM. — device to store files - and then perform a soft reset whilst any files are still
present in the device. You can avoid this problem by deleting any files in :RAM.- before issuing a
soft reset.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 252

The pathname is the name of the directory or the path to the directory in which the file will be
found or created.

The filename can be up to 12 characters long, and the extension up to 3 characters.

Organisation of Examples

Simple examples are given throughout this section with the explanation of the various commands.
The following sections contain examples of complete programs for serial files, random files and,
finally, indexed files. If you have problems understanding the action of any of the commands you
may find the examples helpful. The best way to learn is to do - so have a go.

Program File Manipulation

SAVE
Save the current program to a file, in internal (tokenised) format. The filename can be a variable or
a string.

SAVE f i lename

SAVE "FRED"

A$="COMPOUND"

SAVE A $

The first example will save the program to a file named FRED. The second will save COMPOUND.

You can specify a device name and a path as well as the file name. The following example will
save the current program to a file called “TEST” in a directory called PROGS which is in a directory
called BBCBASIC on device :RAM.0.

SAVE “ :RAM . O/BBCBASIC/PROGS/TEST”

LOAD
Load the program 'filename' into the program area. The old program is deleted (as if a NEW
command had been given prior to the LOAD) and all the dynamic variables are cleared. The
program must be in tokenised format. File names must conform to the 288 file format.

LOAD f i lename

LOAD "FRED"

A$="HEATING"
LOAD A $

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 253

As with SAVE, you can specify a device name and path. The example below loads the program
saved previously as an example of the SAVE command.

LOAD " :RAM. O/BBCBASIC/PROGS/TEST"

CHAIN
LOAD and RUN the program 'filename'. All the dynamic variables are cleared. The program must
be in tokenised format.

CHAIN f i lename

CHAIN "GAMEl"

A$="PART2 "
CHAIN A$

As with SAVE and LOAD, you can specify a device name and/or a path.

*DELETE
Delete the file 'filename'. Since variables are not allowed as arguments to * commands, the
filename must be a constant.

*DELETE f i lename

*DELETE FRED
*DELETE PHONE . DTA

To delete a file whose name is known only at run-time, use the OSCLI command. It's a bit clumsy,
but a lot better than the original specification for BBC BASIC allowed. This time all of the
command, including the ERA, must be supplied as the argument for the OSCLI command. You can
use OSCLI for erasing a file whose name is a constant, but you must include all of the command
line - in quotes this time.

fname$="FRED"

OSCLI "DELETE "+fname$

fname$="PHONE . DTA"
command$="DELETE "
OSCLI command$+fname$

OSCLI "DELETE FRED"

You can include a device name and/or path in both the *DELETE and *OSCLI command formats.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 254

*RENAME

Rename 'file1' to be called 'file2'.

*RENAME f i l e2= f i l e l
*RENAME FRED2=FRED1
*RENAME PHONE . DTA=PHONE

Once again, if you want to rename files whose names are only known at run-time, you must use
the OSCLI command.

fname1$="FRED1"
fname2$="FRED2"
OSCLI "RENAME "+fname2$+"="+fname1$

If you attempt to rename an open file, an ‘in use’ error will be reported.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 255

Files and Devices

Introduction

The statements and functions used for data files are:

OPENIN
OPENUP
OPENOUT
EXT#
PTR#
INPUT# BGET#
PRINT# BPUT#
CLOSE# END
EOF#

Opening Files

You cannot use a file until you have told the system it exists. In order to do this you must OPEN the
file for use. Other versions of BASIC allow you to choose the file number. In order to improve
efficiency, BBC BASIC(Z80) chooses the number for you.

When you open the file, a file handle (an integer number) is returned by the interpreter and you will
need to store it for future use. (The open commands are, in fact, functions which open the
appropriate file and return its file handle.)

You use the file handle for all subsequent access to the file. (With the exception of the STAR
commands outlined previously.)

If the system has been unable to open the file, the handle returned will be 0. This will occur if you
try to open a non-existent file in the input mode (OPENIN or OPENUP).

The BBC BAS|C(Z80) for the 288 imposes a limit on the number of files you can have open at any
one time. The limit is 10 for BBC BAS|C(280) and more than 90 for the whole filing system (other
application instantiations opening files), depending on which ROM version you are using on your
288. If you attempt to have more files open at one time than allowed for BBC BASIC(Z80), the file
will not be created and you will get a ‘Too many files open' error. If you try to exceed the limit for
the filing system, you will get a ‘No Room' error.

File Opening Functions

The three functions which open files are OPENIN, OPENUP and OPENOUT. OPENOUT should be
used to create new files, or overwrite old ones. OPENIN should be used for input only and
OPENUP should be used for input/output.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 256

OPENOUT
Open the file 'filename' for output and return the file handle allocated. The use of OPENOUT
destroys the contents of the file if it previously existed. (The directory is updated with the length of
the new file you have just written when you close the file.)

x=OPENOUT f i lename

x=OPENOUT devicename

file_num=OPENOUT "PHONENUMS"
file_num=OPENOUT ":COM"

You always need to store the file handle because it must be used for all the other file commands
and functions. If you choose a variable with the same name as the file, you will make programs
which use a number of files easier to understand.

phonenums=OPENOUT "PHONENUMS"
opfile=OPENOUT opf i le$

OPENIN
Open the file 'filename' for input only. Unlike the 280 version of BBC BASIC, you cannot write to a
file opened with OPENIN.

x=OPENIN f i lename

x=OPENIN devicename

address=OPENIN "ADDRESS"
check_file=OPENIN check_f i le$
comms=OPENIN “ : C O M ”

You will be unable to open for input (file handle returned = 0) if the file does not already exist.

If you try to write to a file opened for input you will get a ‘Write protected’ error (252).

OPENUP
Open the file 'filename' for update (input or output) without destroying the contents of the file. The
file may be read from or written to. When the file is closed, the directory is updated to show the
maximum used length of the file. None of the previously written data is lost unless it has been
overwritten. Consequently, you would use OPENUP for reading serial and random files, adding to
the end of serial files or writing to random files.

x=OPENUP f i lename

x=OPENUP devicename

address=OPENUP "ADDRESS"
check_file=OPENUP check_fi le$
comms=OPENUP “:COM”

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 257

You will be unable to open for update (file handle returned = 0) if the file does not already exist.

CLOSE#
Close the file opened as 'fnum'. CLOSE#O, END or 'dropping off the end' of a program will close all
files.

CLOSE#fnum

INPUT#
Read from the file opened as 'fnum' into the variable 'var’. Several variables can be read using the
same |NPUT# statement.
|NPUT#fnum,var

data=OPENIN " DATA"

INPUT#data, name$, age , height , s e x S

READ# can be u s e d a s an a l te rna t ive t o INPUT#

PRINT#
Write the variable 'var' to the file opened as 'fnum'. Several variables can be written using the
same PRINT# statement.

PRINT#fnum, var

String variables are written as the character bytes in the string plus a carriage-return. Numeric
variables are written as 5 bytes of binary data.

data=OPENOUT "DATA"

PRINT#data, name$, age , height, s e x $

EXT#
Return the total length of the file opened as 'fnum'.

EXT#fnum

In the case of a sparse random-access file the value returned is the length of the file to the last
byte actually written to the file. Although much of the file may well be unused, writing this 'last byte'
reserved physical space in RAM for a file of this length. Thus it is possible to write a single byte to
a file and get a 'No Room' error.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 258

PTR#
A pseudo-variable which points to the position within the file from where the next byte to be read
will be taken or where the next byte to be written will be put.

PTR#fnum

When the file is OPENED, PTR# is set to zero. However, you can set PTR# to any value you like.
(Even beyond the end of the file - so take care).

Reading or writing, using |NPUT# and PRINT#, (and BGET# and BPUT# - explained later), takes
place at the current position of the pointer. The pointer is automatically updated following a read or
write operation.

A file opened with OPENUP may be extended by setting PTR# to its end (PTR# = EXT#), and then
writing the new data to it. You must remember to CLOSE such a file in order to update its directory
entry with its new length. A couple of examples of this are included in the sections on serial and
indexed files.

PTR#-1 Returns the number of file handles still available for the entire 288 (notjust BBC
BASIC(Z80)) and the ROM release number.

If you are going to display this information, you will need to do so in hexadecimal because the one
(4 byte) number contains two items of information. For example:

PRINT ~PTR#—l

5A0 O 0 4

The last 3 digits (least significant 2 bytes) are the ROM release number. The first 2 digits (most
significant 2 bytes) are the number of files handles still available for use by the filing system
(&5A=90).

EOF#
A function which will return -1 (TRUE) if the data file whose file handle is the argument is at (or
beyond) its end. In other words, when PTR# points beyond the current end of the file.

eof=EOF#fnum

Attempting to read beyond the current end of file will not give rise to an error. Either zero or a null
string will be returned depending on the type of variable read.

EOF# is only really of use when dealing with serial (sequential) files. It indicates that PTR# is
greater than the recorded length of the file (found by using EXT#). When reading a serial file,
EOF# would go true when the last byte of the file had been read.

EOF# is only true if PTR# is set beyond the last byte written to in the file. It will NOT be true if an
attempt has been made to read from an empty area of a sparse random access file. Reading from
an empty area of a sparse file will return garbage. Because of this, it is difficult to tell which records
of an uninitialised random access file have had data written to them and which are empty. These

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 259

files need to be initialised and the unused records marked as empty.

Writing to a byte beyond the current end of file updates the file length immediately, whether the
record is physically written to the disk at that time or not.

EOF#—1 returns TRUE for an expanded 288 and FALSE for an unexpanded 288 (32K in slot
0).

BGET#
A function which reads a byte of data from the file opened as 'fnum', from the position pointed to by
PTR#fnum. PTR#fnum is incremented by 1 following the read. A positive integer between 0 and
255 is returned (as you might expect). This can be converted into a string variable using the CHR$
function.

BGET#fnum

byte=BGET#fnum
char$=CHR$ (by te)

or, more expediently

char$=CHR$ (BGET#fnum)

BPUT#
Write the least significant byte of the variable 'var' to the file opened as 'fnum', at the position
pointed to by PTR#fnum. PTR#fnum is incremented by 1 following the write.

BPUT#fnum, var

BPUT#fnum, & lB
BPUT#fnum, house_num
BPUT#fnum, ASC " E "

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 260

Serial Files

Introduction

The section on serial files is split into three parts. The first deals with character data files. These
are the simplest type of files to use and the examples are correspondingly short. The second part
looks at mixed numeric/character data files. The final part describes conversion between BBC
BAS|C(280) format files and the file formats required/produced by other systems.

Character Data Files

The first three examples are programs to write data in character format to a serial file and to read
the data back. All the data is in character format and, since the files will not be read by other
versions of BASIC, no extra control characters have been added.

You may notice that we have cheated a little in that a procedure is called to close the files and end
the program without returning. This saves using a GOTO, but leaves the return address on the
stack. However, ending a program clears the stack and no harm is done. You should not use this
sort of trick anywhere else in a program. If you do you will quickly use up memory.

Ex 1 - Writing Serial Character Data

10 REM F—WSERl

2 0 .
3O REM WRITING T O A SERIAL CHARACTER DATA FILE

4O
50 REM This program opens a data f i le and wr i tes
6 0 REM ser ia l character data t o i t . The use o f
7 0 REM OPENOUT ensures that , even i f the f i l e

8 0 REM ex is ted b e f o r e , i t i s c leared be fo re
9 0 REM being wr i t ten t o .

100 .
110 phonenos=OPENOUT "PHONENOS"
120 PRINT "Fi le Name PHONENOS Opened a s Handle ";phonenos
1 3 0 PRINT

1 4 0 RE PEAT

150 INPUT "Name ? " name$
160 IF name$="" THEN PROC_end
170 INPUT "Phone Number ? " phone$
1 8 0 PRINT

190 PRINT#phonenos,name$,phone$
2 0 0 UNTIL FALSE

210
220 DEF PROC_end
230 CLOSE#phonenos
2 4 0 END

BBC BAS|C(280) Reference Manual for 288, 2nd edition 261

BBC BAS|C(280) Reference Manual for 288, 2nd edition 262

E x 2 -

10
20
3O
4O
50
6O
7O
8O
90

100
110
120
130
140
150
160
170
180

Reading Serial Character Data

REM F—RSERl

REM EXAMPLE OF READING A SERIAL CHARACTER FILE

REM This program opens a previously wr i t ten
REM serial f i le and reads i t .

phonenos=OPENIN "PHONENOS"
PRINT "Fi le Name PHONENOS Opened a s Handle ";phonenos
PRINT

REPEAT

INPUT#phonenos,name$,phone$
PRINT name$,phone$

UNTIL EOF#phonenos

CLOSE#phonenos
END

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 263

Ex 3 - Writing 'AT END' of Character Files
The next example extends the write program from Example 1. This new program opens the file,
sets PTR# to the end (line 380) and then adds data to it. A procedure is used to open the file. This
has the advantage of making the program more understandable by putting the detailed 'open at
end' coding out of the main flow of the program.

10 REM F-WESERl

20 .
3O REM EXAMPLE OF WRITING TO THE END OF A SERIAL DATA FILE
4O .
5 0 REM The program opens a f i le and s e t s PTR
6O REM t o the end be fo re wr i t ing data t o i t .
70
8 0 REM A funct ion i s used t o open the f i l e .
90

100 .
110 phonenos=FN_openend("PHONENOS")
120 PRINT "Fi le Name PHONENOS Opened a s Handle ";phonenos
1 3 0 PRINT

1 4 0 RE PEAT

150 INPUT "Name ? " name$
160 IF name$="" THEN PROC_end
170 INPUT "Phone Number ? " phone$
1 8 0 PRINT

190 PRINT#phonenos,name$,phone$
2 0 0 UNTIL FALSE

210 .
220 DEF PROC_end
230 CLOSE#phonenos
2 4 0 END

250
260 .
2 7 0 REM Open the f i l e ' A T E N D ' .
280 .
2 9 0 REM I f the f i l e does not already e x i s t , i t
3 0 0 REM i s c rea ted wi th OPENOUT. PTR# i s l e f t
310 REM a t ze ro and the handle i s returned. I f
3 2 0 REM the f i le e x i s t s , PTR# i s s e t t o the end
3 3 0 REM and the f i l e handle returned.
3 4 0 DEF FN_openend(name$)

3 5 0 LOCAL fnum
3 6 0 fnum=OPENUP(name$)
3 7 0 IF fnum=0 THEN fnum=OPENOUT(name$): =fnum

380 PTR#fnum=EXT#fnum
3 9 0 =fnum

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 264

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 265

Mixed Numeric/Character Data Files

The second three examples are also programs which write data to a file and read it back, but this
time the data is mixed. They are simply extensions of the previous examples which illustrate the
handling of mixed data.

E x 4 -

10
20
3O
4O
50
6O
7O
8O
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400

Writing a Mixed Data File

REM F-WSERZ

REM EXAMPLE OF WRITING TO A MIXED NUMERIC/CHAR DATA FILE

REM This program opens a f i le and wr i tes
REM numeric and char data t o i t . The use
REM o f OPENOUT ensures that , even i f the
REM f i l e e x i s t s , i t i s Cleared be fo re
REM being wr i t ten t o . Functions
REM are used t o accept and val idate
REM the data be fo re wr i t ing i t t o the f i l e .

s ta ts=OPENOUT("STATS")
PRINT "Fi le Name STATS Opened a s Handle " ; s t a t s
PRINT
REPEAT

name$=FN_name
IF name$="" THEN PROC_end
age=FN_age
height=FN_height
sex$=FN_sex
PRINT

PRINT#stats,name$,age,height,sex$
UNTIL FALSE

DEF PROC_end
PRINT "The f i le i s " ; E X T # s t a t s ; " bytes long"
CLOSE#stats
END

REM Accept a name from the keyboard and make
REM sure i t cons i s t s only o f spaces and
REM upper or lower case charac te rs . Leading
REM spaces a re ignored on input.

DEF FN_name
LOCAL name$,FLAG,n
REPEAT

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 266

410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

FLAG=TRUE

INPUT "Name ? " name$
IF name$="" THEN 4 9 0
FOR I=l TO LEN(name$)

n = A S C (M I D $ (n a m e $, I , 1))
IF N O T (n = 3 2 OR n > 6 4 AND n < 9 l OR n > 9 6 AND n < 1 2 3) THEN FLAG=FALSE

NEXT

IF NOT FLAG THEN PRINT "No funny Characters p lease l l ! "
UNTIL FLAG

=name$

REM Accept the age f rom the keyboard and
REM round t o one p lace o f decimals. Ages
REM o f O o r l e s s , or 150 o r more are

REM considered t o be in e r r o r .
DEF FN_age
LOCAL age
REPEAT

INPUT "What age ? " age
IF age<=0 OR age >=150 THEN PRINT "No impossible ages p lease l l ! "

UNTIL age>0 AND age<150
= I N T (a g e * l O + . 5) / l O

REM Accept the height in cent imetres f rom

REM the keyboard and round t o an in teger .
REM Heights o f 5 0 or l e s s and 2 3 0 o r more
REM are considered t o be in e r ro r .
DEF FN_height
LOCAL height
REPEAT

INPUT "Height in centimetres ? " height
IF height<=50 OR height>=230 THEN PRINT "Very funny ! ! ! "

UNTIL height>50 AND height<230
= I N T (h e i g h t + . 5)

REM Accept the s e x f rom the keyboard. Only
REM words beginning with upper or lower c a s e
REM M or F a re OK. The returned s t r ing i s
REM truncated t o 1 Character .
DEF FN_sex

LOCAL sex$,FLAG
REPEAT

FLAG=TRUE

INPUT "Male or Female — M or F ? " sex$
IF s e x $ < > " " THEN s e x $ = C H R $ (A S C (M I D $ (s e x $, l , 1)) AND 9 5)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 267

8 9 0 IF sex$<>"M" AND s e x $ < > " F " THEN FLAG=FALSE

9 0 0 IF NOT FLAG THEN PRINT "No more s e x (e s) p lease l ! ! "
910 UNTIL FLAG

9 2 0 =sex$

BBC BAS|C(280) Reference Manual for 288, 2nd edition 268

Ex 5 - Reading a Mixed Data File

10 REM F—RSER2

20 .
3O REM EXAMPLE OF READING FROM A MIXED NUMERIC/CHAR DATA FILE

4O
5 0 REM This program opens a f i l e and reads

6O REM numeric and character data f rom i t .
70
8O .
9O s t a t S = O P E N I N (" S T A T S ")

100 PRINT "Fi le Name STATS Opened a s Handle " ; s t a t s
110 PRINT

1 2 0 REPEAT

130 INPUT#sta ts ,name$,age,he ight ,sex$
140 PRINT "Name ";name$
150 PRINT "Age " ; a g e
160 PRINT "Height in centimetres ";height
1 7 0 IF sex$="M" THEN PRINT "Male" ELSE PRINT "Female"

1 8 0 PRINT

1 9 0 UNTIL E O F # s t a t s

200 .
210 CLOSE#stats
220 END

Ex 6 - Writing 'AT END' of Mixed Files
This example is similar to Example 3, but for a mixed data file.

10 REM F-WESER2

2 0 .
3O REM EXAMPLE OF WRITING AT THE END OF A

4 0 REM MIXED NUMERIC/CHAR DATA FILE

5 0
6O REM This program opens a f i l e , s e t s PTR
7O REM t o i t s end and then wr i tes numeric and
8 0 REM character data t o i t .
9 0

100 REM Functions are used t o accept and
110 REM val idate the data be fo re wri t ing i t t o
1 2 0 REM the f i l e .
130
1 4 0 s t a t s = F N _ o p e n (" S T A T S ")

150 PRINT "Fi le Name STATS Opened a s Handle " ; s t a t s
1 6 0 PRINT

1 7 0 REPEAT

BBC BAS|C(280) Reference Manual for 288, 2nd edition 269

180 name$=FN_name
190 IF name$="" THEN PROC_end
2 0 0 age=FN_age
210 height=FN_height
2 2 0 sex$=FN_seX
2 3 0 PRINT

2 4 0 PRINT#sta ts ,name$,age,he igh t ,sex$
2 5 0 UNTIL FALSE

2 6 0
270 DEF PROC_end
2 8 0 PRINT "The f i l e i s " ; E X T # s t a t s ; " by tes long"
290 CLOSE#stats
3 0 0 END
310
3 2 0
330 REM Open the f i l e . I f i t e x i s t s , se t PTR#
3 4 0 REM t o the end and return the handle. I f
3 5 0 REM i t does not e x i s t , open i t , leave PTR#
3 6 0 REM a s i t i s and return the f i l e handle.
3 7 0 DEF FN_open(name$)
3 8 0 LOCAL fnum
3 9 0 fnum=OPENUP(name$)
4 0 0 IF fnum=O THEN fnum=OPENOUT(name$): =fnum
410 PTR#fnum=EXT#fnum
4 2 0 =fnum
4 3 0
4 4 0
4 5 0 REM Accept a name from the keyboard and make

4 6 0 REM sure i t cons i s t s o f spaces and upper o r
4 7 0 REM lower c a s e charac te rs . Leading spaces
4 8 0 REM are automatical ly ignored on input.
4 9 0 DEF FN_name
5 0 0 LOCAL name$,FLAG,n
510 REPEAT

5 2 0 FLAG=TRUE

5 3 0 INPUT "Name ? " name$
540 IF name$="" THEN 600
5 5 0 FOR I= l T O LEN(name$)

5 6 0 n = A S C (M I D $ (n a m e $, I , l))
5 7 0 IF N O T (n = 3 2 OR n > 6 4 AND n < 9 l OR n > 9 6 AND n<123) THEN

FLAG=FALSE

5 8 0 NEXT

5 9 0 IF NOT FLAG THEN PRINT "No funny characters p lease l ! ! "

6 0 0 UNTIL FLAG

610 =name$
620
630
6 4 0 REM Accept the age f rom the keyboard and

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 270

6 5 0 REM round t o one place o f decimals. Ages o f
660 REM O or l ess or 150 or more are in e r r o r .
670 .
680 DEF FN_age
6 9 0 LOCAL age
7 0 0 REPEAT

710 INPUT "What age ? " age
7 2 0 IF age<=0 OR age >= l50 THEN PRINT "No impossible ages p lease
I I "

730 UNTIL age>O AND age<150
740 = INT (age* lO+ .5) / 10
750 '
760
7 7 0 REM Accept the height in cent imetres f rom
7 8 0 REM the keyboard and round t o an in teger .
7 9 0 REM Heights o f 5 0 or l e s s o r 2 3 0 or more
8 0 0 REM are in e r r o r .
8 10 DEF FN_height
8 2 0 LOCAL height
8 3 0 REPEAT

8 4 0 INPUT "Height in cent imetres ? " height
850 IF height<=50 OR height>=230 THEN PRINT "Very funny ! ! ! "
8 6 0 UNTIL height>50 AND height<230
870 =INT(height+.5)
880 -
890 .
900 REM Accept the sex from the keyboard. Only
910 REM words beginning wi th upper or lower
9 2 0 REM case M or F are val id. The returned
9 3 0 REM st r ing i s t runcated t o 1 character .
9 4 0 DEF FN_seX
9 5 0 LOCAL sex$,FLAG
9 6 0 REPEAT

9 7 0 FLAG=TRUE

9 8 0 INPUT "Male o r Female — M o r F ? " s e x $
9 9 0 IF sex$<>" " THEN s e x $ = C H R $ (A S C (M I D $ (s e x $, l , l)) AND 9 5)

1 0 0 0 IF sex$<>"M" AND s e x $ < > " F " THEN FLAG=FALSE

1010 IF NOT FLAG THEN PRINT "No more s e x (e s) p lease ! ! ! "
1 0 2 0 UNTIL FLAG

1 0 3 0 =sex$

Compatible Data Files
The next example tackles the problem of writing files which will be compatible with other versions
of BASIC. The most common format for serial files is as follows:

0 Data is written to the file as ASCII characters.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 271

Data items are separated by commas.
Records are terminated by the two characters CR and LF.
The file is terminated by a Control Z (&1A).

The example program accepts data from the keyboard and writes it to a file in the above format.

Ex 7 - Writing a Compatible Data File

10
20
3O
4O
50
6O
7O
8O
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410

REM F-WSTD

REM EXAMPLE OF WRITING A COMPATIBLE FILE

REM This program opens a f i le and wr i t es
REM numeric and character data t o i t in a
REM compatible fo rmat . Numerics are changed
REM t o s t r ings be fo re they are wr i t ten and
REM the data i tems are separated by commas.
REM Each r eco rd i s terminated by CR LF and
REM the f i l e i s terminated b y a Control Z .

REM Functions are used t o accept and
REM val idate the data be fo re wri t ing i t t o
REM the f i l e .

reco rd$=STRING$(100 , " ") : REM Reserve room f o r the longest
name$=STRING$(20," ") : REM record necessary .

REM I t saves on s t r ing space .

compat=OPENOUT("COMPAT")
PRINT "Fi le Name COMPAT Opened a s Handle " ;compat
PRINT

REPEAT

name$=FN_name
IF name$="" THEN PROC_end
age=FN_age

height=FN_height
sex$=FN_sex
PRINT

r e c o r d $ = n a m e $ + " , " + S T R $ (a g e) + " , " + S T R $ (h e i g h t) + " , " + s e x $
PRINT#compat,record$
BPUT#compat ,&OA

UNT I L FALSE

DEF PROC_end
BPUT#compat,&lA
CLOSE#Compat
END

REM Accept a name from the keyboard and make

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 272

420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
I ! "
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
850
860
870
880

REM sure i t cons i s t s only o f spaces and
REM upper o r lower case cha rac te rs . Leading
REM spaces a re ignored on input.

DEF FN_name
LOCAL name$,FLAG,n
REPEAT

FLAG=TRUE

INPUT "Name ? " name$
IF name$="" THEN 5 7 0
FOR I=l TO LEN(name$)

n = A S C (M I D $ (n a m e $, I , l))
IF N O T (n = 3 2 OR n > 6 4 AND n < 9 l OR n > 9 6 AND n<123) THEN FLAG=TRUE

NEXT

IF NOT FLAG THEN PRINT "No funny characters p lease ! ! ! "
UNTIL FLAG

=name$

REM Accept the age f rom the keyboard and
REM round t o one place o f decimals. Ages
REM o f 0 or l e s s or 150 o r more are
REM considered t o be in e r r o r .
DEF FN_age

LOCAL age
REPEAT

INPUT "What age ? " age
IF age<=O OR age >=150 THEN PRINT "No impossible ages p lease

UNTIL age>O AND age<150
= INT(age* lO+ .5) / 10

REM Accept the height in cent imetres f rom
REM the keyboard and round t o an in teger .
REM Heights o f 5 0 or l e s s and 2 3 0 or more
REM are considered t o be in e r ro r .
DEF FN_height
LOCAL height
REPEAT

INPUT "Height in centimetres ? " height
IF height<=50 OR height>=230 THEN PRINT "Very funny ! ! ! "

UNTIL height>50 AND height<230
= INT(he igh t+ .5)

REM Accept the sex f rom the keyboard. Only
REM words beginning wi th upper or lower

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 273

890
900
910
920
930
940
950
960
970
980
990

1000

REM case M or F a re val id. The returned
REM st r ing i s t runcated t o 1 character .
DEF FN_sex
LOCAL sex$,FLAG
REPEAT

FLAG=TRUE

INPUT "Male or Female — M or F ? " sex$
IF s e x $ < > " " THEN s e X $ = C H R $ (A S C (M I D $ (s e X $, l , l)) AND 9 5)

IF sex$<>"M" AND s e x $ < > " F " THEN FLAG=FALSE

IF NOT FLAG THEN PRINT "No more s e x (e s) p lease l l ! "
UNTIL FLAG

=sex$

BBC BAS|C(280) Reference Manual for 288, 2nd edition 274

Ex 8 - Reading a Compatible Data File
The last example in this section reads a file written in the above format and strips off the
extraneous characters. The file is read character by character and the appropriate action taken.
This is a simple example of how BBC BAS|C(280) can be used to manipulate any file by
processing it on a character by character basis.

10
20
3O
4O
50
6O
7O
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
332
334
340
350
360
370
380
390
400

REM

REM

REM
REM
REM
REM
REM
REM

F-RSTD

EXAMPLE OF READING A COMPATIBLE FILE

This program opens a data f i le and reads
numeric and character data f rom i t . The
data i s read a by te a t a time and the
appropriate act ion taken depending on
whether i t i s a character, a comma, o r

a con t ro l char .
compat=OPENUP("COMPAT")
PRINT "Fi le Name COMPAT Opened a s Handle " ;compat
PRINT

REPEAT

name$=FN_read
PRINT "Name ";name$
age=VAL(FN_read)

PRINT "Age " ; a g e
height=VAL(FN_read)
PRINT "Height in centimetres ";height
sex$=FN_read
IF s e x $ = " M " THEN PRINT "Male" ELSE PRINT "Female"

PRINT

UNTIL FALSE

REM
REM
REM
REM
REM
REM
REM
REM

DEF

Read a data i tem from the f i l e . T rea t
commas and CR3 a s data i tem terminators
and Cont ro l Z a s the f i l e terminator.
Since we a re not in terested in reading a
record a t a t ime, the reco rd terminator
CR LF i s o f no special in te res t t o u s .
We use the CR, along wi th commas, a s a
data i tem separator and d iscard the L F .

FN_read
LOCAL data$,byte$,byte
data$=""
REPEAT

byte=BGET#compat
IF byte=&lA OR EOF#compat THEN CLOSE#compat: END
IF NOT (byte=&OA OR byte=&OD OR byte=&2C) THEN

BBC BAS|C(280) Reference Manual for 288, 2nd edition 275

data$=data$+CHR$(byte)
410 UNTIL byte=&0D OR byte=&2C
420 =data$

BBC BAS|C(280) Reference Manual for 288, 2nd edition 276

Random (Relative) Files

Introduction

There are three example random file programs. The first is very simple, but it demonstrates the
principle of random access files. The second expands the first into quite a useful database
program. The final example is an inventory program. Although it does not provide application
dependent features, it would serve as it stands and it is sufficiently well structured to be expanded
without too many problems.

Designing the File

Unlike other versions of BASIC, there is no formalised record structure in BBC BASIC. A file is
considered to be a continuous stream of bytes (characters) and you can directly access any byte
of the file. This approach has many advantages, but most files are logically considered as a
sequence of records (some of which may be empty). How then do we create this structure and
access our logical records?

Record Structure
Creating the structure is quite simple. You need to decide what information you want to hold and
the order in which you want to store it. In the first example, for instance, we have two items of
information (fields) per logical record; the name and the remarks. The name can be a maximum of
30 characters long and the remarks a maximum of 50 characters. 80 our logical record has two
fields, one 30 characters long and the other 50 characters long. When the name string is written to
disk it will be terminated by a CR - and so will the remarks string. 80 each record will be a
maximum of 82 characters long.

We haven't finished yet, however. We need to be able to tell whether any one record is 'live' or
empty (or deleted). To do this we need an extra byte at the start of each record which we set to
one value for 'empty' and another for 'live'. In all the examples we use 0 to indicate 'empty' and
NOT 0 to indicate 'live'. We are writing character data to the file so we could use the first byte of
the name string as the indicator because the lowest ASCII code we will be storing is 32 (space).
You can't do this for mixed data files because this byte could hold a data value of zero. Because of
this, we have chosen to use an additional byte for the indicator in all the examples.

Our logical record thus consists of:

1 indicator byte

31 bytes for the name

51 bytes for the remarks

Thus the maximum amount of data in each record is 83 bytes. Because we cannot tell in advance
how big each record needs to be (and we may want to change it later), we must assume that ALL
the records will be this length. Since most of the records will be smaller than this, we are going to
waste quite a lot of space in our random access file, but this is the penalty we pay for convenience
and comparative simplicity.

When we write the data to the file, we could insist that each field was treated as a fixed length field

BBC BAS|C(280) Reference Manual for 288, 2nd edition 277

by packing each string out with spaces to make it the 'correct' length. This would force each field to
start at its 'proper' byte within the record. We don't need to do this, however, because we aren't
going to randomly access the fields within the record; we know the order of the fields within the
record and we are going to read them sequentially into appropriately named variables. We can
write the fields to the file with each field following on immediately behind the previous one. All the
'spare' room is now left at the end of the record and not split up at the end of each field.

Accessing The Records

In order to access any particular record, you need to set PTR# to the first byte of that record.
Remember, you can't tell BBC BASIC(280) that you want 'record 5', because it knows nothing of
your file and record structure. You need to calculate the position of the first byte of 'record 5' and
set PTR# to this value.

To start with, let's call the first record on the file 'record zero', the second record 'record 1', the third
record 'record 2', etc. The first byte of 'record zero' is at byte zero on the file. The first byte of
'record 1' is at byte 83 on the file. The first byte of 'record 2' is at byte 166 (2*83) on the file. And so
on. So, the start point of any record can be calculated by:

f i rst_byte= 8 3 *record_number

Now, we need to set PTR# to the position of this byte in order to access the record. If the record
number was held in 'recno' and the file handle in 'fnum', we could do this directly by:

PTR#fnum=83*recno

However, we may want to do this in several places in the program so it would be better to define
and use a function to set PTR# as illustrated below.

190
2 OO PTR#fnum=FN_ptr (recno)
210
e t c

9 0 0 DEF F N _ p t r (r e c o r d) = 8 3 * r e c o r d

Whilst the computer is quite happy with the first record being 'record zero', us mere humans find it
a little confusing. What we need is to be able to call the first record 'record 1', etc. We could do this
without altering the function which calculates the start position of each record, but we would waste
the space allocated to 'record 0' since we would never use it. We want to call it 'record 1' and the
program wants to call it 'record 0'. We can change the function to cater for this. If we subtract 1
from the record number before we multiply it by the record length, we will get the result we want.
Record 1 will start at byte zero, record 2 will start at byte 83, etc. Our function now looks like this:

DEF FN_ptr (r e c o r d) = 8 3 * (r e c o r d — l)

BBC BASIC(280) Reference Manual for 288, 2nd edition 278

In our example so far we have used a record length of 83. If we replace this with a variable
'rec_|en' we have a general function which we can use to calculate the start position of any record
in the file in any program. (You will need to set rec_|en to the appropriate value at the start of the
program.) The function now becomes:

DEF F N _ p t r (r e c o r d) = r e c _ l e n * (r e c o r d — l)

We use this function (or something very similar to it) in the following three example programs using
random access files.

Ex 9 - Simple Random Access File

10 REM F—RANDl

2 0 .
3O REM VERY SIMPLE RANDOM ACCESS PROGRAM

4O
50 REM This program maintains a random access
6 0 REM f i l e o f names and remarks. There i s
7 0 REM room f o r a maximum o f 2 0 en t r i es . Each
8 0 REM name can be up t o a max o f 3 0 chars
9O REM long and each remark up t o 5 0 chars .

lOO REM The f i r s t by te o f the reco rd i s s e t non
110 REM z e r o (i n f a c t &FF) i f there i s a r e c o r d

120 REM p resen t . This gives a maximum record
1 3 0 REM length o f l + 3 l + 5 1 = 8 3 . (Including C R s)

1 4 0 :
150 be l l $=CHR$(7)
160 temp$=STRING$(50," ")
170 maxrec=20

180 rec_len=83
190 ans$=""
2 0 0 CLS
2 1 0 WIDTH 0

2 2 0 fnum=OPENUP "RANDONE"

2 3 0 IF fnum=0 fnum=FN_setup("RANDONE")

2 4 O REPEAT

2 5 0 REPEAT

2 6 0 INPUT ' " E n t e r reco rd number: "ans$
2 7 0 IF a n s $ = " 0 " CLOSE#fnum:CLS:END
2 8 0 IF a n s $ = " " record=record+l ELSE record=VAL(ans$)
2 9 0 IF record<l OR record>maxrec PRINT be l l $;
3 0 0 UNTIL record>0 AND record<=maxrec
310 PTR#fnum=FN_ptr(record)
3 2 0 PROC_display
3 3 0 INPUT ' " D o you wish t o change this reco rd " , a n s S
3 4 0 PTR#fnum=FN_ptr(record)
350 IF FN_test (ans$) PROC_modify
3 6 0 UNTIL FALSE

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 279

3 7 0 END

380
390 .
4 0 0 DEF F N _ t e s t (A $) = L E F T $ (A $, 1) = " Y " OR L E F T $ (A $, 1) = " y "

410 °
420 .
4 3 0 DEF F N _ p t r (r e c o r d) = r e c _ l e n * (r e c o r d - l)

4 4 0 REM This makes reco rd 1 s t a r t a t PTR# = O
450
460 .
4 7 0 DEF PROC_display
4 8 0 PRINT ' " R e c o r d number " ; r e c o r d '
490 flag=BGET#fnum
5 0 0 IF f lag=0 PROC_clear:ENDPROC

510 INPUT#fnum,name$,remark$

520 PRINT name$;" " ; remark$ '
5 3 0 ENDPROC

540
550 .
560 DEF PROC_clear
5 7 0 PRINT "Record empty"
5 8 0 name$=""
5 9 0 remark$=""
6 0 0 ENDPROC

610
620 .
630 DEF PROC_modify
6 4 0 PRINT ' " (E n t e r <Enter> f o r no change or DELETE t o d e l e t e) " '
6 5 0 INPUT "Name " , temp$
6 6 0 temp$=LEFT$(temp$,30)
6 7 0 IF temp$<>"" name$=temp$
6 8 0 INPUT "Remark " , temp$
6 9 0 temp$=LEFT$(temp$,50)
700 IF temp$<>"" remark$=temp$
710 INPUT ' "Con f i rm update reco rd " , ans$
7 2 0 IF NOT F N _ t e s t (a n s $) ENDPROC

7 3 0 IF name$="DELETE" BPUT#fnum,O:ENDPROC

7 4 0 BPUT#fnum,255
7 5 0 PRINT#fnum,name$,remark$
7 6 0 ENDPROC

770
780 .
790 DEF FN_setup(fname$)
8 0 0 PRINT "Set t ing up the database f i l e "
810 fnum=OPENOUT(fname$)
8 2 0 FOR record=l TO maxrec
830 PTR#fnum=FN_ptr(record)
8 4 0 BPUT#fnum,0

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 280

8 5 0 NEXT

8 6 0 =fnum

Ex 10 - Simple Random Access Database

The second program in this sub-section expands the previous program into a simple, but quite
versatile, database program. A setup procedure has been added which allows you to specify the
file name. If it is a new file, you are then allowed to specify the number of records and the number,
name and size of the fields you wish to use. This information is stored at the start of the file. If the
file already exists this data is read from the records at the beginning of the file. The function for
calculating the start position of each record is modified to take into account the room used at the
front of the file to store information about the database.

10 REM F-RAN

2 0 REM SIMPLE DATABASE PROGRAM

3O REM Writ ten by R T Russell Jan 1983
4 0 REM Mod f o r BBC B A S I C (Z 8 0) : D Mounter D e c 1 9 8 5

5 0
6O REM This i s a simple database program. You
7 0 REM are asked f o r the name o f the f i le you
8 0 REM wish t o u s e . I f the f i l e does not
9 0 REM already e x i s t , you are asked t o enter

100 REM the number and format o f the reco rds .
110 REM I f the f i l e does already e x i s t , the f i l e
120 REM specif icat ion i s read from the f i l e .
130 .
1 4 0 %=&9OA
150 be l l $=CHR$(7)
1 6 0 CLS
1 7 0 WIDTH 0

180 INPUT ' "En te r the filename o f the data f i l e : " f i lename$
190 fnum=OPENUP(filename$)
200 IF fnum=0 fnum=FN_setup(filename$) ELSE PROC_readgen
2 1 0 PRINT

2 2 0 .
2 3 0 REPEAT
2 4 0 RE PEAT

2 5 0 INPUT ' " E n t e r reco rd number: "ansS
260 IF ans$="O" CLOSE#fnum:CLS:END
2 7 0 IF a n s $ = " " record=record+1 ELSE record=VAL(ans$)

2 8 0 IF record<l OR record>maxrec PRINT be l l $;
2 9 0 UNTIL record>0 AND record<=maxrec
300 PTR#fnum=FN_ptr(record)
310 PROC_display
320 INPUT ‘ " D o you wish to change this record" ,ansS
3 3 0 PTR#fnum=FN_ptr(record)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 281

340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810

IF FN_ tes t (ans$) PROC_modify
UNTIL FALSE

END

DEF FN_test(A$) =LEFT$<A$,1)="Y" OR LEFT$(A$,1)="y"

DEF F N _ p t r (r e c o r d) = b a s e + r e c _ l e n * (r e c o r d - l)

DEF FN_setup(filename$)
PRINT "New f i l e . "

fnum=OPENOUT(filename$)
REPEAT

INPUT "En te r the number o f r eco rds (max 1 0 0 0) : "maxrec

UNTIL maxrec>0 AND maxrec< lOOl
REPEAT

INPUT "En te r number o f f i e lds per r e c o r d (max 2 0) : " f i e l d s

UNTIL f ie lds>0 AND f ie lds<21
DIM t i t l e $ (f i e l d s) , s i z e (f i e l d s) , A $ (f i e l d s)
FOR f ield=l TO f ie lds

PRINT ' " E n t e r t i t l e o f f ie ld number " ; f i e l d ; " : " ;
INPUT " " t i t l e $ (f i e l d)

PRINT

REPEAT

INPUT "Max s i z e o f f i e ld (c h a r a c t e r s) " , s i z e (f i e l d)
UNTIL s i z e (f i e l d) > 0 AND s i z e (f i e l d) < 2 5 6

NEXT f i e l d

rec_len=l
PRINT#fnum,maxrec, f ie lds
FOR f ield=l TO f ie lds

P R I N T # f n u m , t i t l e $ (f i e l d) , s i z e (f i e l d)
r e c _ l e n = r e c _ l e n + s i z e (f i e l d) + l

NEXT f i e l d

base=PTR#fnum

FOR record=1 TO maxrec
PTR#fnum=FN_ptr(record)
BPUT#fnum,O

NEXT

=fnum

DEF PROC_readgen
rec_len=1
INPUT#fnum,maxrec, f ie lds
DIM t i t l e $ (f i e l d s) , s i z e (f i e l d s) , A $ (f i e l d s)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 282

8 2 0 FOR field=1 TO f ie lds

830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260

I N P U T # f n u m , t i t l e $ (f i e l d) , s i z e (f i e l d)
rec_ len=rec_ len+s ize (f ie ld)+ l

NEXT f i e ld

base=PTR#fnum
ENDPROC

DEF PROC_display
PRINT ' "Reco rd number " ; r e c o r d '
flag=BGET#fnum
IF flag=O PROC_clear:ENDPROC
FOR field=1 TO f ie lds

INPUT#fnum,A$(f ie ld)
PRINT t i t l e $ (f i e l d) ; " " ; A $ (f i e l d)

NEXT f i e ld

ENDPROC

DEF PROC_clear
FOR field=1 TO f ields

A $ (f i e l d) = " "
NEXT
ENDPROC

DEF PROC_modify
PRINT ' " (E n t e r <Enter> f o r no c h a n g e) " '
FOR field=1 TO f ie lds

REPEAT

PRINT t i t l e $ (f i e l d) ; " " ;
INPUT LINE " " A $

IF A $ = " " PRINT T A B (P O S , V P O S — l) t i t l e $ (f i e l d) ; " " ; A $ (f i e l d)

REM T A B (P O S , V P O S — l) moves the cursor up 1 l ine

UNTIL L E N (A $) < = s i z e (f i e l d)

IF A$<>" " A $ (f i e l d) = A $
NEXT f i e l d

INPUT ' " C o n f i r m update r e c o r d " , a n s $
IF NOT FN_ tes t (ans$) ENDPROC
IF A $ (1) = " D E L E T E " BPUT#fnum,O:ENDPROC

BPUT#fnum,255
FOR field=1 TO f ie lds

PRINT#fnum,A$(f ie ld)
NEXT f i e ld

ENDPROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 283

Ex 11 - Random Access Inventory Program

The final example in this sub-section is a full-blown inventory program. Rather than go through all
its aspects at the start, they are discussed at the appropriate point in the listing. (These comments
do not have line numbers and are not, of course, part of the program.)

10
20
3O
4O
50
6O
7O
80
9O
92

100
110
120
130
140
150
160
170
180
190
200
210
220

REM F-RAND

REM Writ
REM Modi

ten b y Doug Mounter Jan 1 9 8 2
f i e d f o r BBC B A S I C (Z 8 0) Dec 1 9 8 5

REM EXAMPLE OF A RANDOM ACCESS FILE

REM This
REM uses
REM and
REM The
REM The
REM The
REM The

i s a simple inventory program. I t

the i t e m ' s par t number a s the key
s t o r e s :

i tem descr ipt ion — char max len 3 0
quantity in s t o c k — numeric
re—order level — numeric
unit p r i ce — numeric

REM In addition, the f i r s t by te o f the r e c
REM i s used a s a val id data f l ag . Se t t o 0
REM i f empty, D i f the record has been
REM dele

REM This
ted or V i f the reco rd i s val id.
gives a MAX record len o f 4 7 by tes

REM (D o n ' t fo rget the CR a f t e r the s t r ing)

PROC_ini t i a l i se
inventry=FN_open("INVENTRY")

The following section of code is the command loop. You are offered a choice of functions until you
eventually select function 0. The more traditional ON GOSUB statement has been used for menu
selection processing. The newer ON PROC statement is illustrated in the indexed file example
which follows. There are some forward jumps within procedures, etc to overcome the lack of a
multi line IF statement. It would have been possible to have used further procedures, but the whole
thing would have become rather laboured.

230
240
250
260
270
280
290
300

REPEAT
CLS
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

T A B (5 , 3) ; " I f you want t o : — " '
T A B (l O) ; " E n d This S e s s i o n " ; T A B (5 5) ; " T y p e 0 "
T A B (l O) ; " A m e n d o r Create an E n t r y " ; T A B (5 5) ; " T y p e l "
T A B (l O) ; " D i s p Inventory f o r One P a r t " ; T A B (5 5) ; " T y p e 2 "
T A B (l O) ; " A l t e r S t o c k o f One P a r t " ; T A B (5 5) ; " T y p e 3 "
T A B (l O) ; " D i s p I tems t o R e o r d e r " ; T A B (5 5) ; " T y p e 4 "

BBC BAS|C(280) Reference Manual for 288, 2nd edition 284

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

PRINT T A B (l O) ; " R e c o v e r a Deleted I t e m " ; T A B (5 5) ; " T y p e 5 "
PRINT T A B (l O) ; " L i s t De le ted I t e m s " ; T A B (5 5) ; " T y p e 6 "

PRINT T A B (l O) ; " S e t Up a New I n v e n t o r y " ; T A B (5 5) ; " T y p e 9 "
REPEAT

PRINT TAB (5 , l 5) ; b e l l $;

PRINT "P lease enter se lec t ion (0 t o 6 o r 9) " ;
function$=GET$

UNTIL func t i on$>" / " AND func t ion$<"8" OR func t ion$="9"
funct ion=VAL(funct ion$)
ON funct ion GOSUB 5 0 0 , 6 7 0 , 8 l O , l l O O , l 3 5 0 , l 5 4 0 , l 7 7 0 , l 7 9 0 , l 8 4 0 ELSE

UNTIL function=0
CLS
PRINT "Inventory Fi le Closed" "

CLOSE#inventry
END

This is the data entry function. You can delete or amend an entry or enter a new one. Have a look
at the definition of FN_getrec for an explanation of the ASC"V" in its parameters.

480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640

REM AMEND/CREATE AN ENTRY

REPEAT

CLS
PRINT "AMEND/ CREATE"
partno=FN_getpartno
f lag=FN_getrec(par tno,ASC"V")
PROC_display(f lag)
PRINT ' "Do you wish t o " ;
IF f lag PRINT "change this entry ? " ; ELSE PRINT "enter data ? " ;
IF GET$<>"N" flag=FN_amend(partno):PROC_cteos
PROC_wr i te (par tno , f lag , type)
PRINT b e l l $; " D o you wish t o amend/create another r eco rd ? " ;

UNTIL GET$="N"
RETURN

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 285

This subroutine allows you to look at a record without the ability to change or delete it.

6 5 0 REM DISPLAY AN ENTRY
6 6 0 .
6 7 0 REPEAT

6 8 0 CLS
6 9 0 PRINT "DISPLAY"

7 0 0 partno=FN_getpartno
710 f lag=FN_getrec(par tno,ASC"V")
720 PROC_display(f lag)
7 3 0 PRINT '
740 PRINT "Do you wish t o View another p a r t ? " ;
7 5 0 UNTIL GET$="N"

7 6 0 RETURN

7 7 0
780

The purpose of this subroutine is to allow you to update the stock level without having to amend
the rest of the record.

7 9 0 REM CHANGE THE STOCK LEVEL FOR ONE PART
8 0 0 .
810 REPEAT
8 2 0 CLS
8 3 0 PRINT "CHANGE STOCK"

8 4 0 partno=FN_getpartno
8 5 0 f lag=FN_getrec(par tno,ASC"V")
8 6 0 REPEAT

8 7 0 PROC_display(f lag)
880 PROC_cteos
8 9 0 REPEAT

9 0 0 PRINT T A B (O , 1 2) ; : P R O C _ C t e O l

910 INPUT "What is the change ? " temp$
9 2 0 change=VAL(temp$)
9 3 0 UNTIL INT(change)=Change AND stock+change>=0
940 IF temp$="" flag=FALSEzGOTO 1000
9 5 0 stock=stock+change
9 6 0 PROC_display(f lag)
9 7 0 PR INT ' " I s th is cor rec t ? " ;

980 temp$=GET$
990

1000 UNTIL NOT f lag OR temp$="Y"
1010 PROC_wr i te (par tno , f l ag ,ASC"V")
1 0 2 0 PRINT re tu rn$;be l l$;
1 0 3 0 PRINT "Do you want any more updates ? " ;
1 0 4 0 UNTIL GET$="N"

1 0 5 0 RETURN

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 286

1060
1070

This subroutine goes through the file in stock number order and lists all those items where the
current stock is below the reorder level. You can interrupt the process at any time by pushing a
key.

1 0 8 0 REM DISPLAY ITEMS BELOW REORDER LEVEL

1090 .
l l O O partno=l
l l l O REPEAT
1120 CLS
1130 PRINT "ITEMS BELOW REORDER LEVEL" '

1140 line_count=2
1150 REPEAT

1160 f lag=FN_getrec(par tno,ASC"V")
1170 IF N O T (f l a g AND s tock< reo rd) THEN 1 2 3 0

1180 PRINT "Pa r t Number " ; pa r t no
1190 PRINT d e s c $; " S t o c k " ; s t o c k ; " Reorder Level " ; r e o r d

1 2 0 0 PRINT

1210 line_count=line_count+3
1 2 2 0
1230 partno=partno+l
1240 temp$=INKEY$(O)
1250 UNTIL partno>maxpartno OR l ine_count>20 OR temp$<>""

1 2 6 0 PRINT T A B (O , 2 3) ; b e l l $; " P u s h any key t o continue or E t o end " ;
1270 temp$=GET$
1280 UNTIL partno>maxpartno OR temp$="E"
1 2 9 0 partno=0
1 3 0 0 RETURN

1310
1320

Deleted entries are not actually removed from the file, just marked as deleted. This subroutine
makes it possible for you to correct the mistake you made by deleting data you really wanted. If
you have never used this type of program seriously, you won't believe how useful this is.

1330 REM RECOVER A DELETED ENTRY
1 3 4 0 .

1350 REPEAT
1 3 6 0 CLS
1 3 7 0 PRINT "RECOVER DELETED RECORDS"

1 3 8 0 partno=FN_getpartno
1 3 9 0 f lag=FN_getrec(par tno,ASC"D")
1 4 0 0 PROC_display(f lag)
1410 PRINT

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 287

1420
1430
1440
1450
1460
1470
1480
1490
1500
1510

IF NOT f l a g THEN 1 4 7 0

PRINT " I f you wish t o recover this en t ry type Y " ;
temp$=GET$
IF t e m p $ = " Y " P R O C _ w r i t e (p a r t n o , f l a g , A S C " V ")

PRINT re tu rn$;be l l $; "Do you wish t o recover another reco rd ? " ;
UNTIL GET$="N"

RETURN

This subroutine lists all the deleted entries so you can check you really don't want the data.

1520
1530
l 5 4 0
1550
1560
1570
1580
1590
1600
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850

REM L I S T DELETED ENTRIES

partno=l
REPEAT

CLS
PRINT "DELETED I T E M S " '

line_count=2
REPEAT

f lag=FN_getrec(par tno,ASC"D")
IF NOT f l a g THEN 1 6 6 0

PRINT " P a r t Number " ; pa r tno
PRINT "Descript ion " ; d e s c $ '
line_count=line_count+3

partno=partno+l
temp$=INKEY$(0)

UNTIL partno>maxpartno OR l ine_count>20 OR temp$<>""

PRINT T A B (O , 2 3) ; b e l l $; " P u s h any key t o continue or E t o end " ;
UNTIL partno>maxpartno OR GET$="E"
partno=0
RETURN

REM DUMMY RETURNS FOR INVALID FUNCTION NUMS

RETURN

RETURN

REM REINITIALISE THE INVENTORY DATA FILE

CLS
PRINT T A B (O , 3) ; b e l l $; " A r e you sure you want t o s e t up a new

BBC BAS|C(280) Reference Manual for 288, 2nd edition 288

inventory?"
1 8 6 0 PRINT "You W i l l DESTROY ALL THE DATA YOU HAVE ACCUMULATED s o f a r . "

1870 PRINT ' " I t would be sa fe r t o use a new disk in drive B and s tar t a
new"
1 8 8 0 PRINT " inventory f i l e . " '
1 8 9 0 PRINT " I f you a re SURE you want t o do i t , enter YES"
1 9 0 0 PRINT " I f you want t o s t a r t a new inventory f i l e , enter NEW"
1910 INPUT "Otherwise, j u s t hi t return " , temp$
1 9 2 0 IF temp$="YES" PROC_setup(inventry)
1930 IF temp$="NEW" function=0
1 9 4 0 RETURN

1950
1960

BBC BAS|C(280) Reference Manual for 288, 2nd edition 289

This is where all the variables that you usually write as CHR$(#) go. Then you can find them if you
want to change them.

1970
1980
1990
2010
2020
2030
2040

REM INITIALISE ALL THE VARIOUS PRESETS ETC

DEF PROC_initialise
bel l$=CHR$(7)
re tu rn$=CHR$(l3)
rec_length=47
partno=0

If you initially set strings to the maximum length you will ever use, you will save prevent the
generation of 'garbage'.

2050
2060
2070

2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250

desc$=STRING$(30, " ")
temp$=STRING$<40," ")
WIDTH 0

REM OPEN FILE AND RETURN THE FILE HANDLE

REM I f the f i l e already e x i s t s , the la rges t permitted
REM par t number i s read in to maxpartno.
REM I f i t i s a new f i l e , the f i le i s
REM in i t ia l ised and the largest par t
REM number i s w r i t t en a s the f i r s t reco rd .

DEF FN_open(name$)
fnum=OPENUP(name$)
IF fnum>0 INPUT#fnum,maxpartno: =fnum
fnum=OPENOUT(name$)
CLS

It's a new file, so we won't go through the warning bit.

2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370

PROC_setup(fnum)

=fnum

REM SET UP THE FILE

REM Ask f o r maximum par t number required,
REM wr i te i t a s the f i r s t record and then
REM wr i te 0 in t o f i r s t by te o f each r e c .

DEF PROC_setup(fnum)
REPEAT

PRINT T A B (O , 1 2) ; b e l l $; : P R O C _ c t e o s

BBC BAS|C(280) Reference Manual for 288, 2nd edition 290

2380 INPUT "What i s the highest par t number required (Max
5 0 0 0) " , m a x p a r t n o
2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490

UNTIL maxpartno>0 AND maxpartno<5000 AND INT(maxpartno)=maxpartno
PTR#fnum=0
PRINT#fnum,maxpartno
FOR partno=l TO maxpartno

PTR#fnum=FN_ptr(partno)
BPUT#fnum,O

NEXT
partno=0
ENDPROC

Ask for the required part number. l f a null is entered, make the next part number one more than the
last.

2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2742
2750
2760
2770
2780
2790

REM GET AND RETURN THE REQUIRED PART NUMBER

DEF FN_getpartno
REPEAT

PRINT T A B (O , 5) ; b e l l $; : P R O C _ c t e o s
PRINT "Enter a Par t Number Between 1 and " ;maxpartno '
IF partno=maxpartno THEN 2 5 9 0
PRINT "The Next Part Number i s " ;par tno+1;
PRINT " Just h i t RETURN t o get t h i s " '

INPUT "What i s the Part Number You Want " , par tno$
IF partno$<>"" partno=VAL(partno$):GOTO 2630
IF partno=maxpartno partno=0 ELSE partno=partno+l

PRINT T A B (3 5 , 9) ; p a r t n o ; : P R O C _ c t e o l

UNTIL partno>0 AND partno<maxpartno+l AND INT(par tno)=par tno
=partno

REM GET THE RECORD FOR THE PART NUMBER

REM Return TRUE i f the reco rd e x i s t s and
REM FALSE i f no t I f the record does not
REM e x i s t , load desc$ wi th "No Record" The
REM remainder o f the record i s se t t o O .

DEF FN_getrec(par tno, type)
s tock=0
reord=0
pr ice=O
PTR#inventry=FN_ptr(partno)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 291

2800 test=BGET#inventry
2810 IF test=O desc$="No Record" : =FALSE
2 8 2 0 IF test=type THEN 2 8 5 0
2 8 3 0 IF type=86 desc$="Record Deleted" ELSE desc$="Record E x i s t s "
2840 =FALSE
2850 .
2 8 6O INPUT#inventry, desc$
2 8 7 0 INPUT#invent ry ,s tock, reord,pr ice
2880 =TRUE
2890
2900

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 292

Part numbers run from 1 up. The record for part number 1 starts at byte 5 of the file. The start
position could have been calculated as (part-no -1) *record_length + 5. The expression below
works out to the same thing, but it executes quicker.

2910
2920
2930
2940
2950

REM CALCULATE THE VALUE OF PTR FOR THIS REC

DEF FN_ptr(partno)=partno*rec_length+5—rec_length

This function amends the record as required and returns with flag=TRUE if any amendment has
taken place. It also sets the record type indicator (valid deleted or no record) to ASC"V" or ASC"D"
as appropriate.

2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170

REM AMEND THE RECORD

DEF FN_amend(partno)
PRINT re tu rn$; :PROC_c teo l :PR INT T A B (O , 4) ;

PRINT "P lease Complete the Deta i ls f o r Par t Number " ;pa r tno
PRINT "Just h i t Return t o leave the ent ry a s i t i s " '
flag=FALSE
type=ASC"V"
INPUT "Descr ip t ion — Max 3 0 Chars " temp$
IF temp$="DELETE" t y p e = A S C " D " : =TRUE

temp$=LEFT$(temp$,30)
IF temp$<>"" desc$=temp$:flag=TRUE
IF desc$="No Record" OR desc$="Record Deleted" =FALSE
INPUT "Current Stock Level " temp$
IF temp$<>"" stock=VAL(temp$) :flag=TRUE
INPUT "Reorder Level " temp$
IF temp$<>"" reord=VAL(temp$): f lag=TRUE
INPUT "Unit P r i ce " temp$
IF temp$<>"" pr ice=VAL(temp$): f lag=TRUE
= f l ag

Write the record to the file if necessary (flag=TRU E)

3180
3190
3200
3210
3220
3230
3240
3250

REM WRITE THE RECORD

DEF PROC_wr i te (par tno , f lag , type)
IF NOT f l a g ENDPROC

PTR#inventry=FN_ptr(partno)
BPUT#inventry,type
PRINT#invent ry ,desc$,s tock , reord ,pr ice
ENDPROC

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 293

3260
3270

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 294

Print the record details to the screen. If the record is not of the required type (V or D) or it does not
exist, stop after printing the description. The description holds "Record Exists" or "Record Deleted"
or valid data as set by FN_getrec.

3 2 8 0 REM DISPLAY THE RECORD DETAILS

3290 .
3 3 0 0 DEF PROC_display(f lag)
3 3 1 0 PRINT T A B (O , 5) ; : P R O C _ C t e O S

3 3 2 0 PRINT "Par t Number " ; p a r t n o '
3330 PRINT "Descript ion " ;desc$
3 3 4 0 IF NOT f l a g ENDPROC

3 3 5 0 PRINT "Current S tock Level " ; s t o c k
3 3 6 0 PRINT "Reorder Level " ; r e o r d
3 3 7 0 PRINT "Unit P r i c e " ; p r i c e

3380 ENDPROC
3390
3400

The two following procedures rely on the screen width being 80 characters:

3410 REM There a re no ' n a t i v e ' Clear t o end o f
3 4 2 0 REM l ine /sc reen vdu procedures . The
3 4 3 0 REM fol lowing two procedures c lear t o the
3440 REM end o f the l ine/screen.
3 4 5 0 DEF PROC_cteol

3460 LOCAL x , y
3 4 7 0 x=POSzy=VPOS
3 4 8 0 IF y=3l PRINT S P C (7 9 - X) ; ELSE PRINT S P C (8 0 - X) ;

3 4 9 0 PRINT T A B (x , y) ;

3 5 0 0 ENDPROC

3510
3 5 2 0 .
3530 DEF PROC_cteos
3 5 4 0 LOCAL I , x , y
3 5 5 0 x=POSzy=VPOS
3 5 6 0 IF y<31 FOR I=y TO 30 :PR INT S P C (8 0) ; : N E X T

3 5 7 0 PRINT S P C (7 9 — x) ; T A B (x , y) ;
3 5 8 0 ENDPROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 295

Indexed Data Files

Deficiencies of Random Access Files

As you will see if you dump a random file, a lot of space is wasted. This is because all the records
must be allocated the same amount of space, otherwise you could not calculate where the record
started. For large data files, over 50% of the space can be wasted. Under these circumstances it is
possible to save space by using two files, one as an index to the other. In order for this to work
efficiently, you must have complete control over the file pointer. Not many versions of BASIC allow
this control, but it is quite simple with BBC BASIC.

The Address Book Program
The final program is an example of an indexed file. It is a computer implementation of the address
book discussed way back at the beginning of these notes. Two files are used, one as an index to
the other. Both are serial and no space is wasted between records.

File Organisation

The files are organised as shown below:

NAME.NDX (index file)

maxrec length index$(1) index(1) index$(2) index(2) etc. —>
5 bytes 5 bytes 1 to 31 bytes 5 bytes 1 to 31 bytes 5 bytes

Where index(n) points to a record in the data file as follows:

ADDRESS.DTA (data file)

Phone Num Address 1 Address 2 Address 3 Address 4 Post Code
1 to 31 bytes 1 to 31 bytes 1 to 31 bytes 1 to 31 bytes 1 to 31 bytes 1 to 31 bytes

maxrec Is the maximum number of records permitted in this file. The practical
limit is governed by the amount of memory available for the index
arrays which are held in memory. If you want to write a disk access
and sort program for the index - the best of luck. And please can I
have a copy?

length Is the number of entries in the index.

index (n) Is the value of PTR#datanum just prior to the first byte of the data for
this entry being written to it. In the Random File examples this value
was calculated and it increased by a constant amount for every record.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 296

Program Organisation
The example looks horribly long and complicated. However the actual file handling bits are quite
simple. The rest is, as usual, required for tidy input and output of data. The meat of the program is
in the procedures and functions for putting and deleting index entries and finding the right place in
the index. The latter uses a routine called a 'binary chop' (you could get arrested for that). This
looks simple, and it is - when it works. If you are interested there is a flow chart and a brief
explanation of how it works at the end of these notes. For the faithful, just use it. It takes
considerably less time than any other method to search an ordered list.

The Index

The index is read into memory at the start and written back at the end. In memory, it consists of
two arrays called index$() and index(). Oh that we could have mixed type arrays!

Ex 12 (the LAST)

10 REM F-INDEX
2 0 REM EXAMPLE OF AN INDEXED FILE
3O .
4O REM Writ ten by Doug Mounter — Feb 1982
5 0 REM Modif ied f o r BBC B A S I C (Z 8 0) — Dec 1 9 8 5
60
7O REM This i s a simple address book f i l ing

8O REM sys tem. I t w i l l accept names, telephone
9 0 REM numbers and addresses and s t o re them in a

100 REM f i l e ca l led ADDRESS.DTA. The index i s in
110 REM name order and i s kept in a f i le ca l led
120 REM NAME.NDX. A l l the f ie lds are character
122 REM and the maximum length o f any f ie ld
1 2 4 REM i s 3 0 .

130 .
1 4 0 PROC_init ial ise
150 PROC_open_files
1 6 0 ON ERROR IF ERR<>17 PRINT:REPORT:PRINT" A t l ine " ; E R L z E N D

1 7 0 REPEAT

180 CLS
1 9 0 PRINT TAB

2 0 0 PRINT TAB

(5) ; " I f you want t o : — " '
(l

2 1 0 PRINT T A B (l

(l
(l
(l

3
) ; " E n d This S e s s i o n " ; T A B (5 5) ; " T y p e 0 "
) ; " E n t e r D a t a " ; T A B (5 5) ; " T y p e l "

2 2 0 PRINT TAB)

2 3 0 PRINT TAB)

2 4 0 PRINT TAB)

2 5 0 REPEAT

; "Search For/Delete an E n t r y " ; T A B (5 5) ; " T y p e 2 "
; " L i s t in Alphabet ical O r d e r " ; T A B (5 5) ; " T y p e 3 "

I

O
O
O
O
O ; "Reo rg data Fi le and I n d e x " ; T A B (5 5) ; " T y p e 4 " ;

2 6 0 PRINT T A B (5 , l l) ;

2 7 0 PRINT "P lease enter the appropriate number (0 t o 4) " ;
280 function$=GET$
290 PRINT return$; :PROC_cteol
3 0 0 UNTIL func t ion$>" / " AND func t ion$<"5"

BBC BAS|C(280) Reference Manual for 288, 2nd edition 297

310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
590
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770

funct ion=VAL(funct ion$)
PRINT TAB(54 , f unc t i on+5) ; "<====<<" ;

ON funct ion PROC_enter,PROC_search,PROC_list,PROC_reorg,ELSE
UNTIL function=0
CLS
PROC_close_fi les
*ESC ON
PRINT "Address Book Fi les C l o s e d " "
END

REM ENTER DATA

DEF PROC_enter
flag=TRUE

temp$=""
i=1
REPEAT

REPEAT

IF temp$="N" PROC_message("Data NOT Accepted")
PROC_get_data
IF length=maxrec OR d a t a $ (l) = " " f lag=FALSEzGOTO 5 9 0
IF d a t a $ (l) = " + " OR d a t a $ (l) = " — " PROC_message("Bad D a t a ") : G O T O

i =FN_ f i nd_p lace (0 ,da ta$ (l))
IF i>O PROC_message("Dupl icate Record")
PRINT ' " I s th is data co r rec t ? " ;
temp$=FN_yesno

UNTIL NOT f lag OR temp$<>"N"
PROC_cteos
IF NOT f l a g THEN 6 7 0

PROC_put_ index(i ,data$(l) ,PTR#datanum)
FOR i=2 T O 7

PRINT#datanum,data$(i)
NEXT

UNTIL NOT f l ag
ENDPROC

REM SEARCH FOR AN ENTRY

DEF PROC_search
i=0
REPEAT

PRINT T A B (O , l l) ; : P R O C _ c t e O l

INPUT "What name do you want t o look f o r " ,nameS

BBC BAS|C(280) Reference Manual for 288, 2nd edition 298

780
790

IF name$="" THEN 8 0 0
IF name$<>" " IF name$="DELETE" PROC_de le te (i) ELSE

i=FN_display(i ,name$)
800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180

UNTIL name$=""
ENDPROC

REM LIST IN ALPHABETICAL ORDER

DEF PROC_list
entry=l
REPEAT

CLS
line_count=0
REPEAT

PRINT T A B (O , l i n e _ c o u n t) ;
PROC_read_data(entry)
PROC_print_data
entry=entry+l
line_count=line_count+8
temp$=INKEY$ (0)

UNTIL entry>length OR l ine_count>l6 OR temp$<>""
PROC_message("Push any key t o continue o r E t o end ")

UNTIL entry>length OR GET$="E"
ENDPROC

REM REORGANISE THE DATA FILE AND INDEX

DEF PROC_reorg

entry=l
PRINT T A B (O , 1 3) ; " R e o r g a n i s i n g the Data F i le " '
newdata=OPENOUT"ADDRESS.BAK"

REPEAT

PROC_read_data(entry)
index(ent ry)=PTR#newdata
FOR i=2 T O 7

PRINT#newdata ,data$(i)
NEXT

entry=entry+1
UNTIL entry>length
CLOSE#newdata

The time taken to rename a file can be considerable.

1190
1200

PRINT "Re—naming the Data F i le" '
*REN ADDRESS. $ $ $=ADDRESS . BAK

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 299

1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1340
1350
1360
1370
1380
1390
1400
1402
1410
1420
1430
1440
1450
1460
1470
1480
1490
1500
1510
1520
1530
1540
1550
1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730

PRINT "* " ;
*REN ADDRESS.BAK=ADDRESS.DTA
PRINT " * " ;
*REN ADDRESS.DTA=ADDRESS.$$$
PRINT " * " ;
datanum=OPENUP "ADDRESS.DTA"
ENDPROC

REM INITIALISE VARIABLES AND ARRAYS

DEF PROC_initialise
* E S C OFF

esc$=CHR$(27)
b e l l $ = C H R $ (7)

re tu rn$=CHR$(l3)
maxrec=100

REM The maximum record number, maxrec, i s
REM read in
REM PROC_read_index i f the f i le already e x i s t s .

DIM message$(7)
FOR i=1 T O 7

READ m e s s a g e $ (i)
NEXT

DATA Name,Phone Number,Address,-- " - - , - - " - - , - - " - - , P o s t Code

DIM d a t a $ (7)

FOR i=1 T O 7

d a t a $ (i) = S T R I N G $ (3 0 , " ")

NEXT

temp$=STRING$(255," ")
temp$=""

REM OPEN THE FILES

DEF PROC_open_files
indexnum=OPENUP"NAME.NDX"
datanum=OPENUP"ADDRESS.DTA"
IF indexnum=0 OR datanum=0 PROC_setup ELSE PROC_read_indeX
PTR#datanum=EXT#datanum
ENDPROC

REM SET UP NEW INDEX AND DATA FILES

DEF PROC_setup

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 300

1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210

CLS

PRINT T A B (O , 1 3) ; " S e t t i n g Up Address Book"
indexnum=OPENOUT"NAME.NDX"

datanum=OPENOUT "ADDRE S S . DTA"

length=0
PRINT#indexnum,maxrec,length
CLOSE#indexnum
DIM index$(maxrec+ l) , i ndex(maxrec+ l)
i n d e x $ (0) = " "
i n d e x (0) = 0
i n d e x $ (l) = C H R $ (& F F)
i ndex (1)=0
ENDPROC

REM READ INDEX AND LENGTH OF DATA FILE

DEF PROC_read_index
CLS

INPUT#indexnum,maxrec,length
DIM i n d e x $ (m a x r e c + l) , i ndex (maxrec+ l)

i n d e x $ (0) = " "
i n d e x (0) = 0

FOR i=1 TO length
INPUT#indexnum, index$(i) , index(i)

NEXT

CLOSE#indexnum
index$(leng th+ l)=CHR$(&FF)
index(length+ l)=0
ENDPROC

REM WRITE INDEX AND CLOSE FILES

DEF PROC_close_fi les
indexnum=OPENOUT"NAME.NDX"
PRINT#indexnum,maxrec,length
FOR i=1 TO length

PRINT#indexnum, index$(i) , index(i)
NEXT

CLOSE#O

ENDPROC

REM WRITE A MESSAGE AT LINE 2 3

DEF PROC_message(line$)
LOCAL x , y

BBC BAS|C(280) Reference Manual for 288, 2nd edition 301

2220
2230
2240
2250
2260
2270
2280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380

X=POS
y=VPOS
PRINT T A B (O , 2 3) ; : P R O C _ c t e o l : P R I N T be l l $; l i ne$;
PRINT T A B (x , y) ;
ENDPROC

REM GET A Y / N ANSWER

DEF FN_yesno
LOCAL temp$
temp$=GET$
I F t e m p $ = " y " OR temp$=HY| l = " Y "

IF temp$="n" OR temp$="N" ="N"

This procedure makes use of the machine code routine at the end of the program. It works in a
similar fashion to the clear-to-end-of—line and clear-to-end-of—screen procedures defined towards
meendoflhepmgmNL

2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540
2550
2560
2570
2580
2590
2600
2610
2620
2630
2640

REM CLEAR 9 LINES FROM PRESENT POSITION

DEF PROC_clear9
LOCAL x , y , i
PRINT re tu rn$;
A%=&A20:B%=O:C%=720:D%=O
CALL i n t

ENDPROC

REM GET INPUT DATA - LIMIT TO 3 0 CHAR

DEF PROC_get_data
LOCAL i
PRINT T A B (O , 1 3) ;

PROC_clear9
IF length=maxrec PROC_message("Add Book Fu l l ")
FOR i=1 T O 7

PRINT TAB(10);message$(i) ;TAB(25);
INPUT temp$
d a t a $ (i) = L E F T $ (t e m p $, 3 0)
IF d a t a $ (l) = " " i=7

NEXT
ENDPROC

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 302

2650
2660
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760

Move everything below the entry you want deleted up one and subtract 1 from the length

2770
2780
2790
2800
2810
2820
2830
2840
2850
2860
2870
2880
2890
2900
2910

REM FIND AND DISPLAY THE REQUESTED DATA

DEF FN_display(i ,name$)
PRINT T A B (O , 1 2) ; : P R O C _ C t e o s
i=FN_findiplace(i,name$)
IF i < 0 PROC_message("Name Not Known — Next Highest G i ven ")

PROC_read_data(i)

PRINT

PROC_print_data
: 1

REM DELETE THE ENTRY FROM THE INDEX

DEF PROC_delete(i)
INPUT "Are you SURE " , temp$
PRINT TAB(O,VPOS—l); :PROC_cteos
IF temp$<>"YES" ENDPROC
IF i<0 i=—i
FOR i=i TO length

i ndex$(i)= index$(i+ l)
i n d e x (i) = i n d e x (i + l)

NEXT

length=length—l
ENDPROC

Get the start of the position of the start of the data record for entry 'i' in the index and read it into
the buffer array data$(). Save the current value of the data file pointer on entry and restore it
before leaving.

2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030

REM READ DATA FOR ENTRY i

DEF PROC_read_data(i)

PTRdata=PTR#datanum
IF i < 0 i = — i

PTR#datanum=index(i)

d a t a $ (l) = i n d e x $ (i)
FOR i=2 T O 7

INPUT#datanum,data$(i)
NEXT

PTR#datanum=PTRdata
ENDPROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 303

3040
3050 .
3060 REM PRINT data$<> ON VDU
3070 .
3080 DEF PROC_print_data
3 0 9 0 LOCAL i

3100 FOR i=1 TO 7
3110 IF d a t a $ (i) < > " " PRINT T A B (l O) ; m e s s a g e $ (i) ; T A B (2 5) ; d a t a $ (i)
3 1 2 0 IF d a t a $ (l) = C H R $ (& F F) i=7

3 1 3 0 NEXT

3 1 4 0 ENDPROC

3150
3160

Move all the directory entries from position i onwards down the index. (In fact you have to start at
the end and work back.) Slot the new entry in the gap made at position i and add 1 to the length.

3 1 7 0 REM PUT A NEW ENTRY IN INDEX AT POSITION i

3180 .
3190 DEF PROC_put_index(i ,entry$,ptr)
3200 LOCAL j
3210 IF i<0 i=—i
3 2 2 0 FOR j=length+l TO i STEP —1
3 2 3 0 i n d e x $ (j + l) = i n d e x $ (j)
3 2 4 0 i n d e x (j + l) = i n d e x (j)
3250 NEXT
3 2 6 0 i n d e x $ (i) = e n t r y $
3 2 7 0 i ndex (i) =p t r

3 2 8 0 length=length+l
3 2 9 0 ENDPROC

3300
3310

This function looks in the index for the string entry$. If it finds it it returns with i set to its position in
the index. If not, i is set to minus the position of the next highest string (In other words, the position
you wish to put the new entry). Thus if a part of the index looked like:

(34) BERT
(35) FRED

(36) JOHN

and you entered with FRED, it would return 35. However if you entered with GEORGE, it would
return -36.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 304

The function consists of two parts. The first looks at the entry$ to see if it should just up or down
the entry number by 1, taking account of wrap-around at the start and end of the index. The
second part is the binary chop advertised with such telling wit in the introduction to indexed files.
Since we enter this function with the entry pointer i set to its previous value, we must cater for a
negative value.

3 3 2 0 REM FIND ENTRY IN INDEX OR PLACE T O PUT I T

3330 .
3 3 4 0 DEF FN_f ind_place(i ,ent ry$)
3 3 5 0 LOCAL top,bot tom
3360 IF i<0 i=—i
3370 IF entry$="+" AND i<length =i+1
3380 IF entry$="+" AND i=length =1
3 3 9 0 IF en t r y$="—" AND i>1 = i — l
3400 IF entry$="-" AND i<2 =length

Here, a t l a s t , T H E B I N A R Y C H O P
This bit moves the pointer up the index to the first of any duplicate entries.

3410 top=length+l
3 4 2 0 bottom=0
3430 i=(top+l) DIV 2
3 4 4 0 IF en t ry$<> index$(i) i=FN_search(entry$)
3 4 5 0 REPEAT

3 4 6 0 IF en t r y$= index$ (i— l) i= i—l
3 4 7 0 UNTIL en t r y$<> index$ (i—l)
3 4 8 0 IF en t ry$= index$(i) =i ELSE = — i
3490 '
3500 .
3 5 1 0 REM DO THE SEARCHING FOR FN_find_place

3520 .
3 5 3 0 DEF FN_search(ent ry$)
3 5 4 0 REPEAT

3 5 5 0 IF en t r y$> index$(i) bottom=i ELSE top=i
3 5 6 0 i=(top+bot tom+l) DIV 2 : REM round
3 5 7 0 UNTIL en t ry$= index$(i) OR top=bottom+l
3580 =i
3590
3600

BBC BAS|C(280) Reference Manual for 288, 2nd edition 305

the two following procedures rely on the screen width being 80 characters:

3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580

Well, that's it. Apart from the following notes on the binary chop you have read it all.

REM There a re no ' n a t i v e ' c lear t o end o f
REM l ine /sc reen vdu procedures . The
REM fol lowing two procedures Clear t o the
REM end o f the l ine/screen.
DEF PROC_cteol
LOCAL x , y
x=POSzy=VPOS
IF y=3l PRINT S P C (7 9 - X) ; ELSE PRINT S P C (8 0 - x) ;
PRINT T A B (X , y) ;
ENDPROC

DEF PROC_cteos
LOCAL I , X , y

x=POSzy=VPOS
IF y<3 l FOR I=y TO 30 :PR INT S P C (8 0) ; : N E X T

PRINT S P C (7 9 — x) ; T A B (x , y) ;

ENDPROC

BBC BAS|C(280) Reference Manual for 288, 2nd edition 306

The Binary Chop

Explanation

The quickest way to find an entry in an ORDERED list is not to search through it from start to end,
but to continue splitting the list in two until you reach the entry you are looking for. You begin by
setting one pointer to the bottom of the list, another to the top, and a third to mid-way between
bottom and top. Then you compare the entry pointed to by this third pointer with the number you
are searching for. If your number is bigger you make the bottom equal the pointer, if not make the
top equal to it. Then you repeat the process.

Let's try searching the list of numbers below for the number 14.

bottom>

pointer>

top>

bottom>

pointer>

top>

l 4

19

23

34

45

61

l 4

19

23

34

45

61

Set bottom to the lowest position in the list, and top to
the highest. Set the pointer to (top+bottom) / 2 . Is
that entry 14? No it's more, so set top to the current
value of pointer and repeat the process.

Set the pointer to (top+bottom) / 2 . Is that entry 14?
No it's less, so set bottom to the current value of
pointer and try again.

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 307

(1) 3 Set the pointer to (top+bottom) /2 . Is that entry 14?
Yes, so exit with the pointer set to the position in the

(2) 6 list of the number you are looking for.

bottom> (3) 8

pointer> (4) 14

top> (5) l 9

(6) 23

(7) 34

(8) 45

(9) 61

As you can imagine, things are not always as simple as this carefully chosen example. You have to
cater for the number not being there, and for the list being empty. There are a number of ways of
doing this, but the easiest is to add two numbers of your choice to the list. Make the first entry the
most negative number the computer can hold, and the last entry the most positive. This will
prevent you from ever trying to search outside the list. Preventing a perpetual loop when the
number you want is not in the list is quite simple, just exit when 'top' is equal to 'bottom'+1. If you
have not found the number by then, it's not in the list.

You can use this routine to add numbers to the list in order. If you can't find the number, you exit
with the position it should go to in the list. Just move all the numbers under it down one slot and
put the new number in. This works just as well when the list is empty except for your two 'end
markers'.

Have a look at the flowchart on the next page and work through a couple of dry runs with a short
list of numbers. You may think that it's not worth doing it this way and that a 'linear search' would
be as quick. Try it with a list of 100 numbers. It should take you no more than 7 goes to find the
number. The AVERAGE number of comparisons required for a linear search would be 50.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 308

ENTH$='THIMG'BEIHG ENTER
SEARCHED FOR

TOP=LENGTH+1
LENGTH: NO OF 'PROPER' BOTTCWFD

ENTRIES IN
THE ARRAY. I
THE FIRST POINTER:

'PROPER' (TOP+EcmTCM+1)
ENTRY IS IN Div 2
ARRAYEl).

ARRAY{U) HOLDS
MOST —vE NO.
ARRAycLENGTH+1J
HOLDS MOST +UE
THIS ROUNDS UP.
{TDP+EOTTOM)
DIV 2
WOULD ROUND DOWN

TEE: BCETCM:
POINTER POINTER

q —
POINTER:

(TOP + BOT TOM+1:I
D I U 2

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 309

Binary

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

00001010

00001011

00001100

00001101

00001110

00001111

00010000

00010001

00010010

00010011

00010100

00010101

00010110

00010111

00011000

Hex

00

01

02

03

04

05

06

07

08

09

0A

OB

00

OD

OE

0F

10

11

12

13

14

15

16

17

18

Dec Char

0 <>=

1 0A

2 08

3 00

4 0D

5 <>E

6 OF

7 0G

8 OH

9 0|

10 OJ

11 OK

12 OL

13 0M

14 ON

15 00

16 OF

17 00

18 OR

19 OS

20 OT

21 0U

22 0V

23 0W

24 0X

Annex A: Table of ASCII Codes

NUL

SOH Start of Heading

STX Start of Text

ETX End of Text

EOT End of Transmit

ENQ Enquiry

ACK Acknowledge

BEL Bell - Audible Signal

BS Back Space

HT Horizontal Tab

LF Line Feed

VT Vertical Tab

FF Form Feed

CR Carriage Return

80 Shift Out

SI Shift In

DLE Data Link Escape

DC1 X On

DC2 Aux On

DC3 X Off

DC4 Aux Off

NAK Negative Acknowledge

SYN Synchronous File

ETB End of Transmitted Block

CAN Cancel

BBC BAS|C(280) Reference Manual for 288, 2nd edition 310

00011001

00011010

00011011

00011100

00011101

00011110

00011111

Binary

00100000

00100001

00100010

00100011

00100100

00100101

00100110

00100111

00101000

00101001

00101010

00101011

00101100

00101101

00101110

00101111

00110000

00110001

00110010

00110011

19

1A

1B

1C

1D

1E

1F

Hex

20

21

22

23

24

25

26

27

28

29

2A

ZB

20

2D

2E

2F

30

31

32

25

26

27

28

29

30

31

Dec

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

<>Y EM End of Medium

02 SUB Substitute

0[ESC Escape

0\ FS File Separator

0] GS Group Separator

<>£ RS Record Separator

<>- US Unit Separator

Char

Space

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 311

00110100

00110101

00110110

00110111

00111000

00111001

00111010

00111011

00111100

00111101

00111110

00111111

Efinary

01000000

01000001

01000010

01000011

01000100

01000101

01000110

01000111

01001000

01001001

01001010

01001011

01001100

01001101

01001110

BBC BAS|C(280) Reference Manual for 288, 2nd edition

34

35

36

37

38

39

3A

33

BC

3D

3E

3F

Hex

40

41

42

43

44

45

46
47

48

49

4A

4B

4C

4D

4E

52 4

53 5

54 6

55 7

56 8

57 9

58

59 ;

60 <

61 =

62 >

63 ?

Dec Char

64 @p

65 A

66 B

67 C

68 D

69 E

70 F

71 (3

72 H

73 |

74 J

75 K

76 L

77 AA

78 N

Efinary

01100000

01100001

01100010

01100011

01100100

01100101

01100110

01100111

01101000

01101001

01101010

01101011

01101100

01101101

01101110

Hex

60

61

62

63

64

65

66

67

68

69

6A

GB

BC

6D

6E

Dec

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Char

‘ (0’)

312

01001111

01010000

01010001

01010010

01010011

01010100

01010101

01010110

01010111

01011000

01011001

01011010

01011011

01011100

01011101

01011110

01011111

BBC BAS|C(280) Reference Manual for 288, 2nd edition

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

SD

5E

5F

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

N
-

<
>

<
g

<
c

-
I

c
n

:
u

o
-

u
o

l—

I

01101111

01110000

01110001

01110010

01110011

01110100

01110101

01110110

01110111

01111000

01111001

01111010

01111011

01111100

01111101

01111110

01111111

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127 DEL Delete

313

Annex B: Mathematical Functions

BBC BAS|C(280) has more intrinsic mathematical functions than many other versions of BASIC.
Those that are not provided may be calculated as shown below.

Function

SECANT

COSECANT

COTANGENT

Inverse SECANT

Inverse COSECANT

Inverse COTANGENT

Hyperbolic SINE

Hyperbolic COSINE

Hyperbolic TANGENT

Hyperbolic SECANT

Hyperbolic COSECANT

Calculation

S E C (X) = l / C O S (X)

C S C (X) = l / S I N (X)

C O T (X) = l / T A N (X)

A R C S E C (X) = A C S (l / X)

ARCCSC(X)=ASN(1 /X)

A R C C O T (X) = A T N (l / X)
= P I / 2 - A T N (X)

SINH (X) = (EXP (X) —EXP (—X)) / 2

COSH (X) = (EXP (X) +EXP (—X)) / 2

T A N H (X) = E X P (- X) / (E X P (X) + E X P (- X)) * 2 + l

S E C H (X) = 2 / (E X P (X) + E X P (- X))

CSCH (X) = 2 / (EXP (X) —EXP (—X))

BBC BAS|C(280) Reference Manual for 288, 2nd edition 314

Hyperbolic COTANGENT

COTH (X) =EXP (—X) / (EXP (X) —EXP (—X)) *2+1

Inverse Hyperbolic SIN

ARCSINH (X) =LN(X+SQR(X*X+1))

Inverse Hyperbolic COSINE

ARCCOSH (X) =LN (X+SQR (X * X - l))

Inverse Hyperbolic TANGENT

ARCTANH (X) =LN((1+X) / (1—X)) / 2

Inverse Hyperbolic SECANT

ARCSECH (X) =LN((SQR(—X*X+l) +1) /X)

Inverse Hyperbolic COSECANT

ARCCSCH (X) =LN((SGN (X) *SQR(X*X+1) +1) / x

Inverse Hyperbolic COTANGENT

ARCCOTH (X) =LN((X+l) / (X - l)) / 2

LOGn(X)

LOGn (X) =LN (X) /LN (11)
=LOG (X) /LOG (n)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 315

Summary
Trappable - Program

No

1

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

Error

Out of range

Missing ,

No FN

Missing "

DIM space

No PROC

Subscript

Escape

String too long

-ve root

Accuracy lost

Missing)

No such FN/PROC

Arguments

Can't match FOR

*

ON syntax

No such line

No REPEAT

Missing #

Annex C: Error Messages and Codes

No

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

44

* Not applicable to BBC BASIC(280)

Error

Mistake

Type mismatch

Bad DIM

Not LOCAL

Array

Syntax error

Division by zero

Too big

Log range

Exp range

No such variable

Bad HEX

Bad call

No FOR

FOR variable

No T0

N0 GOSUB

ON range

Out of DATA

*

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 316

Trappable - Operating System

No

192

220

222

252

253

254

Error

Too many open files

Bad syntax

Channel

File Access errors

Sorry, not implemented

Bad command

Untrappable - Error Code 0

No room

Silly

Sorry

Failed at nnn

Reported as one of the following:

Already exists

Bad filename

End of file

File Not found

File type mismatch

In use

Read Protected

Suspended

Write protected

RENUMBER space

LINE space

Bad program

Strictly speaking 'Bad program' does not have an error code. It leaves ERR and ERL unchanged.

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 317

Details

BBC BASIC(280)'s error messages and codes are briefly explained below in alphabetical order.

Accuracy lost (23)

Before BBC BASIC(280) calculates trigonometric functions (sin, cos, etc) of very large angles the
angles are reduced to +/- PI radians. The larger the angle, the greater the inaccuracy of the
reduction, and hence the result. When this inaccuracy becomes unacceptable, BBC BASIC(280)
will issue an 'Accuracy lost' error message.

Arguments (31)

This error indicates that too many or too few arguments have been passed to a procedure or
function or an invalid formal parameter has been used. See the sub-section on Procedures and
Functions.

Array (14)

This error occurs when BBC BASIC(280) thinks it should be accessing an array, but does not know
which one.

Bad call (30)

This error indicates that a procedure or function has been incorrectly called.

Bad command (254)

This error occurs when a command name is not recognized as a valid BBC BASIC(280) command.
Star commands which are unknown to BBC BASIC(280) are passed to CP/M-80. If the command
is unrecognised by CP/M-80, an untrappable 'Bad command or file name' error occurs.

Bad DIM (10)

Arrays must be positively dimensioned. In other words, the numbers within the brackets must not
be negative. This error would be produced by the following example.

DIM table (2 0 , - 1 . 0)

Bad HEX (28)

Hexadecimal numbers can only include the numbers 0 to 9 and A to F. If you try to form a hex
number with other characters this error will occur. For example:

&OF instead o f &OF

BBC BASIC(280) Reference Manual for 288, 2nd edition 318

Bad name (204)

This error is generated if a path name exceeds 64 characters in length.

Bad program

From time to time BBC BASIC(280) checks to see that the program in memory is of the correct
format (See Annex E). If it is unable to follow the program from the start to the 'program end
marker' it will report this untrappable error. The error can be caused by a read error, by only
loading part of the program or by overwriting part of the program in some way. (Machine code
programmers beware.) Without a full understanding of how a program is stored in memory, there is
little you can do to recover a bad program.

Can't match FOR (33)

BBC BASIC(280) has been unable to find a FOR statement corresponding to the NEXT statement.

Channel (222)

This error is generated by the filing system. It occurs if you try to use a channel which has not been
opened, possibly because you are using the wrong channel number.

DIM space (11)

This error will be generated if:

c There is insufficient room for an array when you try to dimension it.
0 An attempt has been made to reserve a negative amount of memory. For example,

DIM A% -2

Division by zero (18)

Mathematically, dividing by zero gives an infinitely large answer. The computer is unable to
understand the concept of infinity (it's not alone) and this error is generated. If there is any
possibility that the divisor might be zero, you should test for this condition before carrying out the
division. For example:

200 IF divisor=0 THEN PROC_error ELSE. . .

End of file (252)

This is one of the ‘catch all' filing system errors. It will occur if you attempt to read beyond the end
of a file.

Escape (17)

This error is generated by pressing the [E s c] key. You can trap this, and other errors, by using the
ON ERROR GOTO statement.

BBC BASIC(280) Reference Manual for 288, 2nd edition 319

Exp range (24)

The EXP function is unable to cope with powers greater than 88. If you try to use a larger power,
this error will be generated.

Failed at nnn

During renumbering, BBC BASIC(280) tries to resolve all line numbers referred to by GOTO and
GOSUB statements. Should it fail, it will generate a 'Failed at nnn' error, where nnn is the
RENUMBERED line which contains the unresolved reference.

The following example:

1 0 0 REM Demonstrat ion renumber fa i l program
110 GOTO 2 5 0
120 END

would renumber as:

10 REM Demonstrat ion renumber fa i l program
2 0 GOTO 2 5 0
3 0 END

and generate the error message 'Failed at 20'.

File not found (252)

This is one of the ‘catch all’ filing system errors. This error will occur if you try to LOAD, *LOAD or
CHAIN a file which does not exist.

File type mismatch (252)

This is one of the ‘catch all’ filing system errors. It will occur if you try to access a file in :ROM.0 or
open a RAM device or directory.

FOR variable (34)

The variable in a FOR...NEXT loop must be a numeric variable. If you use a constant or a string
variable this error message will be generated. For example, the following statements are not legal.

2 0 FOR name$=1 TO 2 0
2 0 FOR 10:1 TO 2 0

In use (252)

This is one of the ‘catch all’ filing system errors. It will occur if you try to delete or rename a file that
is currently open. It will also occur if you try to OPENOUT a file already opened with OPENOUT.

LINE space

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 320

A program line is too long to be represented in BBC BAS|C(280)'s internal format.

Log range (22)

Logarithms for zero and negative numbers do not exist. This error message will be generated if
you try to calculate the log of zero or a negative number or raise a negative number to a
non-integer power.

Missing , (5)

This error message is generated if BBC BAS|C(280) was unable to find a comma where one was
expected. The following example would give rise to this error.

2 0 PRINT T A B (l O 5)

Missing " (9)
This error message is generated if BBC BAS|C(280) was unable to find a double-quote where one
was expected. The following example would give rise to this error.
10 name$="Douglas

Missing) (27)
This error message is generated if BBC BAS|C(280) was unable to find a closing bracket where
one was expected. The following example would give rise to this error.
10 PRINT SQR(num

Missing # (45)
This error will occur if BBC BAS|C(280) is unable to find a hash symbol (a pound symbol on some
computers) where one was expected. The following example would cause this error.

CLOSE 7

Mistake (4)
This error will be generated if BBC BAS|C(280) is unable to make any sense at all of the input line.

-ve root (21)

This error message will occur if BBC BAS|C(280) attempted to calculate the square root of a
negative number. It is possible for this error to occur with ASN and ACS as well as SQR.

9O num=—20

l O O roo t=SQR(num)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 321

No GOSUB (38)
This error message will be generated if BBC BAS|C(280) finds a RETURN statement without first
encountering a GOSUB statement. (See the sub-section on Program Flow Control.)

No FM (7)

If BBC BAS|C(280) encounters an end of function without calling a function definition, this error
message will be issued. If you forget to put multi-line function definitions out of harm's way at the
end of the program you are very likely to get this error message. (See the sub-section on
Procedures and Functions.)

No FOR (32)

This error message indicates that BBC BAS|C(280) has found a NEXT statement without first
encountering 3 FOR statement.

No PROC (13)

If BBC BAS|C(280) encounters an ENDPROC without performing (calling) a procedure definition,
this error message will be issued. If you forget to put multi-line procedure definitions out of harm's
way at the end of the program you are very likely to get this error message. (See the sub-section
on Procedures and Functions.)

No REPEAT (43)

This error message indicates that BBC BAS|C(280) has found an UNTIL statement without first
encountering a REPEAT statement.

No room

This untrappable error indicates that all the computer's available memory was used up whilst a
program was running. This error may occur as a result of numerous assignments to string
variables, as in a string sort. See the explanation of String Variables and Garbage in the Variables
sub-section for details.

Although it is most unlikely, you will also get a ‘No Room’ error if you use up all the operating
system’s file handles.

No such FNIPROC (29)

When BBC BAS|C(280) encounters a name beginning with FN or PROC it expects to be able to
find a corresponding function or procedure definition. This error will occur if such a definition does
not exist.

No such line (41)

This error will occur if BBC BAS|C(280) tries to GOTO, GOSUB, TRACE or RESTORE to a
non-existent line number.

No such variable (26)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 322

Variables are brought into existence by assigning a value to them or making them LOCAL in a
function or procedure definition. This error message will be generated if you try to use a variable
on the right-hand side of an assignment or access it in a PRINT statement before it has been
created. As shown below, you can create variables very simply.

l O count=0

2 0 name$=""

No TO (36)
This error message will be generated if BBC BASIC(Z80) encounters a FOR...NEXT loop with the
TO part missing.

Not LOCAL (12)

If you try to define a variable as LOCAL outside a procedure or function, this error message will be
generated. If you forget to put multi-Iine function definitions out of harm's way at the end of the
program you are very likely to get this error message. (See the sub-section on Procedures and
Functions.)

ON range (40)

This error will be generated if, in a simple ON GOTO/GOSUB/PROC statement, the control
variable was less than 1 or greater than the number of entries in the ON list. These exceptions can
be trapped in ON GOTO/GOSUB/PROC statements by using the ELSE option. The first example
below will generate an 'ON range' error, whilst the second is correct.

10 num=4

2 0 ON num GOTO 1 0 0 , 2 0 0 , 3 0 0

10 num=4

2 0 ON num GOTO 1 0 0 , 2 0 0 , 3 0 0 ELSE 1 0 0 0

ON syntax (39)

This error will be reported if the ON...GOTO statement was malformed. For example, the following
statement is not legal. (Refer to the keyword ON for details of legal statements.)

2 0 ON X TIME=O

Out of DATA (42)

If your program tried to read more items of data than there were in the data list, this error will be
generated. You can use RESTORE to return the data pointer to the first data statement (or to a
particular line with a data statement) if you wish.

Out of range (1)

This assembly language error will be reported if you tried to perform a relative jump (JR or DJNZ)

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 323

or used and Index register offset (IX,|Y) of more than +127 or -128 bytes or you used a 16 bit port
address when only an 8 bit address is allowed.

Read protected (252)

This is one of the ‘catch all’ filing system errors. It will occur if you try to read from a device that is
only capable of output. For example:

>F=OPENIN(“ :SCR”) : REM Handle i s a l l o c a t e d s u c c e s s f u l l y

>PRINT BGET#F : REM Er ro r occurs when reading from device

>Read p ro tec ted

RENUMBER space

When BBC BASIC RENUMBERs a program it has to build a cross-reference table of line numbers.
If there is insufficient memory to hold this table, the 'RENUMBER space' error results. In this case
you can still renumber the program using the RENUMBERCOM utility program supplied.

Sorry, not implemented

The Z88 version of BBC BAS|C(280) does not have any sound or colour commands. Equally, if the
288 Patch has not been applied and you are using a ROM version up until V4.0, you don’t have
any graphics commands either. This error occurs if you try to use one of the valid keywords which
are not implemented on the 288.

String too long (19)
You will get this error if your program tries to generate a string which is longer than 255 characters.

Subscript (15)

If you try to access an element of an array less than zero or greater than the size of the array you
will generate this error. Both lines 20 and 30 of the following example would give rise to this error
message.

10 DIM t e s t (l O)

2 0 t e s t (— 4) = 2 0
3O t e s t (3 0) = l O

Suspended (252)

This is one of the ‘catch all’ filing system errors. It will occur if 288 was switched off by pressing
both the [SHIFT] keys (or a battery low interrupt occurred) whilst data was being read from the
comms port using BBC BAS|C(280).

Syntax error (16)

A command was terminated incorrectly. In other words, the first part of the command was
recognized, but the rest of it was meaningless or incomplete. Unlike Mistake, BBC BAS|C(280)

BBC BAS|C(280) Reference Manual for 288, 2nd edition 324

was able to recognise the start of the command.

Too big (20)

This error will occur if a number is entered or calculated which is too big for BBC BAS|C(280) to
cope with.

Too many open files (192)

This error will occur if you try to open more than 10 files at any one time inside BBC BAS|C(280).

Type mismatch (6)

This error indicates that a number was encountered when a string was expected and vice-versa.
Don't forget that this can occur if the actual parameters and the formal parameters for a function or
procedure do not correspond. (See sub-section on Procedures and Functions for details of
parameter passing to functions and procedures.)

Write protected (252)

This is one of the ‘catch all’ filing system errors. It will occur if you try to write to a file opened with
OPENIN. It will also occur if you try to write to a device that is only capable of input. For example:

>F=OPENIN(“:INP”) : REM Handle i s a l located success fu l l y
>BPUT#F,1 : REM Error occurs when wr i t ing t o device

>Wri te p ro tec ted

BBC BAS|C(280) Reference Manual for 288, 2nd edition 325

Annex D: Format of Program and Variables in Memory

Memory Map

BBC BAS|C(280) runs under the 288's operating system. When a 288 has 128Kbytes or more in
slot 0 or slot 1, it becomes an expanded machine. The difference between an expanded and
non-expanded 288 are listed below.

Non-expanded Expanded

Memory available for variables and program &1 D00 &9D00

Maximum map width 80 pixels 256 pixels

User characters 16 (see below) 64

Value of EOF#-1 o (FALSE) -1 (TRUE)

For Z88 ROMS V2.2 - V4.0: If you wish to add 128Kbytes or more memory to your 288 without
turning it into an expanded machine, put the memory card in slot 2.

An unexpanded 288 can use 64 user defined characters, but if an 80 pixel map is used, the last 48
of these will be ovenNritten by map information when PipeDream is used. Reducing the map width
to 64 pixels, or not using the map at all, allows for free use of all 64-characters.

The PTR#, EXT#, and EOF# file attributes functions may be used to discover information about
your Z88.

Attribute Information

PTR#-1 High word = No. of free handles in the system.
Low word = ROM version code

Because 2 values are packed into one number, you need to display the value
returned by PTR#-1 in hexadecimal. For example:

PRINT ~PTR#—1

EXT#-1 Estimate of free memory. See later under ‘Memory for Files and Applications’

EOF#-1 TRUE (-1) = expanded
FALSE (0) = unexpanded

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 326

Memory for Files and Applications

The memory in each card slot is available to the Filer and to applications (and the special device
:RAM. —) and this memory is allocated on a ‘first come, first served’ basis. However, because of
the differences in the way memory is managed by the Filer and applications, the Filer generally
has access to slightly less memory than either the applications or the device :RAM. —.

The free memory value returned by EXT#-1 is the memory available to applications or the device
:RAM . —. Consequently, the memory available for files (other than :RAM. —) is generally somewhat
less than the value returned by EXT#-1.

A file is limited by the size of the device in which it is held (:RAM. 1, :RAM. 2, etc). The device
:RAM. — can use all the free memory anywhere in the system. Consequently, it can be larger than
any one physical device and it is useful for very large files. However, there is a bug in versions of
the Z88 operating system up to V4.0 which will cause the system to fail if you perform a soft reset
whilst any files exist in :RAM. —. Ensure that you delete all files in :RAM. — as soon as you have
finished with them and do not perform a soft reset whilst any files exist in this device.

Auto-boot CLI File and 288 ROM’s up to V4.0

If there is an EPROM or FLASH card which contains a file called ‘boot.cli‘ in slot 3 when the Z88 is
reset, the file will be loaded into :RAM. — and executed as a CLI command file. Make sure you
have deleted this file from :RAM. — when you have finished with it.

BBC BASIC(280) Program

By default, your program will start on the page boundary immediately following the interpreter's
data area and the 'dynamic data structures' will immediately follow your program. The total group
of the dynamic data structures is called the 'heap'. The base of the program control stack is located
at HIMEM. HIMEM is at &COOO on an expanded 288 and at &4000 if the 288 is unexpanded.

As your program runs, the heap expands upwards towards the stack and the stack expands
downwards towards the heap. If the two should meet, you get a 'No room' error. Fortunately, there
is a limit to the amount by which the stack and the heap expands.

In general, the heap only expands whilst new variables are being declared. However, bad
management of string variables can also cause the heap to expand.

In addition to running your program, the stack is also used 'internally' by the BBC BASIC(280)
interpreter. Its size fluctuates but, in general, it expands every time you increase the depth of
nesting of your program structure and every time you increase the number of local variables in
use.

BBC BASIC(280) Reference Manual for 288, 2nd edition 327

The Memory Map

In its Z88 incarnation, BASIC occupies a memory map of the following form:

&CO 0 O — &FFFF BBC BASIC interpreter application (16K)
& 4 0 0 0 — &BFFF (additional 32K of program/workspace, expanded 288)
&2000 — &3FFF BASIC program/workspace
&0000 — &1FFF Operating system use (and application stack)

BASIC's program/workspace is arranged in the following manner:

+ ——————————————————— + &FFFF
| BBC BASIC(Z80) |

HIMEM + ——————————————————— + &BFFF or &3FFF

+ ——————————————————— + Current l imit o f the s t a c k

(S t a c k expands downwards)

+ ——————————————————— + Current limit o f the heap
| Heap | (Heap expands upwards)

LOMEM + ——————————————————— +

TOP + ——————————————————— +
| Program |

PAGE + ——————————————————— + & 2 3 0 0
| Workspace f o r |
| in terpreter |
+ - - - - - - - - - - - - - - - - - - - + & 2 0 0 0
| Operating sys tem |
| system usage I
+ ——————————————————— + &0000

The function of HIMEM, LOMEM, TOP and PAGE are briefly discussed below. You will find more
complete definitions elsewhere in this manual. You can directly set HIMEM, LOMEM and PAGE.
However, for most of your programs you won't need to alter any of them. You will probably only
need to change HIMEM if you want to put some machine code sub-routines at the top of memory.

HIMEM The first address at the top of memory which is not available for use by BBC
BAS|C(Z80). The base of the program stack is set at HIMEM. (The first 'thing'
stored on the stack goes at HIMEM-1.)

LOMEM The start address for the heap. The first of the dynamic data structures starts
at LOMEM.

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 328

TOP The first free location after the end of your program. Unless you have set
LOMEM yourself, LOMEM=TOP. You cannot directly set TOP. It alters as you
enter your program. The current length of your program is given by:

PRINT TOP—PAGE

PAGE The address of the start of your program. You can place several programs in
memory and switch between them by using PAGE. Don't forget to control
LOMEM as well. If you don't, the heap for one program might overwrite
another program.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 329

Memory Management
There is little you can do to control the growth of the stack. However, with care, you can control the
growth of the heap. You can do this by limiting the number of variables you use and by good string
variable management.

Limiting the Number of Variables

Each new variable occupies room on the heap. Restricting the length of the names of variables
and limiting the number of variables used will limit the size of the heap. However, of the techniques
available to you, this is the least rewarding. In addition, it leads to incomprehensible programs
because your variable names become meaningless. You should keep this technique in the back of
your mind whilst you are programming, but only apply it rigorously if you are really stuck for space.

String Management

Garbage Generation
Unlike numeric variables, string variables do not have a fixed length. When you create a string
variable it is added to the heap and sufficient memory is allocated for the initial value of the string.
If you subsequently assign a longer string to the variable there will be insufficient room for it in its
original position and the string will have to be relocated with its new value at the top of the heap.
The initial area will then become 'dead' and the heap will have grown by the new length of the
string. The areas of 'dead' memory are called garbage. As more and more re-assignments take
place, the heap grows and eventually there is no more room. Thus, it is possible to run out of room
for variables even though there should be enough space.

Memory Allocation for String Variables
You can overcome the problem of 'garbage' by reserving enough memory for the longest string you
will ever put into a variable before you use it. You do this simply by assigning a string of spaces to
the variable. If your program needs to find an empty string the first time it is used, you can
subsequently assign a null string to it. The same technique can be used for string arrays. The
example below sets up a single dimensional string array with room for 20 characters in each entry,
and then empties it.

10 DIM names$(10)
2 0 FOR i=0 TO 10
3O n a m e $ (i) = S T R I N G $ (2 0 , " ")
4 0 NEXT

50 s top$=""
6 0 FOR i=0 T O 10

7 0 n a m e $ (i) = " "
8 0 NEXT

Assigning a null string to stop$ prevents the space for the last entry in the array being recovered
when it is emptied.

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 330

Program Storage in Memory

The program is stored in memory in the format shown below. The first program line commences at
PAGE.

L.|ength LSB MSB token : token &0D

Reserved Word Tokens
Line No

Program Line CR

Line Length

The line length includes the line length byte. The address of the start of the next line is found by
adding the line length to the address of the start of the current line. The end of the program is
indicated by a line length of zero and a line number of &FFFF.

Line Number

The line number is stored in two bytes, LSB first. The end of the program is indicated by a line
number of &FFFF and a line length of zero.

Statements

With the exception of the symbols '*', '=' and T and the optional reserved word LET, each
statement in the line commences with the appropriate reserved word token. Reserved words are
tokenised wherever they occur. A token is indicated by bit 7 of the byte being set. Statements
within a line are separated by colons.

Line Terminator

Each program line (except the last) is terminated by a carriage-return (&0D).

BBC BAS|C(280) Reference Manual for 288, 2nd edition 331

Variable Storage in Memory
Variables are held within memory as linked lists (chains). The first variable in each chain is
accessed via an index which is maintained by BBC BASIC(280). There is an entry in the index for
each of the characters permitted as the first letter of a variable name. Each entry in the index has a
word (two bytes) address field which points to the first variable in the linked list with a name
starting with its associated character. If there are no variables with this character as the first
character in the name, the pointer word is zero. The first word of all variables holds the address of
the next variable in the chain. The address word of the last variable in the chain is zero. All
addresses are held in the standard 280 format - LSB first.

The first variable created for each starting character is accessed via the index and subsequently
created variables are accessed via the index and the chain. Consequently, there is some speed
advantage to be gained by arranging for all your variables to start with a different character.
Unfortunately, this can lead to some pretty unreadable names and programs.

Integer Variables

Integers are held in two's complement format. They occupy 4 bytes, with the LSB first. Bit 7 of the
MSB is the sign bit. To make up the complete variable, the address word, the name and a
separator (zero) byte are added to the number. The format of the memory occupied by an integer
variable called 'NUMBER%' is shown below. Note that since the first character of the name is
found via the index, it is not stored with the variable.

LSB MSB U M B E R % 0 LSB MSB

Address of
next var.
starting with Rest of Name Zero Number
the same
letter

The smallest amount of space is taken up by a variable with a single letter name. The static integer
variables, which are not included in the variable chains, use the names A% to 2%. Thus, the only
single character names available for dynamic integer variables are a% to 2% plus _% and ‘%
(CHR$(96)). As shown below, integer variables with these names will occupy 8 bytes.

LSB MSB % 0 LSB MSB

Addr. of next variable.. Number

BBC BASIC(ZBO) Reference Manual for 288, 2nd edition 332

Real Variables

Real numbers are held in binary floating point format. The mantissa is held as a 4 byte binary
fraction in sign and magnitude format. Bit 7 of the MSB of the mantissa is the sign bit. When
working out the value of the mantissa, this bit is assumed to be 1 (a decimal value of 0.5). The
exponent is held as a single byte in 'excess 127' format. In other words, if the actual exponent is
zero, the value of stored in the exponent byte is 127. To make up the complete variable, the
address word, the name and a separator (zero) byte are added to the number. The format of the
memory occupied by a real variable called 'NUMBER' is shown below.

LSB MSB U M B E R 0 LSB MSB EXP

Addr. of... Rest of Name Mantissa (number)

As with integer variables, variables with single character names occupy the least memory.
(However, the names A to Z are available for dynamic real variables.) Whilst a real variable
requires an extra byte to store the number, the '%' character is not needed in the name. Thus,
integer and real variables with the same name occupy the same amount of memory. However, this
does not hold for arrays, since the name is only stored once.

In the following examples, the bytes are shown in the more human-readable manner with the MSB
on the left.

The value 5.5 would be stored as shown below.

Mantissa Exponent

.0011 0000 0000 0000 0000 0000 0000 0000 1000 0010

Sign Bit

&30 00 00 00 &82

Because the sign bit is assumed to be 1, this would become:

Mantissa Exponent

.1011 0000 0000 0000 0000 0000 0000 0000 1000 0010

&BO 00 00 00 &82

The equivalent in decimal is:

(0 . 5 + O . 1 2 5 + 0 . 0 6 2 5) * 2A(l3O—127)
0 . 6 8 7 5 * 23
0 . 6 8 7 5 * 8
5 . 5

BBC BAS|C(280) stores integer values in real variables in a special way which allows the faster

BBC BAS|C(280) Reference Manual for 288, 2nd edition 333

integer arithmetic routines to be used if appropriate. The presence of an integer value in a real
variable is indicated by the stored exponent being zero. Thus, if the stored exponent is zero, the
real variable is being used to hold an integer and the 4 byte mantissa holds the number in normal
integer format.

Depending on how it is put there, an integer value can be stored in a real variable in one of two
ways. For example,

number=5

will set the exponent to zero and store the integer &00 00 00 05 in the mantissa. On the other
hand,

number=5.0

will set the exponent to &82 and the mantissa to &20 00 00 00.

The two ways of storing an integer value are illustrated in the following four examples.

Example1

number=5 & 00 00 00 00 05 Integer5

Example2

number=5.0 & 82 20 00 00 00 Real5.0

This is treated as

& 8 2 A0 0 0 0 0 0 0

= (0.5+0.125)*2A(13o—127)
= O.625*8
= 5
because the sign bit is assumed to be 1.

Example 3

number=-5 & 00 FF FF FF FB

The 2's complement gives

& OO 00 00 00 05 Integer -5

Example 4

number=-5.0 & 82 A0 00 00 00 Real -5.0

(The sign bit is already 1)

= (0 . 5 + O . 1 2 5) * 2 A (l 3 O — 1 2 7)
= 0 . 6 2 5 * 8
Magnitude = 5

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 334

If all this seems a little complicated, try using the program below to accept a number from the
keyboard and display the way it is stored in memory. The program displays the 4 bytes of the
mantissa in 'human readable order' followed by the exponent byte. Look at what happens when
you input first 5 and then 5.0 and you will see how this corresponds to the explanation given
above. Then try -5 and -5.0 and then some other numbers. (The program is an example of the use
of the byte indirection operator. See the Indirection section for details.)

The layout of the variable 'NMBR' in memory is shown below.

A%-5 points here 11131)

A%-2 points here 13111)

A%-1 points here fififi

A% points here MT)

10 NUMBER=O
2 0 DIM A% —l
3 0 REPEAT

4O INPUT"NUMBER PLEASE "NUMBER

5 0 PRINT " & " ;

6O .
7O REM Step through mantissa from MSB to LSB
8 0 FOR I%=2 T O 5

9O REM Look a t value a t address A%—I%
l O O NUM$=STR$~(A%?- I%)

110 IF LEN(NUM$)=1 NUM$="O"+NUM$

1 2 0 PRINT NUM$;" " ;

1 3 0 NEXT

140 .
150 REM Look a t exponent a t address A%—l
160 N%=A%?—l
170 NUM$=STR$~(N%)
1 8 0 IF LEN(NUM$)=1 NUM$="O"+NUM$

190 PRINT " & "+NUM$"
2 0 0 UNTIL NUMBER=O

BBC BAS|C(ZBO) Reference Manual for 288, 2nd edition 335

String Variables

String variables are stored as a string of characters. Since the current length of the string is stored
in memory an explicit terminator for the string in unnecessary. As with numeric variables, the first
word of the complete variable is the address of the next variable starting with the same character.
However, since BBC BAS|C(280) needs information about the length of the string and the address
in memory where it starts, the overheads for a string are more than for a numeric. The format of a
string variable called 'NAME$' is shown below.

LSB MSB A M E $ 0 Ien max LSB MSB

Address of Cur. Max.
next var. len. (org) Addr. of
starting Rest of Name Zero of len. Start Of String
with the str. of String
same letter str.

When a string variable is first created in memory, the characters of the string follow immediately
after the two bytes containing the start address of the string and the current and maximum lengths
are the same. While the current length of the string does not exceed its length when created, the
characters of the string will follow the address bytes. When the string variable is set to a string
which is longer than its original length, there will be insufficient room in the original position for the
characters of the string. When this happens, the string will be placed on the top of the heap and
the new start address will be loaded into the two address bytes. The original string space will
remain, but it will be unusable. This unusable string space is called 'garbage'. See the Variables
sub-section for ways to avoid creating garbage.

Because the original length and the current length of the string are each stored in a single byte in
memory, the maximum length of a string held in a string variable is 255 characters.

Fixed Strings

You can place a string starting at a given location in memory using the indirection operator '$'.
For example,

$&8000="Th is i s a str ing"

would place &54 (T) at address &8000, &68 (h) at address &8001, etc. Because the string is
placed at a predetermined location in memory it is called a 'fixed' string. Fixed strings are not
included in the variable chains and they do not have the overheads associated with a string
variable. However, since the length of the string is not stored, an explicit terminator (&0D) is used.
Consequently, in the above example, byte &8010 would be set to &0D.

BBC BAS|C(280) Reference Manual for 288, 2nd edition 336

