
The Working 5ír ıclair(pL

5 } A library of practical
programssubroutines and rop

David Lawrence

0695

suНsмiиε
ISBN 0 946408 46 7 £6.95 net

9 780946 408467

I e

з 	 *
•	 •

David Lawrence shows how the full power of the QL can be
released in SuperВASIC. The QL introduces a new
generation of high-powered home computers. With it is a
need for a new approach to programming..

The areas covered by the programs in this book include
home finance and tax, information storage and retrieval,
household and diary management, creative graphics and
effective display techniques, music, education and a
collection of smaller programs which all perform useful
functions but mostly show off the QL's immense abilities.

All the programs in this book are clearly explained and
written in easily identifiable modules. The same techniques
can be copied into your own programs. We also use the
unique Sunshine Checksum Generator. This analyses your
programs and ensures that errors can be avoided in entering
them.This can save you hours of frustration.

David Lawrence is one of the most successful and popular
computer authors. His books, for a wide range of home
micros, have been best-sellers all over the world. He now
divides his time between writing for micro owners and
broadcasting. He is a regular contributor to Popular
Computing Weekly.

6 в ε NET	 +006.95

ISBN 0-946108-46-7'

пUB Braunschweí ı

In I 1 11 11 1 11 1 11 1
2634 422-9

The Working Ѕinсlair QL

A library of practical
subroutines and programs

David ,Lawrence

Cover design by Grad Graphic Design Ltd.
Γ`.,., г+r a ı ..,.ι.-.,r:-.., ς ı,.-,rt Т T...,1.-,c

^ 'f. ı ...

First published 1984 by:
Sunshine Books (an imprint of Scot Press Ltd.)
12-13 Little Newport Street
London WC2R ЗLD

British Library Cataloguing in Publication Data

Lawrence, David
The working Sinclair QL.
1. Sinclair QL (Computer) — Programming
2. Super BASK (Computer program language)
I. Title
001.6424	 QΛ76.8. S625

ISBN 0-946408-46-7

CONTENTS

Program Notes

Introduction

Page

vii

ix

1	 Experiments with Time 1
Anaclock 1
Clock 14
Timer 19
Event 33

2	 Son et Lumiere 41
Designer 41
3-D Graph 56
Screen 63
Characters 71
Sound Demo 87
Music 90

3	 Seriouser and Seriouser 97
Unifile 98
Nnumber 117
MultiQ 129

4	 Money Matters 145
Banker 145
Accountant 158
Budget 171

APPENDIX: Instructio ııs for Use of Checksum 193
Generator Tables

Copyright © David Lawrence, 1984

Sinclair- QL, QL Microdrive and SuperBASIC are Trade Marks of
Sinclair Research Ltd.

© The contents of the QL, are the copyright of Sinclair Research Ltd.
Quill, Archive, Abacus and Easel are Trade Marks of Psion Software

Ltd.

All rights reserved. No part of this publication ıпay be reproduced, stored
in a retrieval system, or transmitted in any form or by any means, elec-
tronic, mechanical, photocopying, recording and/or otherwise, without

the prior ıyritten permission of the Publishers.

Contents in detail

CHAPTER

Experiments with Time
Anaclock: runs a traditionally-faced clock in high resolution — defining a
circle — Clock: provides a very different way of telling the time — Timer:
provides you with 12 timers which run concurrently and are each capable
of sounding an alarm and displaying a reminder message — Event: turns
the QL into a stopwatch capable of giving a permanent record of times for
a series of events.

CHAPTER 2

Son et Lumière
Designer: a tool which allows line drawings far larger than a single screen
to be constructed, manipulated and displayed — 3-D Graph: using turtle
graphics to produce a clear and attractive display for complex figures —
Screen: copies the contents of the screen to a printer — the arrangement of
screen memory on the QL — Characters: designs and stores your own
customised character sets — character memory — Sound Demo: a simple
routine to permit experiments with the sound parameters — Music: allows
complex tunes to be input in a comprehensible form and played.

CHAPTER 3

Seríouser and Seríouser
Unifile: a powerful personal filing system capable of storing a wide variety
of information for instant recall — Nnumber: a program which creates a
dictionary of names and numbers for almost anything you wish, allowing
you to create invoices, stock valuations or even a calorie count of the day's
menu — MultiQ: a multiple choice test generator.

CHAPTER 4

Money Matters
Banker: allows the user to keep a clear and conti ıı uously updated record of
a bank account over a 12-monthly period — Accountant: produces a set of
traditionally laid out accounts — Budget: stores and processes large
amounts of information about family finances and produces an analysis of
^r.r •v t ıı rл "̂' ґ	 ј Т „‚ ґ'п ' і ' nлrin ıl an лııı iu п °υιhat ir гl лricinnc fn hn

Program Notes

The programs in this book have all been word processed to improve their
presentation in book form. The length of the programs has meant that it
would be quite impractical to print them at a width of 37 characters, corres-
ponding to the display generated by the QL on a standard television. In
fact, the programs extend up to a maximum of 50 characters in width, with
any carry over to the next line being indented to the same extent as the line
start. Where a line does carry over, therefore, the spaces which make up the
indentation of the second part of the line should be ignored.

Please note the section in the Introduction about how to use this book.

Debugging programs
Each program commentary includes test procedures which, if followed,
should ensure that the completed program works as specified. Should you
run into difficulties, however, there is always the Checksum Generator
program and Checksum Tables, designed to show whether the program
you have entered is the same as that listed in the book. Full details of the use
of the program and tables are given in the Appendix.

Introduction

This book is part of one of the most successful series of microcomputer
books ever published. In 1982, when the first `Working Micro' book was
issued, there were very few publishers who were prepared to believe that
ordinary micro owners wanted to use and understand their machines,
wanted to take control over then, learning to program by — program-
ming. The majority of books were filled wit Ь games and trivia or consisted
of yet another `Beginners' guide to...'. The prospect of a book which set
out to provide a collection of solid, useful programs and, at the same time,
to give some insight into the methods employed in serious programming,
didn't seem likely to set the world on fire.

But I was convinced, and the people at Sunshine Books were convinced,
that the `Working Micro' books were exactly what people were looking
for, that here was a huge gap in the provision of books for the growing
army of micro owners. And we were right.

Since that time, the `Working Micro' books have followed microcom-
puters into almost every country where they have been sold. They have
been, or are being, translated into 14 languages. The Working Spectrum,
the first of the series, has been published in the United States and several
European countries. As the book was written and as more and more people
discovered the virtues of the Spectrum, it seemed that the approach of the
book and the power of the machine were simply made for each other.

Now the QL heralds a new generation of Sinclair machines, which do
indeed represent a Quantum Leap forwards i ıı power, memory, and in
terms of the SuperBASIC language it runs. No book can exhaust the possi-
bilities of a machine whose capabilities would have been regarded as
science fiction a few years ago, but I have enjoyed the challenge of putting
it through at least some of its paces — so, I hope, will you.

How to use this book
You can use the book in a variety of different ways:

1) As a collection of useful programs which you can adapt and develop for
your own purposes.

2) As a collection of subroutines out of which you can construct your own
programis.

•	 a
The urorking Sinclair OL

	In terms of the format of the displays generated by the programs, the book
	

CHAPTER 1

standard colour television. In deciding which combination of equipment

	

is specifically aimed at those employing the QL in conjunction with a 	
Experiments with Time

to base a book on, I have always worked on the principle that it is easier to
adapt a program to better equipment 1 han to try and downgrade something
which was written for a more sophisticated system. Owners of colour
monitors will not find it hard to make adjustments to make full use of the
extra screen capacity they are able to bri ııg to bear.

However you decide to use this book, do remember that it was written as

	

book and not just as a random collection of programs in no particular 	 It is always difficult to know where to start a book like this. Too complex a

	

order. I very often come across readers with problems because they have	 program and readers may find themselves floundering before they have

	

jumped into some of the more complex programs which fall towards the	 picked up some of the simple pointers which will make programs increas-

	

end of the book, without preparation. The earlier programs i ıı the book,	 ingly easy to understand as the book goes on. On the other hand, if the first

	

while useful and interesting in themselves, are also meant as an introduc- 	 programs are too trivial, many readers may not bother to discover that

	

tion to what comes later. Alongside the early programs goes a much higher 	
there are more substantial offerings to come.

	

level of explanation so that, by the time more complex programs are 	 As a result I have decided to stick, in this first chapter, to a set of four

	

reached, the reader has a good grasp of some of the techniques being used.	 programs which deal with time, and the way it may be manipulated on ı the
QL. The programs are relatively simple ones, but they introduce a wide
range of concepts which will be used in later and more complex programs.
In addition, in their use of calculation, sound and high resolution graphics,
the programs will provide a good introduction to some of the outstanding
abilities of your QL.

The programs in this chapter are:

ANACLOCK: Which runs a traditionally-faced clock in high resolution.

CLOCK: Which provides a very different way of telling the time.

TIMER: Which provides you with 12 timers which run concurrently and
are each capable of sounding an alarm and displaying a reminder message.

EVENT: Which turns the QL into a stopwatch capable of giving of a per-
manent record of times for a series of events.

PROGRAM 1.1: ANACLOCK

Program function
The purpose of this program is produce a replica of a clock face on the
screen, complete with hands which move to keep pace with the current
time. In the course of following the program through, you will learn a great
deal about the methods employed in this book, so it is recommended that

a

CHAPTER 1

Experiments with Time

It is always difficult to know where to start a book like this. Too complex a
program and readers may find themselves floundering before they have
picked up some of the simple pointers which will make programs increas-
ingly easy to understand as the book goes on. On the other hand, if the first
programs are too trivial, many readers may not bother to discover that
there arc more substantial offerings to come.

As a result I have decided to stick, in this first chapter, to a set of four
programs which deal with time, and the way it may be manipulated on the
QL. The programs are relatively simple ones, but they introduce a wide
range of concepts which will be used in later and more complex programs.
In addition, in their use of calculation, sound and high resolution graphics,
the programs will provide a good introductio ıı to some of the outstanding

abilities of your QL.
The programs in this chapter are:

•
The Working Sinclair QL

I ıı terms of the format of the displays generated by the programs, the book
is specifically aimed at those employing the QL ín conjunction with a
standard colour television. In deciding which combi ınation of equipment
to base a book on, I have always worked on the principle that it is easier to
adapt a program to better equipment t han to try and downgrade something
which was "'ritten for a more sophisticated system. Owners of colour
monitors will not find it hard to make adjustments to make full use of the
extra screen capacity I hey are able to bring to bear.

However you decide to use this book, do remember that it was written as
a book and hot just as a random collection of programs in no particular
order. I very often come across readers with problems because they have
jumped into some of the more complex programs which fall towards the
end of the book, without preparation. The earlier progra ııı s in the book,
while useful and interesting in themselves, are also meant as an i ıı trodrıc-
tio ıı to what comes later. Alongside the early programs goes a much higher
level of explanation so that, by the time more complex programs are
reached, the reader has a good grasp of some of the techniques being used.

ANACLOCK: Which runs a traditionally-faced clock in high resolution.

CLOCK: Which provides a very different way of telling the time.

TINIER: Which provides you with 12 timers which run concurrently and
are each capable of sounding an alarm and displaying a reminder message.

EVENT: Which turns the QL into a stopwatch capable of giving of a per-
manent record of times for a series of events.

PROCRAM 1.1: ANACLOCK

Program fundion
The purpose of this program is produce a replica of a clock face on the
screen, complete with hands which move to keep pace with the current
time. In the course of following the program through, you will learn a great
deal about the methods employed in this book, so it is recommended that
you read the accompanying commentary with some care.

x 1

The Working Sinclair QL

• •
Chapter 1 Experiments with Time

18:07 ^^ 1 18:87	 Module 1.1.1: Lines 1— 3
1 DEFine PROCedure psave
2 DELETE MDV1 ANACLOCt: : SAVE MDV1ANACLOCk:

DELETE MDV2 ANACLOC К : SAVE MDV2_ANACLOCk

4 END DEFine psave7
i1

ty,

18:87

Figure 1.1: Screen Dump of Clock Face.

The ideas introduced during the course of the program include:

1) Savi ııg programs during development.
2) Initialising variables.
3) Passing parameters to procedures.
4) Control modules.
5) The use of repeat loops.
6) Setting and reading the internal clock.
7) High resolution mode (mode 4).
8) Progran flow and readability.
9) Modular programming.

Module 1.1.1: Saving the program
These four lines may seem a trivial place to start, but those who have
worked with my books for earlier machines will know that this module can
save an immense amount of heartache in the development of programs.

Most people learn only by hitter experience that programs if ust be saved
regularly as they are developed. Sooner or later most of us reach a time
when hours of work is thrown away because of a momentary surge in the
power supply, a blown fuse or a knock to the micro or plug. Experienced
users will have lost only some 15 minutes work because they will never have
allowed more than 15 minutes to pass without SAVEing the program
entered thus far.

Tlıe pm pose of this module is to encourage you to make regular copies
of the program you are working on by siniply entering `psave'.

The module precedes all my own programs but, since only the program
name changes, it will hot be included in the rest of the programs listed in the
book — but you should remember to add it.

Testing

Ensure that you have a cartridge in the drive. Enter

psave[ENTERI

and drive I should start up. After a moment, the light should go out on
drive I and drive 2 should start. Finally, the flashing cursor should return
to the bottom of the screen and drive 2 stop. You can now delete the three
lines in memory and reload the program from the disk by entering

new[ENTERI (erases the current program)
load mdv 1_anaclock [ENTER]

When the loading process has finished, list the program and the module
should have been reinstated.

Module 1.1.2: Initialising the variables
Every program worth the name uses variables and constants, that ís to say,
labels whose values can be changed during the course of the program or at
least from program to program. Very few variables absolutely must have
their values declared when the program is first run, and people often leave
it until the middle of a program, when a variable is absolutely vital, to
define their values. This can be mistaken policy because, as the program is
developed, it becomes increasingly difficult to see what the value of the
important variables is when the program first commences. In general, it ís
good practice to declare at the very beginning of the program the value of

Commentary

Lines 2-3: Deleting any previous version of the program before SAVEing
ensures that the ALREADY EXISTS' message is not encountered. Sonie
programmers adopt an even more cautious approach by numbering each
version of the program, eg ANACLOCKOI, ANACLOCk О2, etc. The
advantage of this is that, if something goes wrong during the SAVEing of
the progran so that the program is lost from memory and not properly

18:87 SAVEd on the microdrive, a previous version will still be recoverable.
When the program is finished, the development versions can be erased.
Line 3 can be omitted by those who are prepared to rely on one microdrive
to store their program, but I would recommend caution since even on the
most reliable system it can be costly to have only one copy of your work.

2 3

The Working SńtclairQL
•

Chapter 1 Experίп ι e ıı ts wit/i Tune

the major variables, and this process is known as 'initialisation', though
exceptions are often made when memory is limited — hardly a problem on
the QL. Some variables must be defined before they are used. For instance,
you can enter a line such as:

1050 T = 50

in the middle of a program, without having given T any previous value, but
if you try:

1050 A = T*2

then the QL will stop with an ERROR IN EXPRESSION message — it
does not recognise the variable `T'.

Another class of variables which must always be declared before they are
used are arrays, eg T(10,10) or T$(10,10). No use whatsoever ca ıı be made
of an array before a DIM statement lias set up the space for it in the
memnory. 'thus even a line such as:

T(1,1)=50

whiciı would work for a normal variable, will stop the program since the
QL has not been told the details of the array.

Module 1.1.2: Lines 2000-2070
200И REMark ************************
2010 DEFine F'ROCedure initialise
2020 REMark ************************
2030 minute2=0
2040	 x1=0 : x2=0 : 	 : y1=0 : y2=0
2050	 m_angle=0 : h_angle=0
2060	 e_f1ag=0
2070 END DEFine initialise

Commentary

Line 2010: At the risk of boring those who are already familiar with Super-
BASIC, it is probably better to mention `procedures' briefly before we go
any further, Çí ııce all the programs which follow rely entirely on them.

Those of you who have programmed extensively on other machines
which do not possess a structured BASIC like the QL's will know that
competent programming relies on the use of subroutines to break down a
program into manageable parts, it is the job of the programmer to know
where each subroutine is within the program and to be able to call each up
with a GOSUB command which specifies the start line number of the
subroutine. SuperВASIC provides a far superior tool for programming
known as the `procedure'. Once entered into memory with a start (DEFine
PROCedure) and an end (END DEFine), the name of the procedure
becomes effectively a keyword in SuperBASiC, and entering the name will

4

cause the QL to carry out the procedure. In the programs which follow you
will find no subroutines, and in the testing procedures you will mostly be
asked to test your routines by entering their procedure names — afar more
elegant way than entering meaningless GOSUBs.

The uses of the variables defined in this module will be described during
the course of the commentary on the main part of the program.

Testing
Before going on, enter:

initialiselENTERi

and the flashing cursor should return almost immediately. If you have
entered any syntax errors, these will be shown up. If for any reason you
clear the memory by using RUN or CLEAR, or by storing the half-finished
program on microdrive and switching off, remember to initialise again

before trying any of the tests for subsequent modules. If you do not, the
modules will come across variables which have not been declared and the

program will stop with an error.

Module 1.1.3: Liııes 3000 — 3160
7.000 REMark ************************
7010 DEFine PROCedure set time
3Ø2Ø REMark. ************************

g03Ø	 AT 1,12 : PRINT "CLOCK SETTING"
3040	 REF'eat hour
7.050	 AT 5,1 : INFUT "HOUR (Ø-2.):"th_temp

3Ø6Ø	 IF h_temp >=Ø AND h_temp = 23 THEN EXIT

hour
'Ø7Ø	 END REPeat hour
7080	 REPeat minute
7090	 AT 7,1 : INPUT "MINUTE (Ø-59):";m_temp

7100	 IF m_temp>=Ø AND m_temp-59 THEN EXIT
minute

7110	 END REPeat minute
g12Ø	 temp$=DATE$
E13Ø	 time=_6ØØ*temp$(17 TO 14)+60*temp$(16 TO

17)+temp$(19 TO 2Ø)

5

Module 1.1.3: setting tl ıe tune
Before we can embark on creating a clock, we must have some means to set
the time. The purpose of this module is to allow the user to input the cur-
rent time in hours and minutes and have it stored in the QL's powerful
internal clock. In the course of the module we shall be introduced to the use

y =И	 of REPEAT loops and the system variable DATE$, which records the cur-

rent time and date.

•
	

'l4Ø	 new_time=36ØØ*h temp+ó0*m_temp

	

150	 ADATE new time—time
'160 END DEFine set time

Commentary

Lines 3040— 3070 and 3080-3110: The purpose of these loops is to conti-
nue asking for the hour or minute to be input until a sensible value is
received — that is a value between zero and 23 for an hour, zero and 59 for a
minute. Lines 3060 and 3100 have the function of jumping out of the loop
when a valid entry is made. Note that this is not an infallible method of
proofing the program against operator error — simply pressing RETURN
without a number will stop the program on the QL. In later programs you
will see how this can be overcome but, if it does happen, simply type
RETRY and the prompt will be repeated.

Lines 3120-3150: The actual setting of the time on the QL is quite simple,
and can he done on two levels, either setting the whole date or simply the
time within a particular day. When the QL is first switched on, its internal
clock is set to midnight on the 1st January 1961 and it begins to count in
seconds. You can see the current result of this count by entering PRINT
DATE, because DATE is a variable set up by the QL itself to contain the
current time in seconds. Printing out DATE, however, will illustrate that
human beings do not find the time in seconds very meaningful. The QL
therefore provides a second means of reading the time, DATE$. The
format of DATE$ is:

YYYY MMM DD HH: MM: SS

with the month being specified in three-letter shorthand, rather than as a
number.

Not only does DATE$ make reading the time possible, the system pro-
vides two methods for the user to input a new time, after which the QL will
immediately reset its internal clock to the specified time.

We shall start with the shorter of the two methods, which involves
adjusting the iliterna! clock by means of the ADATE command. The func-
tion of ADATE (Adjust DATE) is to add or subtract a specified number of
seconds from the current time. In order to accomplish this, line 3130 first
copies the current time into the variable TEMP$. The hours, minutes and
seconds digits are then multiplied and added together in order to find the
total number of seconds, which are stored in the variable TIME. Note that,
in doing this, we can simply multiply the strings characters containing the
values, TEMP$(13 to 14) for the hours, TEMP$(16 to 17) for the minutes
and TEMP$(19 to 20) for the seconds. `Coercion', or the QL's ability to
treat a string as a number when a program line requires it, takes care of the
rest. Line 3140 sets the variable NEW_TIME to the value in seconds of the
time just input by the user. Brice, as we have already mentioned, ADATE

works by adjusting the existing time, all we have to do is to use ADATE and
specify the difference between TIME and NEW_T1ME. This sets the

hours, nunminutes and seconds elements of the internal timer to what has been
input by the user — it makes no difference to the year, month and day

elements.

Testing
Clear the screen, then type:

settime[ENTER1

and you should be prompted to give the time in hours and minutes. Input-
ting an invalid figure for either should result in the prompt being repeated.
After a time has been accepted, the program will stop. You can now test
what you have entered further by typing:

print date$[ENTER]

The hours, minutes and seconds should be what you have input, plus any
delay in printing them out.

Module 1.1.4: Setting up the dock face

Having input the time, we come to the drawing of the face of the clock, on
to which later modules will place the hands.

Module 1.1.4: Lines 4000-4120
4ØØØ RENark ************************
4Øl0 DEFine PROCedure clock face
4Ø2Ø RENark	 *********

4030	 CIRCLE 8Ø,5Ø,48
4040	 CIRCLE EØ,50,2
4050	 FOR i=0 TO 330 STEF' 30
4060	 >.1=Ø0+COS(RAD(í))*44
4070	 γ1=50+SIN(RAD(í))*44
40EØ	 x2=80+COS(RAD(í))*48

4090	 γ2=50+5 IN(RAD(í))*48
4100	 LINE x1,y1 TO х 2,γ2
4l1Ø	 NEXT i
4120 END DEFine clock face

Commentary

Defining a circle
The basis of this module and the next is the technique needed to pinpoint
positions around a circle. This is based on the fact that any point on the
circumference of a circle can be determined if the following pieces of

information are known:

The Working Sinclair QL Chapter 1 Experiments with Time

6 7

a
The u'orking Sinclair QL

a) The radius of the circle. (RADIUS)
b) The angle that has to be travelled clockwise from the three o'clock posi-

tion to arrive at the specified point. (ANGLE)
c) The coordinates of the centre of the circle. (CENTRE X and CENTRE

Y)

Given these three, t he position will be expressed by two formulae:

X coordinate = R Λ DIUS*COSINE(ANGLE/ 180*PI) + CENTRE X
Y coordinate = RADIUS*SINE(ANGLE/180*PI)+CENTRE Y

Space does not permit us to analyse here why this should be, but any good
introductory book on trigonometry will lay out the logic in full, if you
want to test the technique, enter the following on your machine:

10 CLS
20 FOR í=0TO359
30 x = 8Π + COS(RAD(í)) *50
40 γ = 50+ SIN(RAD(í)) *50
5Π POINT x,y
60 NEXT í

and you will find that a very presentable circle is drawn, with its ceiitre at
80(x), 50(y). Here, the 80 and 50 figures represent the centre of the circle (80
across, 50 up). The onl y thing you may not recognise is the RAD function.
In order for the QL to be able to recognise an angle it must be presented in
the form of units called radians (one radian is equal to 180/PI). The RAD
function performs the task of producing a result in radians when it is given
a figure in degrees to work on.

Lines 4030-4040: One large circle to define the outside of the clock, one
small one at the centre of the face, around which the hands will turn.

Lines 4050 – 4110: The circle techniques described above are used to draw
in markings every 30 degrees around the circle — íe every five minutes on
the clock face. The two points calculated for every repetition of the loop
are first of all a point on the circumference of the large circle, and then one
four pixels in towards the centre. Drawing a line between them makes a
series of neat markers around the face.

Testing
Enter

clock_face [ENTER'

and you should see the clock face drawn.

Chapter 1 Experiments with Time

Module 1.1.5: Calculating mi ıı utes acid hours
In this module we get down to the real work of the program, which begins
with the extraction aiid examination of the value for the current hour and
minute from the system variable DATE$.

Module 1.1.5: Lines 5000 -5130
5000 REMark ************************
5010 DEFíne PROCedure tíme_values
5020 REMark ************************
5030	 REPeat minute _test
5040	 LET temp$=D ЛTE$
5050	 hour=temp$(13 TO 14)
5060	 mí пutel=temp$(16 TO 17)
5070	 IF minutel<.:mínute2 THEN EXIT minutetest
5080	 IF INk:EY$=" " THEN e_flag=1 : EXIT

mi nute test
5090	 END REPeat minute_test
5100	 mínute2=minutel
5105	 m_angle2=m_angle : h_гngle2=h_angle
5110	 m_ang1e=90-(6*minutel)
5120	 h_angle=90-(30*hour+5*minutel/12)
5130 END DEFíne time values

Co ıпıneıltmy

Lines 5030-5090: What this loop does is continually to extract the time
from DATE$ and store it in the variable TEMP$. It is, of course, quite
possible to work directly on DATE$ but this could result in errors if the
process of slicing up the string began a fraction of a second before the hour
was about to change. If the hour changed in between lines of the program
being carried out, it would be possible to end up with a value of, say, 11.00,
when the real time was 12.00. Having extracted the value for the hours and
minutes, the loop tests the current minute against the minute value for the
last time the clock hands were moved. If the current minute is different,
then line 5070 jumpsout of the loop. In line 5080, provision is made so that
if the user presses the space bar a flag is set (the variable E___FLAG) and the
loop terminates. in the normal course of the program, this loop will simply
wait until the minute changes.

Line 5100: The new minute is stored until the next tine this procedure is
called, when it will be used as the next benchmark for a change of minute.

Line 5110: The same is done for the previous angles of the hour and minute
hands. These need to be recorded in order that the existing hands can be
erased before new ones are drawn.

Lines 5120-5130: The angles of the hour and minute hands. The QL
measures circles from a point that we would call three o'clock and moves
around an ı i-clockwise. Twelve o'clock is therefore –90 and the minute

8
	

9

Chapter 1 Experiments with Time

value must be subtracted from that — six degrees per minute. The hour
angles consists of 30 degrees for each hour plus five degrees for each 12
minutes.

Testing

Enter

tin'evalues [ENTER]

and you should almost instantaneously find that execution stops and the
flashing cursor returns. This is because the value of MINUTE2 should be
zero, and the loop will immediately stop when it samples the real time.
М INUTL2 has now been reset to the current minute, so follow the pro-
cedure again and, unless you are unlucky enough to just catch the minute
change, you should find that the QL will wait for a period before giving you
back the cursor — the wait was for the new minute to arrive. If you like,
you can print out the values of MINUTEL and HOURI, then print
DATE$, illustrating that the two values have been extracted from the inter-
nat clock.

Module 1.1.6: Drawing the hands
Having calculated all the necessary figures to arrive at the time, we can now
proceed to employ the QL's graphics capabilities to draw the hands of the
clock. If you do not remember the general introduction to the mathematics
of drawing a circle given earlier, you would be wise to go back and take a
quick look at it.

Module 1.1.6: Lines 6000 — 6200
60ØØ REMark ************************
6010 DEFíne PROCedure hand_ draw(a пgle,sízel,

size2,colour)
6Ø2Ø REMark ************************
6Ø'Ø	 angle1=RADla пgle)
b04Ø	 a пgle2=RAо (aп gle+20)
6050	 angle'=RAD(angle-20)
6060	 y150+size1*SIN(a пglel)
bØ7Ø	 x1=80+sízel*COS(anglel)
6Ø9Ø	 y2=5Ø+size2*5IN(angle2)
bØ9Ø	 ..2=80+size2*COS(angle2)
61ØØ	 y3=5Ø+size2*SIN(angle')
b11Ø	 =80+size2*COS(angle')
6120	 INk colour
610	 FILL 1
6140	 LINE x1,y1 TO x2,y2 To х ,y' TO x1,y1
615Ø	 FILL Ø
6160	 AT Ø,Ø : PRINT temp$(1' TO 17)
b17Ø	 AT 0,69 : PRINT tempt(1 TO 17)

1 0

6180	 AT 19,0 : PRINT temp$(13 TO 17)
6190	 AT 19,69 : PRINT temp$(]' TO 17)
62ØØ END DEFine handpoints

Colпmentary
Line 6010: Our first example of a procedure using parameters passed from
the rest of the program. The four variable names appended to the pro-
cedure name allow the program to use the same procedure for different
purposes. The four variables will be used by the procedure — in this case to
determine where to draw the clock hand, how large it should be and what
colour. In this way, exactly the same procedure can be used to draw hour
and minute hands.

Lines 6030 — 6050: These lines define three angles. Their purpose is to
allow the program to pinpoint three spots on the screen which will be the
corners of a tria ıı gular clock hand. ANGLE] is the angle of the tip of the
hand, relative to the centre of the face. ANGLE2 and ANGLES, which are
respectively slightly ahead and behind ANGLET, point to the two ends of
the base of the triangle. If you are not clear on this, don't worry, all will
become plain when the hands are drawn on the screen.

Lines 6060 —6110: If you tried the example circle program earlier, you will
recognise these lines. They plot points which are SIZE! or SIZE2 pixels out
from the centre of the circle, in the direction indicated by ANGLE!,
ANGLE2 or ANGLES. SIZE] represents the distance to the tip of the
hand, SIZE2 the shorter distance to the broad base of the hand.

Lines 6120-6150: These lines draw the hand. Its colour is passed to the
procedure in the form of the variable COLOUR. The FILL command
ensures that the completed triangle will be FILLed with the prevailing ink
colour.

Lines 6160-6190: As an added touch, the time is displayed in digital
format at the four corners of the screen — note that the coordinates refer to
the high resolution screen which will be set up by the next module.

Testing
To set up this module for testing would require a number of temporary
lines to be entered. Since the complete program requires only a few lines to
be added, it is recommended that you leave testing until the program is
completed.

Module 1.1.7: Making it all work together
At this stage, you may well be wonderí ııg why the program is written as it is.
Could not all of the functions we have described have been put together

11

The Working Sinclair QL

•
The Working Sinclair QI,

and made to run with the use of a few GOTOs. Unfortunately, that is how
man y published programs are constructed. In this book you will find that
all of the progranı s are constructed out of clearly identifiable modules,
most of them procedures in their own right.

The reason for this is that programs written in modules can be more
easily read, they can be more easily debugged, they can be changed by
substituting modules which work more efficiently if you learn new

methods, they can be added to by patching in more modules. There is much
to be learned from the programs in this book, but probably the most valua-
ble lesson of all for your future programming will be the technique of
modular progra ııı mi ıı g.

The current module is the key to the technique for, when all the working
modules have been entered and tested, we need one more to control the
flow of the program. In a sense, the module you are about to enter is the
program — everything else is merely an extension of it.

Module 1.1.7: Lines 1000— 1180
1 ØØ0 RENark ***********************
1010 REMark: control loop
lØ2Ø REMark ************************
1030	 F'AF'ER 2 : INk: 7 : PORDER Ø
1040	 CLS : CLS#Ø
1Ø5Ø	 initialise
1060	 set time
1070	 INk:: 7 : PAPER Ø : MODE 4 : CLS
1080	 clock face
1Ø9Ø	 REPeat control
11ØØ	 time valnes
1110	 IF e_flag THEN EXIT control
1120	 hand_draw m_anole2,40,5,0
1130	 hand_draw h_angle2,?Ø,S,Ø
1140	 hand_draw m_a πole,40,5,7
1150	 hand_draw h angle,30,5,2
1160	 END REPeat control
117Ø	 MODE 8
1180	 STOP

C'Olnnientaly

Line 1040: It is always a good idea, at the beginning of a program, to clear
not only the main screen but the command lines at the bottom (CLS # 0).

Lines 1050 — 1960: Note how naturally the control structure develops using
the names of the modules — the control structure becomes in itself a brief
description of the progra ııı 's work.

line 1070: The program is designed to run in high resolution mode, mode
4. Iii this mode, in return for halving the number of possible colours on the
screen at one time, we shall get a sharper definition of the clock face.

•
Chapter i Experiinents with Time

Lines 1090— 1160: This loop will continue sampling the time using
TIME_VALUES and drawing the hands. Note how economical the pro-
cess is. The four lines from 1120 to 1150 first tell the HAND_DRAW
procedure to draw the current hands íu black (ie erase them), then draw the
minute hand in white and a slightly smaller hour hand in red.

If at any point the program returns from TIMEVALUES with the
value of the variable E_FLAG set to 1 rather than 0 (indicating that the
user has pressed the space bar), the loop is terminated by line 1110. This use
of IF followed by a variable name is a common one which depends on the
fact that the IF statement will be carried out if tl ıe variable has any other
value than zero.

Line 1170: The final act of the program, before termí ııatíng, is to return the
screen to the lower resolution mode, mode 8.

Testing
The program should now be fully functioning. Run it, enter the time and
you should see the clock face displayed with the hands in the correct
position.

General comment

One feature of the program ca ıı really only be noticed once it has been fully
entered. If you examine the program you will notice that it contains not a
single GOTO instruction, a fact which may surprise you if you have
learned your computing on a less capable machine than the QL. This is
quite deliberate. The whole development of the BASIC language over
recent years has been in the direction of eliminating the need for GOTO.

While it is possible to carry this practice to absurd lengths (and waste
considerable amounts of memory iri doing so), there are good reasons for
trying to reduce reliance on GOTO as a part of your programs. The prob-
lem with GOTO is that it is so arbitrary, an instruction to jump which does
not, when the program is read later, explain itself. Using GOTO, a pro-
gram can quickly become a mass of arbitrary jumps which are difficult to
plan or explain and, what is worse, encourage you to patch a messy pro-
gram together with GOTOs when your time would be far better spent rede-
signing it. The aim of programming on a machine which provides
REPEAT loops is to write a program which flows from beginning to end
without arbitrary j ıımps. It is not an aim to become neurotic about — sonfe

programmers talk as if a few GOTOs in a program are a sign of brain
damage — but you will be surprised how n ıııclı more satisfying the plann-
ing and execution of a program is if you can learn to make it work on the
basis of things happening until an EXIT condition is met, rather than
jumping about all over the place.

12
	

13

•
The Working Sinclair QL

PROGRAM 1.2: CLOCK

Program function

One of the most enjoyable things about computers with graphic displays as
good as the QL's, is that they allow you to play about at displaying things in
new and imaginative ways. Having just entered a fairly standard clock, this
next program gives rather a different view of time. In Clock, hours and
minutes are represented by two lines which sweep from left to right and top
to bottom, dividing the screen into four rectangles of different colours.
Much of the material in Clock is similar to that in Anaclock, so the expla-
nations can be accordingly shortened.

Module 1.2.1: Initialisatio ıı
A standard initialisation module. The uses of the variables described will
be outlined in the course of the commentary on the program.

Module 1. 2.1: Línes 2000 —2070
2000 REMark **** и******************
2010 DEFine PROCedure initialise
2020 REMark ************************
2030	 minute=10 : hour=l0
2040	 PAPER 0: INt:: 7: CLS : CLS #0
2050	 x1=20 : ц 2=140 : y1=86 : y2=15
2060	 e _f 1 aq=0
2070 END DEFíne initialise

Module 1.2.2: Time input

The same module as was included in Anaclock.

Module 1.2.2: Lines 3000-3180
7000
7010
3020
7070
7040	 AT 1,12 : PRINT "CLOCt:: SETTING"
7050	 REPeat hour
3060	 AT 5,1 : INPUT "HOUR (0-23):":h temp
3070	 IF h_temp >=0 AND h_temp =.=23 THEN EXIT

hour
3080	 END REPeat hour
3090	 REPeat minute
3100	 AT 7,1 : INPUT "MINUTE (Ø-59):";m_temp
3110	 IF m_temp>=0 AND m_temp:=59 THEN EXIT

minute
3120	 END REPeat minute
3130	 temp$=DATE$

•
Chapter 1 Experi ınents with Time

3140	 time=3600*temp$(1.3 TO 14)+60*temp$(16 TO
17)+temp$(19 TO 20)

3150	 new time=3bØØ*h_temp+60*m_temp
3160
	

ADATE new time-time
7170	 CLS
3180 END DEFine set time

Module 1.2.3: Settinıg up the screen border
This module prints an hour and minute grid along the lefthand side and top
of the screen.

Module 1.2.3: Lines 4000— 4110
4000 REMark ************************
4010 DEFine PROCedure draw_framework
4020 REMark ************************
4030	 FOR i=1 TO 60
4040	 yt=BB : IF i/5=INТ (í/5) THEN γt=90
4050	 LINE xl+i*2-1,yt TO xl+í*2-1, γ1
4060	 NEXT i
4070	 FOR i=1 TO 12
4090	 xt=1B : IF í/3=INT(i/3) THEN xt=16

4090	 LINE xt,y1-i*6+1 TO x1,y1-i*6+1
4100	 NEXT í
4110 END DEFíne draw_framework

Coni,neiitary
Lines 4030-4060: The minute values are spaced out along the top of tl ı e
screen in white. The loop draws 60 small vertical lines at regular intervals
across the screen. These begin at X 1 pixels across the screen (20) and Y 1
pixels up (86). The X coordinates increase with the loop variable I and

every fifth line, when INT(I) will equal I, the line is πıade slightly longer by

adding 2 to the Y coordinate of the top of the line (YT). The effect of this is
that the markers for five minutes stand out.

Lines 4070 — 4100: The same principle except that here it is the Y coordi-

ııate which increases with the loop variable 1, so that the lines move down
the screen, representing tile hours. Every third hour line is emphasised by
drawing it slightly lo ı iger.

Testing
Type:

initialise [ENTER]
draw_framework [ENTER]

and you should see the grid drawn on the screen. You will probably note
that the tiny minute markers appear not to be perfectly spaced. The reason
for this is that in low resolution mode (mode 8), which we are using to

REMark ***************** * * **
DEFine F'ROCedure set time
REMark ***************** * * **

CLS

14 15

•
The Working Sinclair QL

obtain all the colours we want — spacing lines at small intervals leads to
some of them falling 'in-between' the actual pixel positions on the screen,
so that they are in fact moved one place to the side.

ModUle 1.2.4: Calculating hours and minutes
This module is parallel to the time calculation module in the last progra ın,
though it is slightly simpler because angles do not have to be calculated.

Module 1.2.4: L1пes 5000 — 5120
REMark **************** ** ******
DEFi пе F'ROCedure tíme_values
REMark ******************** ****

minute_temp=minute
REPeat new fri flute

LET temp$=DATE$
hour=temp$(13 TO 14)
IF hour:11 THEN hour=hour-12
mínate=temp3(16 TO 17)
IF INK.:EY$=" " THEN e_flag=1 : EXIT
new mín ıı tm

51ØØ	 IF mínute<>mínute_temp THEN EXIT
new_mi nute

5110	 END REPeat new minute
5120 END DEFíne time values

Coi ıııı meıı ta y

Lines 5030-5110: The only differences between this module and Ana-
clock are that here the value of the last minute acted on is stored at the
beginning of the module rather than when the loop is ended, and that the
value HOUR is never allowed to exceed 12. Anaclock, because its values
describe positions on a circle, can afford to work in 24-hour time — values
over 12 simply cause the angle of the hand to 'wrap around' the dial once.
Clock, since it works in straight lines, would quickly move off the screen if
hours with a value over 12 were generated.

Test ing

As for the equivalent nodule in Anaclock, having initialised the program,
call the procedure once to set up the variables and then a second time to
ensure that it does wait for the minute to change.

Module 1.2.5: Displaying (lie lime
In this n ı odule we get down to the task of displaying on the screen the
rectangles which will depict the time. What the module is intended to
achieve is the effect of a line sweeping across the screen to depict the

Chapter 1 Experiments with Time

minutes, and another descending, which records the hours. This is accom-
plisi ı ed by dividing the screen into four rectangular sections, red, purple,
blue and yellow, the edges of these rectangles representing the lines for
hours and minutes, as in Figure 1.2.

М
I

RECTANGLE 1 N RECTANGLE 2
(RED:ı U (PURPLE)

Т
E

HCiUR LINE L

I

RECTANGLE 3 N RECTANGLE 4
(BLUE) E (YELLOW)

Figure 1.2: The Screen Divided into 4 Rectangular Sections.

Using the variables calculated by the previous module, the LINE
command makes it a simple matter to place these rectangles exactly where
we want them on the screen.

Module 1.2.5: Lines 6000— 6250
bØØØ REMark ************************
bØ1Ø DEFíne PROCedure draw_ líne(hour,minute)
6020 REMark ************************
6030	 by=y1-hour*6 : IF hour=0 THEN h у=85

6Ø4Ø	 mx1+minute*2 : IF minute=0 THEN m ı:=21

6Ø5Ø	 INk: Ø
6060	 FILL 1
6070	 LINE r.l,yl TO x2,y1 TO :2,y2 TO ;:1, у2 TO

1,y1
6080 FILL Ø
b09Ø	 FILL 1
61ØØ	 INk:: 2
b11Ø	 LINE xl,y1 TO mx-1,y1 TO mx-1,hy+1 TO

al,hy+1 TO x1,y1
6120	 FILL 0
61TØ	 INk 3
6140	 FILL 1
6150	 LINE mx,y1 TO х 2,y1 TO x2,hy+1 TO mx,hy+1

TO mx, , y 1
6160	 FILL Ø
6170	 INk:: 1
b18Ø	 FILL 1
b19Ø	 LINE xl,hy TO mx-1,hy TO m ч.-1,y2 TO x1,y2

5Ø®Ø
5010
5020
5Ø ^ 0
504Ø
5050
5Ø60
5070
5Ø8Ø
509Ø

16
	

17

•
The Working Sinclair QL

TO xl,hy
6200	 FILL Ø

6210	 INK 6
6220	 FILL 1
6230	 LINE mx,hy TO x2,hy TO x2,y2 TO mx,y y TO

mx , by
6240	 FILL 0
6250 END DEFine draw line

COlnlllelltаIy

Lines 6030-6040: These lines set up the distances across the screen and
down which will represent the hours and mı inutes. The hour line will move
down six pixels for every hour which passes, and the minute line across two
pixels for every minute.

Lines 6050 — 6080: One of the reasons that this program is slightly simpler
than Anaclock is that we have not troubled to remember the positions at
which things were drawn for the last minute and hour. The reason for this is
that all we need to do in order to erase a previous clock face is to black out
the whole rectangle. This is accomplished by drawing a line, in black,
around the whole clock face, with FILL set. The function of FILL is to
record the coordinates between which lines are drawn and, whenever they
make up a closed area, to paint that area with the current iNK colour.
Drawing a line around the face with FILL set, quickly and effectively
erases the previous face. When this has been accomplished it is important
to switch off FILL. If this is not clone, the QL will become confused as to
the coordinates of the shape it is being asked to FiLL when further rectan-
gles are drawn — no coordinates are forgotten until FILL is set to zero
again.

Lines 6090-6120: The first of four sets of lines which draw the colour
rectangles which will picture the hours and minutes (see Figure 1.2). These
lines draw the upper lefthand rectangle. Liiies are drawn from the top
lefthand corner, across to the position of the minute line, down to the
position of the hour line, back across to the lefthand side of the rectangle
and back to the top lefthand corner. Once the rectangle is complete, tl ıe
FILL command paints it red.

Lines 6130-6240: The remaining three rectangles are drawn in the same
manner. Note that in order to draw all four rectangles, we only need six
variables. X1 and Y1 represent the top lefthand corner of the clock face,
X2 and Y2 represent the bottom rigl ı thand corner. The position of the
minute line is held in MX and that of the hour line in HY. MX, H Y is a point
inside the clock face where the corners of all the four rectangles meet. In
drawing the rectangles, a slight gap (MY — 1 to MX and HY + 1 to HY) is
left so that the minute and hour lines will be etched in background black.

•
Chapter 1 Experiments with Time

Testing

Type:

draw_line 6,30[ENTERI

You should see the four rectangles of roughly equal size displayed on the
screen.

Module 1.2.6: Putting it all together
Having entered all the working elements of the program, we can now con-
struct a control module to execute them in the correct order. The use of
procedures makes the module completely self-explanatory.

Module 1.2.6: Lilles 1000 -1110

1000 REмark
1Ø1Ø REtlark: control loop
1020 REMark: ************************
1030	 initialise
1040	 eettime

1050	 draw_framewor4::
1060	 REPeat control
1070	 time_values
1ØØØ	 IF e_flag THEN EXIT control
1090	 dr-au_line hour,minute
1100	 END REPeat control
1110	 STOF

Testing
You are now in a position to run the full program, input the time and see it
displayed.

PROGRAM 1.3: TIMER

Program function
Tinier provides you with 12 flexible count-down timers, each of which can
be separately programmed to sound an alarm after a specified period and
display a short message indicating what the particular occurrence of the
alarm is for.

New techniques covered in this program:

1) The `menu' ınodule.
2) The simple use of BEEP.
3) Adjusting the time with SDATE.

18
	 19

The Working Sinclair QL	 Chapter] Experiments with Time

1)
2)
3)

Ø7 : ιЭ θ σ E+Ø
І2ı8 : 1 5: і3Ø
ι3 ì3 : ιЭEı : Ø Ø

TI ΓIEP.S

1 3 ::35
IJAK:E	 UP!
LEA г..г E	 FC1p	 TRAIN

4) 16 :45 σ ØØ 1JATC H Cı ANСEp—rU]L ι t;E
5) AØ : Ø^^ : AEi
6) Øд :9R:Gιιa
7) Ø ι3 : Eıйì : Гл ιЭ
8) 17	 з : ι3ι3 PHCINE С У RI L9) Ě+Ø :BEı : ι3ι3

ј 13) Гj ι3: Ø ι3: GЭıЭ
11) ι3 Ø: ι3 г_і : Ø г-^
12, ιı θ : a čч : θθ

r.І AI TING

bØ20 REMark ************************* ** эиэи*
630	 temp_tíme$=DATE$(time)
6Ø4Ø	 time$=temp_time$(13 TO)
6050 END DEFine extract time

Commentai y
Line 6030: DATE$ has two functions. Used on its own, it produces a string
containing the year, month, etc. Used in conjunction with an argument (a
figure in brackets following it), it returns the date and time which would
represent the number of seconds contained in the argument. Thus, if you
enter PRINT DATE$(1), you will see:

Figure 1.3: T y pical Display Taken from Timer.

Module 1.3.1: Initialisation
The main purpose of this module in the current program is to dimension
the two arrays TIMER and TIMER$. TIMER(11) will hold the alarm times
of up to 12 separate timers (ı umbering of arrays begins at zero, remıem-
ber), while T1 MER$(1 1,20) will hold up to 12 optional messages which may
be tagged on to a particular alarm call. Note that in defining the length of
the strings in a string array, numbering does trot begin at zero, so that the
maximum message length which TIMER$ can contain is 20 characters, not
21 as the numbering of arrays in other respects might suggest.

Module 1.3.1: Lines 2000-2070
2ØØ0 REMark *************************
2Ø1Ø DEFine PROCedure initialise
2Ø2Ø REMark *************************
2030	 RAPER 0 : INK 7 : CLS : CLS#0
2040	 DIM timer(11), tímer$(11,20)
2050	 message-#=""
2Ø6Ø	 sounded=0
2Ø7Ø END DEFine initialise

Module 1.3.2: Formatting the time
Throughout most of this program, the current time will be displayed on the
screen. This module uses the QL's flexible time-handli ıı g to produce a
string containing hours, minutes and seconds, in the format НН :MM:SS,
for any given number of seconds.

Module 1.3.2: Lines 6000— 6050
6000 REMark *************************
60 1 0 DEFine PROCedure etract tie (time)

1 961 Jan0100:00:01

or the first second of the period the QL is capable of dealing with. This
facility can be used to bypass all kinds of calculations and discover the time

represented by a number of seconds.

Line 6040: The time in hours, n ı inutes and seconds is sliced out of the string
which was extracted by means of DATE$.

Testing
Enter:

extract time (I)[ENTER]

print ti ıııe$

and you should see:

00:00:01

Module 1.3.3: Setting the time
A different module to the one used in the previous two programs. Rather
than employing ADATE to adjust the hours, minutes and seconds of
DATE$ to the current time, this module makes use of SDATE, which

specifies the complete set of figures for DATE$, íe year, month, day, hour,
minute, second. The module consists of a series of loops used to ensure
sensible figures are input, followed by an SDATE command. Note that tl ıe

time is actually set when the user presses `Y' to confirm the new time, so it is
wise to enter the time a minute in advance and wait for the precise moment

to confirm it.
If you feel it important to update the whole of the date, rather than

simply the time, this module can be used to replace the time-setting

modules in the two earlier programs.

20
	

21

•
The Working Sinclair QL

Module 1.3.3: Lines 10000-10340
1ØØ00 REMark **********************
10010 DEFíne PROCedure set_tíme
1Ø02Ø REMark ****.********************
10030 REPeat date_set
10040	 CLS
10050	 AT 1,12 : PRINT "CLOCK SETTING'
10060	 REPeat year
10070	 AT 5,1 : INPUT "YEAR (1984-1999):";

year
1ØØ8Ø	 IF year:=19Ø4 AND year ‚'=1999 THEN

EXIT year
10090	 END REPeat year
1Ø1ØØ	 REPeat month
1Ø11Ø	 AT 7,1 : INPUT "MONTH (1-12):";month
10120	 IF month>=1 AND month12 THEN EXIT

month
l013Ø	 END REPeat month
10140	 REPeat day
1Ø1 5Ø	 AT 9,1 : INPUT "DAY (1-31):";d гΡ y
10160	 IF day>=0 AND day`31 THEN EXIT day
1Ø17Ø	 END REPeat day
101BØ	 REPeat hour
10190	 AT 11,1 : INPUT "HOUR (0-23):";hour
10200	 IF hour *=0 AND hour =23 THEN EXIT

hour
10210	 END REPeat hour
10220	 REPeat minute
1Ø23Ø	 AT 13,1 : INPUT "MINUTE (Ø-59):";

minute
10240	 IF minute>=0 AND minute'59 THEN EXIT

minute
10250	 END REPeat minute
10260	 AT 15,1 : INPUT "ARE THESE CORRECT

(Y/N): ";0$
10270	 IF Q$="y" THEN EXIT date_set
10280 END REPeat date_set
10290	 SDATE year,month,day,hour,minutre,Ql
1Ø3ØØ	 AT 1.7,1 : PRINT "DATE IS NOW: ":DATE$
10310	 AT 19,1 : PRINT "press any key to

continue"
1Ø32Ø	 PRINT INКEY$(-1)
1Ø33Ø CLS
10340 END DEFine met time

Tesling

Enter:

set_tíme[ENTER]

and respond correctly to the various prompts. Tile module tests itself in
that the date printed out at the bottom of tile screen represents the time you
have set.

Chapter 1 Experiments with Time

Module 1.3.4: Sampling the timers
This small module is an integral part of the program in that it allows the
program to enter a waiting state during which the user can make an input,
yet at the same time the program is constantly carrying on the work of
sampling the 12 timers to see if the alarm should be sounded for any of
them. We shall enter the module now, even though it will not be fully used
until several later modules have been entered, because it is an essential
subroutine for the menu module which follows.

Module 1.3.4: Lines 4000-4160
4ØØØ REMark *************************
4010 DEFine PROCedure waiting
4020 REMark *************************
4030	 REPeat test
4040	 FOR count=0 TO 11
4050	 IF timer t саont)DАТЕ AND tímer(count)

.;0
4060	 current (tímer(count))
4070	 EXIT test
4Ø8Ø	 END IF
4Ø9Ø	 extract_time (DATE)
4 1 00	 AT 3,14
4110	 PRINT time$
4120	 t$=INt::EY$
413Ø	 IF t$':>"" AND t$<:::CHR$(10) THEN EXIT

test
4140	 NEXT count
4150	 END REPeat test
4160 END DEFíne waiting

Commentary
Lines 4030 — 4150: The object of this module is simply to wait — either for
a timer to sound or for a key to be pressed. These two exit coiıditions can be
found at lines 4070 and 4130.

Lines 4040 — 4140: This loop shuttles through the 12 timers repeatedly.

Lines 4050-4080: These lines are activated if a timer has been set and the
time for an alarm to be sounded has arrived. Whether the time has come is
easily discernible from the fact that the contents of the timer, held in one
element of the array TIMER, are less than the contents of the system varia-
ble DATE, which holds the current time in seconds. The procedure CUR-
RENT will be entered later — its purpose is to sound an alarm.

Lines 4090-4110: The current time is extracted from DATE$ and printed
on the centre of a line towards the top of the screen. Other displays in the
program will be built around this.

Lines 4120-4130: These lines have the effect of sampling the keyboard
and leaving the main loop of the module if a key is pressed. 1NKEY$ with-

22
	

23

`

The 1Vorking Sinciair QL

out a parameter attached does not interrupt program flow, it merely
catches any key which is being pressed at the moment it is executed. Later

on we shall use other forms of 1NKEY$ to force programs to pause. Note
that the WAITING procedure only ends if the key pressed is not CHR$(10)
—the ENTER key. The reason for this is that the program relies largely on
one key entry for menus and other choices, using INKEY$ rather than
INPUT, ibis is necessary so that other processes, like sampling the timers,
can go on while the program is waiting for the user — something that
cannot happen with INPUT, which locks up the program until ENTER is
pressed. Some people, however, find it difficult to remember that all they
have to do is press a single key and press ENTER anyway. The filtering out
of the ENTER key here helps to reduce the annoyance of choosing an
option from the main program menu and then returning straight to that

menu when the unnecessary ENTER is pressed.

Testing
Provided that you have initialised the program, enter:

waitiIlg [ENTER]

and the QL should do just that, displaying the current time towards the top
of the screen. The waiting state should carry on until you next press a key

other than ENTER.

Module 1.3.5: The program ınenu

We ııow come to a new technique which will play a large part in the pro-
grams within this book — the 'menu'. In the programs which have led up to
this one, the control of the program has been left to the program itself.

Once run, a control module has taken over and dictated the flow of pro-
gram execution until the user signifies that the program is to be terminated.
This program, and many of those which follow, is different in that there is
no single direction of program flow. The program presents a variety of
possibilities to the user and it must be the user who, to a large extent,
dictates what happens. This is done by means of a module known as the
program menu, which presents the user with a list of the choices which the
program provides and allows the user to specify which is to be acted upon.
More complex programs later in the book will make use of several menus,
each reflecting the variety of choices under one main heading. For the
moment, however, we shall stick to the single menu required by this

program.

Module 1.3.5: Lines 3000 — 3340
3ØØØ REMark ****************-*********
3Ø1Ø DEFine PROCedure menu

•
Chapter 1 Eeperirnents with Time

3020 REMark ************************
3030	 REPeat choice
?Ø4Ø	 CLS
'Ø5Ø	 AT 1,11 : PRINT "TIMER MAIN MENU"
3Øb0	 AT 5,1 : PRINT "commands available:"
3Ø7Ø	 PRINT\\,"1) DISPLAY TIMERS"
3Ø8Ø	 PRINT,"2) SET TIMER"
3Ø9Ø	 PRINT, "3) ØLANk:. SCREEN WAIT"
'1ØØ	 FRINT, "4) STOP"
3110	 REPeat response
3120	 AT 13,1 : PRINT "WHICH DO YOU

REDUIRE: ";
3130	 FLASH 1
3140	 PRINT "WAITING"
'150	 FLASH Ø
'160	 waiting
'170	 IF sounded=1
3l8Ø	 sounded=0

190	 choice=0
'200	 EXIT response
3210	 END IF
220	 choice=" Ø" & t#

32._T•Ø	 IF choice>=l AND choice =4
=240	 EXIT response
.250	 END IF
3260	 END REPeat response
"270	 SELect ON choice
.3280	 ON choice=l : display
3290	 ON choice=2 : set timer
3s0Ø	 ON choice=3 : blank
3310	 ON choice=4 : RETurn
ž320	 END SELect
'3TØ	 END REPeat choice
'340 END DEFine menu

Commentary
Lines 3030 and 3330: This loop will continue to display the menu every time
execution returns to this module, until the user inputs the number 4. The
program will then terminate.

Lines 3060-3100: The list of the program options which will become
available as subsequent modules are entered.

Lines 3110-326ı0: This loop will repeat the prompt at line 3120 until the
user makes a valid input which the program can deal with.

Lines 3120-3160: The WAITING procedure that you have already

entered is used to accept a one-key input from the user. To help remind the
user that only a single keypress is needed, the word WAITING' is printed
on the screen with PLASH set.

Lines 3170-3210: These lines refer to action which will be taken if an
alarm has been sounded, as indicated by the value of the variable

24
	

25

•
The Working Sinclair QL

SOUNDED. The variable is reset so that it can be used again, the value of
CHOICE (the ıı ser's input) set to 0 so that the program will do nothing, and
the whole menu printed again, since it has been erased by the alarm call.

Lines 3220-3250: T$, which is the key pressed by the user during the
WAITING routine, has `0' added to the front. The reason for this is that
we are about to treat T$ as a number, under the name CHOICE. if the user
has inadvertently pressed a non-numeric key, this process could either
crash the program or, if the key pressed is the name of a single letter varia-
ble, result in a spurious value being stored in CHOICE. Adding zero to the
beginning of T$ makes no difference if the input was a number, but results
in the return of zero if the key pressed was anything else. The loop is termi-
nated if the CHOICE entered was a valid one, íe in the range 1 —4.

Lines 3270— 3340: SELECT is used to allocate work amongst the program
according to the selection made by the user.

Testing
If you now enter:

menu [ENTER]

you should see the menu displayed. it should not accept any invalid inputs,
but the only one of the options available to you is `stop', which terminates
the program.

Module 1.3.6: Displaying the current timer settings
The purpose of this module is to print out in an orderly way the times for
which the 12 timers are currently set. At the moment, since we have not
entered the module which allows us to set the timer values, each timer will
be displayed as zero.

Module 1.3.6: Lines 11000-11160
11000 REMark **********************
11010 DEFíne PROCedure display
11020 REMark ***********************
11030	 CLS
11040	 AT 1,15
11050	 PRINT "TIMERS"
1106Ø	 AT 5,o
11070	 FOR count=0 TO 11
11080	 extract_time (timer(count))
11090	 IF count(9 THEN PRINT " ";
111NØ	 PRINT count+1;")"!time$ timer$(count)
11110	 NEXT count
11120	 FLASH 1

•
Chapter 1 Experiпгeп ls nit/i Time

11130	 PRINT "WΛ ITING"
11140	 FLASH Ø
11150	 waiting
11160 END DEFine display

Commeп tatý
Lines 11070 — Iii 10: This loop prints out the contents of the array TIMER
and TIMER$. The contents of TIMER, which gives the time for each timer
in seco ıı ds, is processed by the EXTRACT TIME module to extract the
time in hours, minutes and seconds and it is in this format that it is printed,
together with any message stored in TIMER$.

Lilies 11120— 11150: Like the menu, this module relies on WAITING to
put it into a waiting state until a key is pressed, following which the pro-
gram returns to the menu.

Test jug
Type:

display [ENTER]

You should see the times for the 12 timers displayed, though the time for
each will be `00-00-00' and there will be no messages alongside each one
since none have been entered. The flashing `WAITING' will be displayed
at the bottom of the screen and the current time underneath the program
title.

Module 1.3.7: Calculating tinier settiiigs

Now that we can display the timers we shall enter the two modules which
allow the user to set them. The current module is primarily designed to
accept a time in hours and minutes which will be used by the next module to
set a timer.

Module 1.3.7. Lines 7000— 7210
7000 REMark *************** * *********
7O1Ø DEFine PROCedure create time
7020 REMark *************************
7030	 REPeat countdown
7Ø4Ø	 INFUT "COUNTDOWN (γ/n):";down$
7Ø5Ø	 IF down$="y" OR down$="Y" OR down$=" п "

OR down$="N" THEN EXIT countdown
7060	 END REPeat countdown
7070	 REPeat hour
7080	 AT 10,0
7Ø9Ø	 INPUT "HOUR:";hour
7100	 IF down$="n" OR down$="N"
7110	 IF houri=0 AND hour=47 THEN EXIT hour

26 27

Chapter i Experiments with TimeThe Working Sύndair QL

7120	 END IF
7130	 IF down$="y" OR down$="Y" THEN EXIT hour
7140	 END REPeat hour
7150	 REPeat minute
7160	 AT 12,0
7170	 INPUT "MINUTE:";minute
7l8Ø	 IF minute>=0 AND minute =59 THEN EXIT

minute
7190	 END REPeat minute
7200	 time=hour*3bØØ+minute*6Ø
7210 END DEFine create time

Commentary
Lines 7030-7060: Setting of timers can be done in two different ways.
Either a time can be input at which the tinier will go off (eg input 12.00 and

the timer goes off at twelve o'clock) or a period can be specified after which
the timer will sound (eg input 1 hour and the timer wí11 sound after one
hour). These lines ask the user to specify whether the time to be input is to
be used for a count-down or simply as a time of day.

Lines 7070-7140: if what is being input is a time of day, then the hour
figure can only he in the range zero to 47. This may sound like a rather
strange range to impose, but it is a simple way of allowing the user to
specify whether the alarm is to go off today or tomorrow. If the alarm is
intended for 12.00 and the time is already 19.00, there is no point in enter-
ing 12 hours, no minutes as the time, since the alarm would go off
immediately. For dates on the following clay, simply add 24 hours to the
time expressed in terms of the 24-hour clock, so that 12.00 the following
clay would he entered as 36. If the figure is to be the basis for a count-do'vn
tinier, no limit is imposed.

Line 7200: The time input is translated into seconds.

Testıiıg
Type:

create_time (ENTER]

in answer to the prompt, specify that you do not want a count-down timer
and you should then be prompted for the hours and minutes. If you input
10 1]ours and 1 1 minutes, the resulting value of tile variable TIME should
be 36660, and you can print out TIME to check this.

Module 1.3.8: Setting the timers

Now that we can display the state of the timers and translate an input into a
time value expressed in seconds, we can proceed to the module which
allows the user to specify the settings for the 12 timers. Note that this

28

module uses INPUT to obiai ıı the three items of data it requires, so while
the module is operating the timers themselves are not being sampled and
any timer due to give an alarm will not sound until this module has been
completed.

Module 1.3.8: z ι,τes 8000— 8310

PROCedure set_timer

8080	 INPUT "which timer (1-12):";tnum
8090	 IF tnum>=1 AND tnum<12 THEN EXIT

response
8100	 END REPeat response
8110	 tnum=tnum-1
8120	 AT 8,0
Ø13Ø	 create time
8140	 IF down$="Y" OR down$="y"
8150	 time=DATE+time
0160	 ELSE
8170	 days=3b0Ø*24*(INT(DATE/(3600*24)))
8190	 time=days+time
8190	 END IF
8200	 AT 14,0
8210	 INPUT "message:";message#
8220 REPeat response
8230	 AT 16,0
8240	 INPUT "Is this correct (Y/N):";Q$
8250	 IF Q$="Y" OR Q$="y" OR Q$="N" OR 0$="n"

THEN EXIT response
82bØ END REPeat response
8270	 IF 0$="Y" OR 0$="y"
8280	 timer(tnum)=time
6290	 timer$(tnum)=message$
8300	 END IF
8310 END DEFine set _timer

Com ıııentary

Lines 8060-8110: The user is invited to input a timer number in the range
1 — 12. Note that since the array runs from zero to 11, this value has to be
reduced by one.

Lines 8140-8190: if the user has specified a count-down timer, all that
needs to be done is to add the time input by the user (stored in seconds in the
variable TiME) to the contents of the system variable DATE (the current
time and date expressed in seconds). If the time input is intended simply as
a straight time, these lines take the value of DATE and slice off the part

29

8000 REMark
ßØ10 DEFine
8020 REMark
ß03Ø CLS
8040	 AT 1,13
8050	 PRINT "SET TIMER"
8060 REPeat response
ßØ70	 AT 5,0

•

The Working Sinclair QL

which refers to hours and minutes, so that the number of seconds up to the
start of the current day is stored in DAYS. To this is then added the number
of seconds which make up the time input by the user. Thus what is even-
tually stored is not simply a figure representing hours and minutes but a
record of the total number of seconds since January 1st 1961 up to the

specified time on the current day or the day following.

Lines 8210 — 8300: A short message (up to 20 characters) can be attached to
ally timer when it is set. These lines accept the message, confirm all the

details and then store time and message in the arrays TIMER and TIMER$.

The place in the array is dictated by the user's choice, recorded in the varia-

ble TNUM.

Testing
Provided that you have previously initialised and set the time, you should
at this stage be able to test the module by typing:

menu [ENTER]

When you have the menu up, specify option 2 and input:

1, Y, 0, 1 and TEST

in response to the five prompts — íe timer 1 to be set, (Y)es to a count-down
timer, period no hours and one minute, with the message `TEST' attached.

The program should now return to the menu. Now specify option 1 to
display the timers and you should find that timer 0 has been given a value

somewhere less than a minute ahead of the current time (how far ahead will
depend on how quick you have been) plus the label `TEST'. Don't bother
waiting for the alarm to sound as we have not yet entered the module to

achieve that.

Module 1.3.9: Soundinıg the alarm
We now have all the working elements of the program with the exception
that the timers cannot yet announce themselves with an alarm call. This
module and the next add that final touch, with the current module produc-
ing the sound and the next one connecting the alarm to the rest of tl ı e

system.

Module 1.3.9. Lines 5000-5270
5000 REMark ****** ** * **** * **** ** *****

5010 DEFine PROCedure current (time)
5020 REMark *************************
5030 CLE
504Ø	 now=DATE
5050	 etract_time (time)

•
Chapter I Experiments with Time

5060	 FLASH 1
5Ø7Ø	 AT 5,14 : PRINT time$
508Ø FLASH 0
5Ø9Ø	 AT 8,18--LEN(timer-(count))/2
51ØØ	 PRINT timer$(count)
5110	 AT 19,1
5120	 PRINT "press any key to continue"
5130	 REPeat sound
5140	 BEEP 0, 10
5150	 FOR delay=1 TO 5ØØ
5160	 NEXT delay
5170	 DEEP 0,20
S18Ø	 FOR delay=1 TO 500
5190	 NEXT delay
52ØØ	 DEEP
5210	 t$=INKEY$
5220	 IF DATE'now+60 THEN EXIT sound
5230	 IF t$:::-"" THEN EXIT sound
5240	 END REPeat sound
5250	 timer(count) =0
5260	 timer$(count)=""
5265	 sounded=1
5270 END DEFine current

Coıı ineıı tary
Line 5040: The current time is stored ill the variable NOW. This will be
used later in the module to determine whether the alarm has been sounded
for one minute.

Lines 5050-5080: This module is called by one you have already entered,
WAITING. That module has already extracted a time from one of the

timers and sent it to this module in the form of the parameter TIME. These
lines calls up EXTRACT_TIME to translate the time into a string. The
result is placed on the screen ill flashing letters.

Lines 5090 -511)0: If there is a message in the corresponding line of the
array TIMER$, it is printed in the centre of the screen.

Lines 5130 — 5240: This loop sounds two notes, rather like a film version of
the siren on a French police car, for a period of 60 seconds. The lines from
5140 to 5200 sound two notes with a short delay between them, then turn
the sound off. Tests are then made to see whether a key is being pressed or
whether it is more than 60 seconds since the variable NOW was set. If either
of these tests is positive, the loop which sounds the alarm ends.

Lines 5250 — 5270: Having finished with the alarm, tile value of the timer is
set to 0 and any associated message cleared. The variable SOUNDED is set
to 1 as an indication to the me ıı u module that the screen has been cleared
while it was waiting for an input.

30 31

•
The Working Sinclair QL

Testing
Type:

menu IENTLR)

and specify a count-down timer with a period of a minute. The result
should be that at the end of the minute the alarm should sound for a period
of approximately one more minute. I f you wish, you can set another timer
and this time cut off the alarm by pressing a key — the alarm may not stop
instantly due to the fact that the notes and the timing loop have to finish.
Finally, you might like to check that the alarm still sounds when you have
the 12 timers displayed on the screen using menu option 1.

Module 1.3.10: Blanking the screen

The whole purpose of this program is that it should be left running in the
background so that it can act as a timer system. Leaving the QL switched
on to achieve this will do it no harm at all, but leaving the television set
switched on and displaying the sane screen for long periods of time may
eventually cause sonic of the brighter parts of what is displayed to become
slightly etched upon the screen so that they appear as permanent ghosts
over whatever the screen is showing. (Don't panic about this, it's not some-
thing that's going to happen just because you happen to leave the QL and
TV switched o ıı for a few hours by mistake — we are talking about conti-
nual use of the same screen design over a long period).

To overcome this possible problem, the program has built into it a screen
protection module which blanks the screen and then displays a short mes-
sage in flashing letters. Since flashing letters are not permanently displayed
on the screen, they will not cause etching on the screen in the same way as
normal lettering.

While the screen is blanked, the timers are constantly being sampled by
means of the previous ıııodule. Any alarms which arise will be sounded in
the normal way.

Module 1.3.10: Lines 9000 — 9120
90ØØ REMark *************************
9010 DEFine PROCedure blank
9Ø2Ø REMark *************************
9030 REPeat blank_loop
9Ø4Ø	 CLS
9Ø5Ø	 FLASH 1
9060	 AT 9,15
9070	 PRINT "TIMER"
9080	 waiting
9090	 FLASH θ
9100	 IF t$<>"" THEN EXIT blank_loop
9l10	 END REPeat blank_loop
9120 END DEFine blank

•
Chapter 1 Experiments with Time

Testing
Set up one or two tiniers for short periods and then call up the blank screen
state from the menu. Though you cannot see the state of the timers until
they expire, you should find that alarms are sounded in the normal way.

Module 1.3.11: The control module
Finally, the control module, which ties together what you have entered.

Module 1.3.11: Lines 1000-1070
REMark ***************x*********
REMark control loop
REMark *************************

initialise
set_ti me
menu
CLs
STOP

Testing
All the functions which you have already entered should now be available
when you run the program.

PROGRAM 1.4: EVENT

Program function
The final program in this chapter of experiments with time is fairly unusual
in that it seeks to turn the QL into a stopwatch. Of course the accuracy of a
microcomputer is not to be compared with that of specialist watches, but
the computer does have some advantages in that it can keep a record of the
times it has produced, perform calculations on them, and so on. The cur-
rent program is designed to time one of a series of events, to display the
series of times, with or without an identifying message attached and, for
each event, to calculate the period since the previous one. It can also, on
request, print out the list of times so that a hard copy can be kept.

New topics introduced in the course of this chapter:

1) The use of the SERi port for printed output from programs.

Module 1.4.1: Initialisation
A standard initialisation module. The variables will be discussed during
the course of the commentary on the program.

1000
1010
1020
1030
1040
1050
10ь0
1070

32
	 33

•
The Working Sinclair QL

18:47:46	 (110: 00: 01)
18:47:47	 0:00:11:1)
18:4 7 :49	 (0И Ø:02'ı 	 LORRY
18:47:53	 (:00:04)
1Σ:: 47:54 	 0Ø: 1111: 01.)
18:47:56	 (1111:110:02>
18:47:59	 (11:011:03)	 E+US
18:48:06	 (00:0и :07)
18:48:07 	 (1411:00:01>
18: 4 я ; 11	 (1111:00:04)	 LORRY
18: 4. ε3 : 14	 (1411: 1111:113)
18:48:15	 (00:00:01)	 LORRY
18:48:21	 (ИØ: ИИ : Ø6)
18:48:22	 (00:00:01)
1:48:24	 (110:00:02)
1E3:48:24	 (0И : и0: 0Ø)
18:48:24	 (0O/:00:0И)
18:48:26	 (00: 00: 02) TANK

Figure 1.4: Output of Event being used to Time Traffic, with Heavy Vehicles

Marked.

Module 1.4.1: Lines 2000 — 2060
2000 REMark ***********************
2010 DEFine PROCedure initialise
2020 REMark ************************
2030	 PAPER 0 : INK:: 7 : CLS : CLSiO
2040	 timel=DATE
2050	 printer=0
2060 END DEFine initialise

Module 1.4.2: Setting the tine
The last in the series of time-setti ıı g modules. This one is the longest but,
paradoxically, the easiest to use. To the module in the last program has
been added the option to choose whether or not to reset the existing tine.
Once the time has been set, a simple `N' saves all the trouble of entering

everything again.

Module 1.4.2: Lines 3000-3370
'000 REMark ************************
1010 DEFine PROCedure set_time
3020 REMark: *************************
30	 REPeat date_set
3040	 CLS
3050	 AT 1,1 : PRINT "DATE IS NOW: ";DATE$
3060	 AT 7,1 : INPUT "Do you wish to reset

date (Y/N):";O$
7070	 IF G$':: "y" AND 8$<>"Y" THEN RETurn

Chapter l Erperńneп ts with Tine

2080	 CLS
7090	 AT 1,12 : PRINT "CLOCK SETTING"
3100	 REPeat year
3110	 AT 5,1 : INPUT "YEAR (1984-1999):";year
3120	 IF year>=1984 AND year=1999 THEN EXIT

year
3170	 END REPeat year
3140	 REPeat month
3150	 AT 7,1 : INPUT "MONTH (1-12):";month
7.160	 IF month1 AND month<::=12 THEN EXIT

month
3170	 END REPeat month
3180	 REPeat day
7190	 AT 9,1 : INPUT "DAY (1 31):";day
3200	 IF day:==0 AND da у 31 THEN EXIT day
3210	 END REPeat day
7.220	 REPeat hour
7.230	 AT 11,1 : INPUT "HOUR (0-23):";hour
3240	 IF hour =0 AND hour <:=23 THEN EXIT

hour
7.250	 END REPeat hour
3260	 REPeat minute
7270	 AT 13,1 : INPUT "MINUTE (0-59):";minute
7.280	 IF minute:: =0 AND minute=59 THEN EXIT

minute
3290	 END REPeat minute
3300	 AT 15,1 : INPUT "ARE THESE CORRECT

(Y/N):"•Q$
3710	 IF L?$="y" THEN EXIT date_set
7320 END REPeat date_set
3330	 SDATE year,month,day,hour,minute,0
7340	 AT 17,1 : PRINT "DATE IS NOW: ";DATE$
3.350	 AT 19,1 : PRINT "press any key to continue"
7760	 PRINT INKEY$(-1)
7.370 END DEFine set_time

Module 1.4.3: Waiting for input

This module is equivalent to the WAIT procedure in the previous program
in that it creates a waiting state. In addition, it is capable of recognising if
the user is asking for the printer to be connected or for the program to be
terminated.

Module 1.4.3: Lines 4000 — 4200
4000 REMart:: ************************
4018 DEFine PROCedure wait
4020 REMark ************************
4030	 message$=" "
4040	 REPeat waiting
4050	 t$=INКEY$
4060	 IF t$'::>""
41170	 time values
4080	 IF t$=CHR$(10)

34
	 35

•
The Working Sinclair QL

4Ø9Ø	 INFUT#Ø, "MESSAGE (-=15 CHARS):";
message$

41ØØ	 IF LEN(message-)i15 THEN message#=
message$(1 TO 15)

4110	 CLS #Ø
4120	 END IF
41`0	 IF t$="p" OR t$="F"'
4140	 printer=APS(printer-1)
4190	 ELSE
4l6Ø	 EXIT waiting
4170	 END IF
4l0Ø	 END IF
419Ø	 END REFeat waiting
4200 END DEFine wait

Commentary
Line 4030: This string will be used to store any message associated with a
particular event Iími ıı g.

Lines 4070-4111): If the key pressed is ENTER, then the user is prompted
on the command lines at the bottom of the screen to input a short message
to accompany the event time, the command lines then being cleared again.

Lines 4130-4140: If the key pressed is the letter P, then the value of the
variable PRINTER is toggled between zero and one. It's worth taking note
of this simple routine as it represents the classic way of shuttling a variable
between two values. If you have a variable X and you want to shuttle it
backwards and forwards between values VI and V2 (where V 1 is the
lower), the format is:

X—V1+V2—X

but, since our lower value is zero, it is simplified to:

X=V2--X

Lines 4150-4170: To arrive at this poi ıı t, the key pressed must have been
anything but the letter P. The result is that the time values are updated by
the next module and the waiting state terminated.

Testing

Ensure that the program is initialised, then type:

wait [ENTER]

and the QL should go into the waiting state. If you press the P key, nothing
should visibly happen. If you press [ENTER], you should be prompted for
a message and the wait terminated. Any other key simply terminates the
procedure.

•
Chapter 1 Experiments with Time

Module 1.4.4: Extracting tune values

This module obtains all tl ı e information necessary for printing out the
current tine and the period between events.

Module 1.4.4: Lines 5000-5090
5000 REMark **************** ********
5010 DEFine PROCedure time_values
5Ø2Ø REMark *************************
5030	 timet=timet
5040	 timet=DATE
5050 now$=DATE$
5060	 peri σd=time1-timet
5070	 time$=DATE$(period)
5000	 time$=time$(13 TO)
5090 END DEFine time_values

Commentaıy
Lines 5030-5040: The last time recorded is shifted over to the variable
TIME2 before the current time is taken into TIME1.

Line 5050: The string NOW$ will be used for printing out the current time.

Lines 5060— 5070: The difference between TIME 1 and TIME2 is obtained
and translated into a time format by use of DATE$.

Testing
Provided that you have initialised the program, type:

time values [ENTER]
print tiiiie$,now$[ENTER]

You should find that NOW$ roughly represents the current time, while
TIME$ will represent the period since the program was last initialised and
TIME1 set equal to DATE.

Module 1.4.5: Printing the results
This module prints out the results of tl ı e previous calculations, either on
the screen alone, or to the screen and printer if this has been specified.

Module 1.4.5: Lines 6000— 6090
6ØØØ REMark *************************
6010 DEFine PROCedure print values
6020 REMark *************************
6Ø3Ø	 PRINT now$(13 TO 20)!!'(":time:£;")"!

message$
6Ø4Ø	 IF printer=1
bØ5Ø	 OPEN#9,ser1

36 37

The Working Sinclair OL
	

Chapter 1 Experiments with Time

6060	 PRINT#9,now#(13 TO 20)!!"(";time$;")"!!
message$

6070	 CLOSE#9
6080	 END IF
6090 END DEFine print values

Coin, ıientaıy
Line 6030: The time at which the key was pressed, the period since the last
event and any associated message are printed on the same line.

Lines 6040-6080: These lines open a channel of communication with the
port on the back of the QL labelled SERI . This port is designed so that the
QL can communicate with a printer which operates according to what is
known as the RS232C protocol — and make sure your printer does work
with the QL before you buy it! Once the channel has been opened, items to
be printed which are sent along that channel by including the channel
number after the PRINT command will end up being output to the printer
rather than to the screen. In the case of this module the channel is opened
and closed for each item to ensure that it is properly closed when the pro-
gram terminates. It could equally well be opened at the beginning of the
program and closed at the end provided that no other use is being made of
the SERI port. Note that if you don't have a printer connected to the SERI
port and you call up the printer, the program will lock up.

Testing
If you performed the test on the previous module, just type:

print__values [ENTER]

and you should see what you previously printed out as NOW$ and TIME$,
neatly formatted. If the variable PRINTER was equal to 1, and a printer
connected, the output will also go to the pt inter.

Module 1.4.6: The control module

The final touch, as always, is the control module, which ties the whole
program together.

Module 1.4.6: Lines 1000-1120
1ØØØ REMark ***** эε эε эHиэε эиэε эε эиıε эε эиэı +иэε эε эε эε э
1Ø1Ø REMark control loop
1Ø2Ø REMark *******-w**************
1030	 initialise
1Ø4Ø	 set_time
1050	 CLE
1Ø6Ø	 REPeat control
1Ø7Ø	 wait

1Ø8Ø	 IF t$=CHR$(27) THEN E К IT control
1Ø9Ø	 print values
11ØØ	 END REPeat control
111Ø	 PRINT #0,"Program terminated"
1120	 STOP

Commentary
Lines 1080 and 1110: One extra touch which isn't apparent from the rest of
the program is that, if you pressed the ESCape ke y while in the waiting
loop, the program will stop, printing the message `Program terminated' on
the command lines at the bottom of the screen.

Conclusion

There are a number of lessons to be learned from the programs in this
chapter, not least that the uses of your QL are only 1i ıılíted by your imagin-
ation. But perhaps the most important lesson you can learn, if you look
back over the programs, is just how easy the design of programs becomes
when everything is contained in neat modules which can be transferred
from one program to the next. With its easy-to-use MERGE command and
the ability to save parts of programs, the QL cries out to be used in this way.
Once you have built up a sufficient library of useful routines you will find
that much of your progranımí ııg becomes like fitting together a jigsaw
puzzle, except that the completed puzzle will, at least sometimes, be more
useful.

38
	

39

CHAPTER 2

Son et Lumière

In this chapter we turn to a series of programs which will allow you to put
some of the QL's graphical abilities to use and, in addition, to make the
most of the rather confusing sound commands.

The programs included in this chapter are:

DESIGNER: A tool which allows line drawings far larger than a single
screen to be constructed, manipulated and displayed.

З-D GRAPH: Using turtle graphics to p ı oduce a clear and attractive dis-
play for complex figures.

SCREEN: Copies the contents of the screen to a printer.

CHARACTERS: Designs and stores your own customised character sets.

SOUND DEMO: A simple routine to permit experiments with the sound
parameters.

MUSIC: Allows complex tulles to be input in a comprehensible form and
played.

PROGRAM 2.1: DESIGNER

Program function

No doubt we have all seen the impressive displays created by what is known
as CAD (computer aided design) software. With deft touches, the engineer
adds lines and shapes to a complex design, or erases those which already
exist. in a limited kind of way, Designer is intended to mimic that kind of
capability. While clearly not as sophisticated, it will allow you to create
complex designs which are far larger than a single screen, using the televi-
sion screen as a moving window to examine parts or shrinking the whole
area down so that it can be viewed in its entirety. Lines, circles and boxes
can be added at will or deleted, and the whole design stored on microdrive
for later use.

New concepts introduced in this program include:

41

•
7 İгe 1 Iorki?ig sinclairQL

Figure 2.1: Screen Dump from Designer.

1) Graphics commands LINE, CIRCLE and SCALE.
2) Starti ıı g a program without clearing variables.
3) A user-defined flashing cursor in hi-res.
4) Storing and retrieving data on microdrives.

Module 2.1.1: Initialisation
A standard initialisation module.

Module 2.1.1: Liiies 2000— 2090
2000 REMark *************************
2010 DEFine PROCedure initialise
2020 REMark *************************
2070	 INK 7
2040	 DIM a(1000,8)
2050	 size=2 : screen=1ØØ
2060 с х 07. : с=50
2070	 item=0
2080	 SCALE 100,0,0
2090 END DEFine initialise

Coíпııı e ıг tпry

Line 2040: The array A will be used to store details of the lines and shapes
to be drawn.

Line 2050: The variable SIZE will record the size of the flashing cursor.
This will vary with the scale at which the design is being viewed.

•
Chapter 2 Son et Lumière

Line 2060: 'l'he original coordinates of the cursor (cursor X and cursor Y).

Line 2070: The number of lines or shapes contained within the drawing.

Line 2080: Later program sections will allow the design to be viewed at
different degrees of enlargement and in different sections. To begin with
we use the norn ıal scaling of the machine, with 100 units on the horizontal
axis and the picture starting at position 0,0.

Module 2.1.2: A Hashing cursor

In any design program, one of the first necessities is that the user should
know where the current drawing position is. This is usually achieved by
means of a cursor of some kind, marking the current position on the
screen. The cursor for this program consists of a small flashi ıı g cross which
can be moved over the design using the cursor control keys, without affect-
ing the contents of the screen.

Module2.1.2: Lines3000-3150
300Ø REMark *************************
3010 DEFine PROCedure cross
3020 REMark ******** ****************
3030	 OVER -1
3040	 REPeat draw
3050	 LINE cx -size,cy TO cx +size,cy
3060	 LINE cx,cy-size TO c::,cy+size
3070	 FOR delay=1 TO 10 : NEXT delay
3080	 LINE c"-size,cy TO c::+size,cy
3090	 LINE c и ,cy-size TO cx,cy+size
3100	 FOR delay=l TO 10 : NEXT delay
7.110	 t$=INKEY$
7.129	 IF t#':::"" THEN EXIT draw
3130	 END REPeat draw
3140 OVER Ø
3150 END DEFine cross

Com1 n г e11 tпry

Lines 3040 — 3130: These lines draw two short lines, to a length of SIZE, at
right angles, crossing at the current drawing position. The cursor is drawn
with OVER set in such a way that it reverses any pixels over which it passes.
Drawing the cursor twice erases it and reinstates the screen to the position
which existed before it was drawn. The two DELAY loops ensure that the
timing is such that the cursor appears to be flashing rather than merely
flickering.

Lines 3110 — 3120: These lines ensure that the cursor will continue to flash
until a key is pressed. Dealing with the input is the job of the next module.

42
	 43

•
The Working Sinclair QL

Testing

Type:

iiı itialiseiENTERI
crosslENTERI

The screen should clear and you should see the small flashing cursor appear
in the centre. Pressing any key should make the cross disappear and termi-
nate the module.

Module 2.1.3: Input of commands
Having given ourselves a flashing cursor and the ability to detect the user
pressing a key, the current module allocates work among the various parts
of the program when a key is pressed. its correct functioning can only be
tested when the subsequent module, the short control module, is added.
Most of the single commands mentioned in the commentary will not, of
course, become operative until later modules are added.

Module 2.1.3: Lines 4000-4270
4ØØØ REMark **** ********************
4Ø1Ø DEFine PROCedure analyse_key
4020 REMark ***** * ************** ** ***

4Ø'Ø	 IF t#=CHR#(192) THEN ε х =c;:-1
4040	 IF t$=CHR'Т (196) THEN cx=cx-10*screen/100
4ØS0	 IF t$=CHR$(20Ø) THEN ε х =c+1
4Øb0	 IF tf=CHRs(204) THEN c,:=cx+10*screen/lØ0
4070	 IF tt=CHR$(208) THEN cy=cy+1
4Ø8Ø	 IF t$=CHR#(212) THEN cy=cy+10*screen/1ØØ
4Ø9Ø	 IF t$=CHRt(216) THEN cy=cy-1
41ØØ	 IF t$=CHR$(220) THEN cy=cy-10*screen/100
4110	 IF tt="1"
4120	 x1=cx
4120	 y1=cy
414Ø	 END IF
4150	 IF t$="!"
4160	 c::=s:1
4170	 cy=y1
4180	 END IF
4190	 IF t$="1" OR t#="L" THEN line draw
4200	 IF t$="c" OR t$="C" THEN circle _draw

4210	 IF t$="b" OR t$="H" THEN Ь a::

4220	 IF t$= "d " OR t$="D" THEN remove
42?0	 IF t#="s" OR t$="S" THEN scaling
4240	 IF t$="m" OR t$="M" THEN store
4250	 IF t$=CHR#(27) THEN STOP
4260 CLS #0
4270 END DEFine analyse key

•
Chapter 2 Son et Lumière

Com ımentary

Lines 4030-4100: The character codes given here are those of the cursor
keys. Pressing one of the cursor arrows alters the value of CX or CY, thus
moving the cursor. Using the shifted cursor keys moves the cursor 10
screen positions, regardless of the scale at which the design is being viewed.

Lines 4110-4140: Input of `1' defines the end of a line or shape to be
drawn.

Lines 4150-4180: Input o f '!' moves the cursor immediately to the posi-
tion defined by pressing 1.

Line 4190: input of `L' draws a line between the points defined by the
pressing of 1 and the current position of (lie cursor.

Line 4200: Input of `C' results in the drawing of a circle whose circumfer-
ence will touch points 1 and the current cursor position and whose centre
will lie halfway between then.

Line 4210: Input of `B' draws a box whose upper lefthand corner is defined
by 1 and bottom ríghthand corner by the current cursor position.

Line 4220: Input of 'D' puts the program into the mode where individual
lines can be deleted.

Line 4230: Inpur of `S' allows the user to change the scale or position from
which the design is viewed.

Line 4240: Input of `M' stores the design on microdrive.

Line 4250: Pressing ESCape stops tile program.

Module 2.1.4: The control module

The short control module needs to be entered at this point so that the cursor
move function can be tested and later modules tested as they are entered.
Note that the module makes provision for the recall of data from micro-
drives — this will be discussed in full when the relevant modules ace
entered. In addition, provision is made for the user to specify whether the
program is to clear its variables or not.

Module 2.1.4: Lines 1000— 1140
10ØØ REMark *********** ***** * ***iF****
1Ø1Ø DEFine PROCedure do (fresh)
1020 REMark *************************
10'0	 CLS : CLS #Ø : OVER Ø
1Ø4Ø	 IF fresh THEN initialise
1050 CLS #0
1Ø6Ø	 INPUT #0,"Load from Microdrive (y/n): ";q#

44	 45

i
The [Vorkiпg SinclairQL

IF q$"y" OR q$=„Y„

recall
END IF
REPeat x

cross
analyse_key

END REPeat x
1140 END DEFíne do

Commentary
Lines 1010 and 1040: The argument attached to DO is used to determine
whether the iiiitiahisation ınod ıı le will be called up. If the comnna ııd to start
the program is DO 1, the variables will be cleared, while if it is DO 0, they
will be left intact and any existing design may be retrieved.

Testing
Start the program with DO 1 and you should find that you are able to move
the flashing cursor around by means of [lie cursor control keys. None of
the other program functions will yet be available.

Module 2.1.5: Drawing a line
The simplest kind of addition which can be made to the design is the draw-
ing of a line between points 1 and 2. Like all the drawing modules, this one
draws the line with OVER set, then gives the user the opportunity to con-
firm the addition before it is finalised. in a crowded design, adding the line
with OVER set will erase any inked pixels over which the line passes. This is
rectified when the line is confirmed or when it is erased.

Modide 2.1.5: Lines 5000 — 5130
5000 REMark *************************
5010 DF_Fine PROCedure líne_draw
5020 REMark *************************
5030	 OVER -1
5040	 LINE ;:1,y1 TO с : ,cy
5050	 INFLIT #0,"CONFIRM (Y/N):";q$
5060	 IF q-t="Y" OR q$="y"
5070	 OVER Ø
5080	 type=l
5090	 record
5100	 END IF
5110	 LINE xl,yl TO cx,cy
5120	 OVER Ø
51TØ END DEFíne line draw

Testing
Enter the following lines which will form part of a later module:

8000 DEF PROCrecord
8350 END DEFrecord

•
Chapter 2 Son et L tnnièгe

Now run the program and immediately press 1 to define one end of a line.
Now move the cursor and press `L' (or `1'). You should see a line drawn
between the two points and be asked to confirm it. If you do confirm it, the
flashing cursor will return. If you do not confirm it, the line should be
erased before the cursor ret urns.

Module 2.1.6: Drawing a circle
This module is, in principle, no different from the last, with a shape being
drawn and confirmed by [lie user. Apart from the two defined points,
however, one further piece of information is required, namely the rotation
of the circle to be drawn — since it may not be a pure circle but an ellipse of
some kind.

Module 2.1.6: Lines 6000— 6180
6000 REMark **** эиэı +ε эε эε * эε эиэε эиıε эε эt^ эε * эи * ıε x эи
60 1 Ø DEFine PROCedur e circle draw
6020 REMark ******* *** * **************
6 Ø Š0	 OVER -1
6040	 ox=(x1 +cx) /2

6050	 oy=(y ı +cy) ı 2
606Ø	 ra=AHS(cy-y1)/2
607Ø	 e=APS(c;:-;ı 1)/(AP5(cy-y1)+1)
6080	 INFUT #0, "ROTATION (0-360): "pro
6090	 CIRCLE ox,oy,ra,e,RAD(ro)
6100	 INPUT #0."CONFIRM (Y/N):";q$
61lØ	 IF q$="Y" OR q$="yH
6120	 OVER 0
6l:'Ø	 type=2
6140	 record
6150	 END IF
6160	 CIRCLE ox,oγ, ra,e,RAD(ro)
6170	 OVER Ø
6180 END DEFíne circle draw

Co ınmentaıy
Lines 6040-6050: The origin of the circle is discovered by adding the X
and Y coordinates of points 1 and 2 and dividing by two, thus finding a
point halfway in between.

Lines 6060-6070: The QL works, for the radius of its CIRCLE command,
on the Y axis, so half [lie distance between the two Y coordinates is calcu-
lated. Any difference between the distance between the Y coordinates and
the X coordinates will be used to supply the `eccentricity' of the circle, the
degree to which it will appear stretched or squashed horizontally.

Line 6080: Having defined the shape, the circle command also requires a
figure for the rotation of that shape. This is input in degrees and translated
into radians using RAD.

1070

1080

1090
1100

1 [10

1120

1130

46
	

47

The Working Sinclair QL
Chapter 2 Soп et L јітіёге

Testing

You should now be able to call up the circle command with `C' while the
program is running.

Module 2.1.7: Drawing a box

The finial shape which the program is capable of drawing ís a simple rectan-
gle, with its opposite corners at points I and 2. This module is slightly more
complex than the previous ones since there is no built-in command for the
shape and, in addition, 1 have included provision for it to be rotated.

Mπdule 2.1.7: Liiies 7000— 7260
70Ø0 REMark *********************** и *
7010 DEFíne PROCedure box
7020 R'EMark *************************
70'Ø OVER -1
7040	 ox=(x1+cx)/2
7050

7060	 INPUT #0,"ROTATION (0- 260): ";ro
7070	 rσ=RAD(re)
7080	 rscl=ox+(x1-ox)*COS(r0)+(y1- σ y)*SIN(ro)
7090	 ryl =oy+(y 1-oy)*COS(ro)-(x1-ox)*SIN(ro)
7100	 rx2=ox+(cг -ox)*COS(ro)+(y1- oy) *SIN(ro)
7110	 ry2=oy+(y 1-oy) *COS(ro)-(c;-ox)*SIN(r π)
7120	 rx3=ox+(cx-ox)*COS(ro)+(cy- oy) *S τ N(ro)
71'0	 ry3=oy+(cy-oy) *COS(ra)-(c,:-ox)*SIN(ro)
7140	 rx4=o>:+(ı,1-o>σ) *COS(rσ)+(cy-oý)*SIN(ro)
7150	 ry4=oy+(cy-oy) *COS(ro)-(x1-ox)*SIN(ro)
7160	 LINE rxl,ryl To rx2,ry2 TO rx',ry.7 To

rx4,ry4 TO rxl,ryl
7170	 INPUT #Ø,"CONFIRM (Y/N):";q^
7180	 IF g#="Y" OR q#="v"
7190	 OVER 0
7200	 type='
7210	 record
7220	 END IF
7230	 LINE rxl,ryl TO rx2,ry2 TO r ı:5,ry3 TO

rx4,ry4 TO rxl,ryl
7240 OVER 0
7250 ELS #Ø
7260 END DEFi ne boa

Collmlentary

Lines 7040--7050: Because we are going to supply the option of rotating
the rectangle, its centre has to be found in the same way as for the circle.

Lines 7080 – 7150: The formulae for rotating one point arouiid another are
as follows:

X2 = XO + XD * CPS ANGLE + YD * SIN ANGLE
Y2 = YO + YD * COS ANGLE – XD * SIN ANGLE

X2 AND Y2 are the X and Y coordinates which result from rotating the
point X,Y.
XO and YO are the coordinates around which the point is being rotated.
XD and YD are the distances of X and Y from XO and YO respectively.
ANGLE is the angle through which the point defined by X and Y is being
rotated.

The basic rectangle, unrotated, will l ıave corners of X1/Y1, X2/Y1,
X2/Y2 and X1/Y2. Looking at the lines and comparing them with the
formulae above, you should be able to see that they provide the rotated
coordinates for the four corner points.

Testing
You should now be able to press B, define a rectangle and rotate it at will, in
the same way as a circle.

Module 2.1.8: Recording a design
A program like this one is little use for anything but some passing fun
unless the design being worked on can be recorded in some way. In our
case, recording the desigii in an array will later allow us both to store the
data on microdrive and to delete individual lines. Lines and shapes are all
recorded by calling this module as they are entered, which is why we earlier
had to enter the two lines which begin and end this module before tests
could be made.

Module 2.1.8: Lines 8000-8350
8000 REMark.: ************************
8010 DEFíne PROCedure record
8020 REMark ************************
8030	 IF itenı =1001
9040	 F'RINT #0, "NO ROOM FOR MORE LINES"
8050	 t$=INКEY$(-1)
8060	 RETurn
8070	 END IF
8080	 IF type=1
8090	 a(item,0)=type
8100	 a(item,1)=x1
8110	 a(item,2)=y1
9120	 a(item,3)= с a
8150	 a(ítem,4)=cy
8140	 END IF
8150	 IF type=2
8160	 a(item,0)=type
8170	 a(item,1)=ox
8180	 a(item,2)=oy
8190	 a(item,')=ra
9200	 a(item,4)=e

oy=(y1+cy)/2

48	 49

The Working Sinclair QL Chaρ ıer2 Son et Lun ı ière

a(i tern. 5) =ro
END IF
IF type=3

a(item,0)=type
a(item,1)=r::1
a(item,2)=ryl
a(item,7)=rı 2
a(item,4)=ry2
a(item,5)=rx.3
a(item,6)=rya
a(iten,7)=r и 4
a((tem,8)=ry4

END IF
item=item+1

END DEFine record

Commentary
Lines 8080 – 8140: If the new item is a simple line, all that needs to be done
is to record its type (I) and the start and finish coordinates.

Lines 8150 – 8220: In the case of a circle, the coordinates of the centre, the
radius, the eccentricity and the rotation are recorded.

Lines 8230-8330: For a box, the X and Y coordinates of all the four
corners needs to be recorded if the rotation is not to be recalculated when
the shape is redrawn.

Module 2.1.9: Redrawing a shape

Having given ourselves the ability to record a shape in an array, we now
turn to the question of retrieving a shape from an array and placing it back
on the screen.

Module 2.1.9: Lines 10000 —10120
10000 REMark ************************
10010 DEFine PROCedure global_draw (í)
10020 REMark: ************************
10070	 IF a(i3O)=1
10040	 LINE a(i,1),a(i,2) ТО a(í,3),a(i,4)
10050	 END IF
10060	 IF a(1,Ø)=2
10070	 CIRCLE a(í,1),a(i,2),a(í,3), г (í,4),

RAD (a(í,5))

10080	 END IF
10090	 IF 2(í,0)=3
10100	 LINE 2(í,1),2(i,2) TO a(í,'),2(í,4) TO

a(1,5),2(í,6) TO 2(1,7),2(1,8) TO
а (ı ,1), а (ı ,2)

10110	 END IF
10120 END DEFine global_draw

Testiiig
Run the program and draw a few shapes, stop the program with ESCape
and then clear [lie screen. Call up the drawing module by typing:

global_draw (0)[ENTERI

and you should see your first shape redrawn. According to the number of
shapes you originally drew, you can call up GLOBAL_DRAW with argu-
ments other than zero.

Module 2.1.10: Redrawing the whole design
With a module installed which is capable of redrawing a single line or
shape, it becomes a trivial matter to redraw the whole design.

Module 2.1.10: Lines 9000-9090
9000 REMark ************************
9010 DEFine PROCedure redraw
9020 REMark ************************
9030	 IF item`0
9040	 CLS
9050	 FOR i =0 TO item-1
9060	 global_draw (i)
9070	 NEXT i
9080	 END IF
9090 END DEFine recall

Testing
When you have entered a number of lines and shapes, stop the program,
clear the screen and type:

redraw[ENTER7

The entire design should be recreated on the screen.

Module 2.1.11: Deleting lines and shapes
Si ııce the design is not stored as a whole but in the form of individual lines
and shapes, it is also a simple matter to give the user the option of deleting
individual items. This module displays the whole design, line by line, with
the option of deleting any line. it can also be used to redraw the design if the
screen has been cleared by stopping the program.

Module 2.1.11: Lines 11000— 11400
11000 REMark: *************** * * ****
11010 DEFine PROCedure remove
11020 REMark *************** * * ****

8210
8220
9270
8240
8250
82 60
8270
8280
929σ
8700
8310
8320
87TØ
8340
θ350

50 51

11Ø7Ø	 CLS
11040	 i =0
11050	 F'RINT #0, "DELETE (Y/N): ?"
1l06Ø	 F'RINT #©,\"ESCAPE TO TERMINATE DELETE

FUNCTION"
11070	 REPeat loop
11080	 REPeat flashing
11Ø9Ø	 OVER -1
11i0ø	 oloь a1_draw (i)
1111Ø	 global_draw (i)
11120	 tl$=INКEY#
11170	 IF tl$="y" OR t1$= "Y"
1114Ø	 FOR j=i TO item--1
11150	 FOR k=0 TO Θ
11160	 a(j,k:)=a(j+1,k:)
11170	 NEXT k:
11180	 NEXT j
11190	 item=item-1
1.1200	 EXIT flashing
11210	 END IF
11220	 IF tl$=CHR$(27>
11270	 OVER Ø
11240	 FOR i=i TO ítem-1
11250	 global_draw (j)
11260	 NEXT j
11270	 RETurn
1128)21	 END IF
11290	 IF t1-t . З-""
113110	 EXIT flashing
11310	 END IF
11320	 END REPeat flashing
1I77Ø	 IF t1$ <ì"y" AND tl$<:
11340	 OVER Ø
11350	 global_draw (i)
113611	 í = i +1
11370	 END IF
11380	 IF i =item THEN EXIT loop
11390	 END REFeat loop
1141111 END DEFine remove

The Working Sinclair QL Chapter 2 Son el Lumière

Lines 11290-11370: Any key other than `Y' or `y' simply sends the
module onto the next item in the design, having drawn the current shape on
the screen.

Testing

Provided that you have entered some shapes, you should now be able to
press `D' from the main part of the program to obtain this module. Con-
firm that you can page through the design you have entered, deleting items
or leaving them untouched. Pressing Escape at the beginning of the design
should result in ı no change being made.

Module 2.1.12: Windows and scales
We have so far not touched at all on one of the most useful abilities of
Designer — to nıove the screen like a window over a large design or to
shrink a clesigii so that it can be seen on a single screen. Normally, this is a
fairly complex mathematical manouevre but the simplicity of this module
is an indication of the power that Super ВASIC brings to bear in its graphics
commands. The lines of calculations necessary on most other machines are
reduced on the QL to a single, simple SCALE command.

Мodnle2.1.12: Lines 12000-12120
12000 RENark **********************
12010 DEFine PROCedure scaling
12020 RENark: ************************
12030	 INPUT #Ø,"SCALE (50--10000): ';screen
12040	 INPUT #Ø,"ORIGIN X (0-9950): ";arg_;:
12050	 INPUT #Ø,"ORIGIN Y (11-9950): ;org_y
1211611	 size=2*screen/1ØØ
12070	 IF size-2 THEN size=2
12080	 SCALE screen,org_;;,org_y
12090	 c::=org и +1.6*screen/2
12100	 cy=org_γ+screen/2
12110	 redraw
12120 END DEFíne scaling

Commentary
Lines 11080— 11320: This loop continually draws and redraws one line or
shape with OVER set to niiinis one, so that the item flashes on the screen.

Lines 11134)— 112В): If the user responds with `Y' to the prompt asking if
the item is to be deleted, the rest of the contents of the array above the
current item are copied down one place, wiping that item out.

Lines 11220— 11280: If the ESCape key is pressed, the rest of the design is
drawn and the module terminates. This facility is useful for redrawing the
design if the program has been restarted with DO 0.

52

Co ıninentaty
Line 12030: On start-up, tl ıe design is viewed on a scale where 100 units
would represent the height of the screen. This caii be altered so that the
design can be viewed at twice the size (50 units screen height) or one hun-
dredth the scale (10,000 units screen height).

Line 12040— 12050: We noted at the beginning that the program allows for
designs of up to 10,000 by 10,000 pixels. To begin with, the program
presents you with a view of the bottom leftha ıı d corner of the design,
beginning at coordinates 0,0. Using the scale command, however, it is per-

53

•
The Working Sínciа iг QL

fectly pоssíble to move the coordinates represented by the bottom lefthand
corner of the screen, so that a different pari of the design is seen.

Line 12060: The size of the cursor nı ust vary according to the scale at which
the design is being viewed. If the design has been been shrunk by a factor of
a hundred, a cursor which ís 4/100 pixels across will not be much use.

Lines 12090 - 12100: Having resealed the screen, the cursor coordinates
are recalculated so that they he in the middle of the screen — note that the
screen ís always 1.6 times as wide as it is high. Note that moving the screen
in relation to the design is the fast way to move the cursor from one point to
another.

Testing
With a design entered, you should now be able to move the screen over the
design and enlarge or shrink ít.

Module 2.1.13: Storing data o н microdrive

We now turn to a very important module from the point of view of this
program and, indeed, of most of the programs in the book. This module
and the next form a unit which allows data generated by a program to be
stored on microdrive and then retrieved by the program at a later date.

Module 2.1.13. Lines 13000— 13 170
13ØØØ REMart: ***********************
13Ø1Ø DEFine PROCedure store
13020 REMark ***********************

l'Ø'0	 CLS
1'Ø4Ø	 AT 1,14 : PRINT "SAVE DATA"
13Ø5Ø	 INPUT\\" Name of data file:";filet
1 :ØhØ	 tf i l e#="mdvl " I' filea
1?070	 DELETE tfilet
1 3Ø80	 OPEN_NEW #8,"mdvl_" &< filea

13090	 PRINT#8,item
1_T•10Ø	 FOR í=0 TO item-1
1?110	 FOR j=0 TO 8
t312Ø	 F'RINT #8,a(i,j)
13 і 30	 NEXT j
13l4Ø	 NEXT i

13150	 CLOSE#8
13160	 redraw
13170 END DEFine store

Conllyi eii t ai y
Lines 13050— 13060: The module gives the user the chance to define the
name under which the data is to be stored. This ís only possible because the
QL allows us to use a string variable as a filename when talking to to the
microdrives.

•
Chapter 	 SonetLun ı ièгe

Line 13070: Since one object of the program is to be able to work on an
existing file, modify ít and store it again, we must be careful to remove any
files of the same name before attempting to store some data, otherwise the
program wí11 stop with an ALREADY EXISTS error message.

Line 13080: The microdrive ís instructed to create a new file (OPEN_
NEW), which wí11 be accessed along '*8', or channel 8, by the program.
The file ís to be on microdrive 1 and wí11 appear in the directory under the
name recorded in FILE$.

Lines 13090-13140: These lines simply print out the data stored in array,
not to the screen but to channel 8, which we have already informed the
operating system ís to be directly associated with the data file we have just
opened. Note that in storrig on microdrive ít is important to store the
number of items to be recorded as the first item. This allows the next
module, which recalls the data, to know how many items are to be picked
up. There are other methods, such as detecting the end of file marker, but
they are none of them as fast as knowing exactly how many items are to be
obtained.

Line 131St): In order to create a valid file, we must ensure that it ís properly
terminated. This ís done using the CLOSE comma ııd, which also frees
channel 8 for other uses.

Line 13160: Having corrupted the screen in storing the data, the design ís
recreated using REDRAW.

Module 2.1.14: Recalling the data

This ís a mirror image of the previous module, in allowing data on the
microdrive to be picked up and the design which it defines to be recreated.

Module 2.1.14: Lines 14000— 14160
***** *******************
F'ROCedure recall

14Ø4Ø	 AT 1,14 : PRINT "RECALL DATA"
14050	 DIR mdvl_
14Ø6Ø	 INPUT \\" Name of data file :";file?
14Ø7Ø	 OPEN_IN #8,"mdvl_" & filet
14ØRØ	 INPUT#8,item
14Ø9Ø	 FOR í=0 TO item-1
141ØØ	 FOR j=0 TO 8
l411Ø	 INPUT #8,a(i,j)
14l2Ø	 NEXT j
l41.'Ø	 NEXT í
14140	 CLOSE#8
14150	 redraw
l416Ø END DEFine recall

1 4 ØØ0 REMark

1 4010 DEFine

14Ø20 REMark

14Ø30	 CLS

54
	

5 5

п 1i t111'

!1!!1!!!1I

^ ''iі u11,,^^^

гг
°

	 -'till. u Π1 l,t^1111Ì Λ,

	

1111., uu π г
i^., η u^ φ

	 πΠ ^

	

^"""" İ 111111111
ь
	 ı if

The Working Sinclair QL Chapter 2 Soп et Lun гίère

Conn ınen fury

Lines 14050 – 14060: The directory for the cartridge currently in drive 1 is
displayed and the riser asked to specify which file ís to be used.

Line 14070: The name input by the user is used lo open an existing file
(OPEN_1N).

Lines 14090– 14140: The information which was stored by the last module
ís pulled off the drive ín exactly the same order.

Line 14150: The design whose details have been obtained ís placed on to the
screen using REDRAW.

Testing
Ensure that there is a properly formatted microdrive cartridge in drive 1,
tlı e ıı create a simple design and use `M' to store it. Stop the program, then
start ít again with DO 1 to clear the memory. Answer `Y' to the pron ı pt
asking you íf you wish to load from the microdrive. Give the name of the
file under which the design was stored and you should see the drive activate
and then the design recreated on the screen.

If this test is successful, the program ís ready for use.

PROGRAM 2.2: 3-D GRAPH

Program funclion

This program is intended as a timely warning against over-reliance on the
increasing tendency of major manufacturers to make their machines the
basis of a much broader package including software. Later in the book you
will find several examples of applications which could no doubt be simu-
lated using your Psion software, raising the question of whether you wish ı
to rely solely on what you are given or retain the ability to design for
yourself.

The current program ís hardly a complex one, but that is precisely the
point. In relatively few lines, ít succeeds in creating a visual display of
certain types of numeric iii formation which is far more striking than any-
thing which the excellent Easel package can produce. A full three-
dimensional graph effect is created by the elementary use of the turtle
graphics commands, giving a taste of the power they hold for more
complex applications.

New concepts introduced during the course of the program include:

1) Flexible use of DATA statements.
2) The turtle graphics commands.

56

1 і3 ι_i 1ј h•λ I Tѕ

Figure 2.2: Part of Display Generated by 3-D Graph.

Module 2.2.1: Sím р le line drawing

The beauty of the QL's turtle graphics ís the sheer simplicity which they
bring to the drawing of shapes, as indicated by this two-line module. Its
effect is to accept an instruction to draw a line in a certain direction for a
certain distance.

Module 2.2.1: Liııes 3000-3050
3ØØØ REMark *************************
3Ø1Ø DEFine FEUCedure turtle (angle,distance)
3Ø2Ø REMark *************************
3Ø3Ø	 TURNTO angle
3Ø4Ø	 MOVE distance
3Ø5Ø END DEFine turtle

Module 2.2.2: Describing a shape

Once it is possible to have a line drawn, ít becomes a relatively sin ı ple
matter to describe most shapes, whether two or three dimensional. The
current module lays down a three-dimensional block on the screen once a
number of variables have been defined.

Module 2.2.2: Lines 2000-2150
2ØØØ REMark *************************

2Ø1Ø DEFine F'ROCedure blocks

57

i
The Working Sinclair QL

2020 REMark *************** * * * ***
2030 LINE start_>:,start_y
2040 PENDOWN
2050 turtle	 180,wide
2Ø6Ø turtle 90,high
2070 turtle 0,wide
2080 turtle	 18Ø,wide
2090 turtle 30,deep
2100 turtle 0,wíde
2110 turtle 210,deep
2120 turtle 270,hígh
2130 turtle 70,deep
2140 turtle 90,hígh
2150 END DEFíne blocks

Commentary
Line 2030: Using the line command with a single set of coordinates moves
the graphics cursor, thus defining the start point for the shape to be drawn.

Lines 2050 —2140: The outline of the block. It is far easier to wait uiitil it is
displayed on the screen than to attempt to describe what is happening here.

Testing
A number of variables have to be defined and, in addition, it will be helpful
to modify the previous module temporarily in order to allow the shape
being drawn to be analysed line by line.

Enter a temporary line:

3045 tt$ = ínkey$(-1)

then type the following in direct mode:

high = 20[ENTERI
wide = 20[ENTER]
deep = 20[ENTER]
ink 7 : paper О : cls[ENTERI
start х =40[ENTF_R]
start_y = 401 ENTER'
blocks [ENTER]

You should see a single line drawn on the screen. Press a key and a second
line will be drawn. As you continue to press a key each time a line is drawn,
what you are seeing is the individual TURTLE instructions being carried
out by the previous module. When you have finished the test, don't forget
to remove the temporary program line at 3045.

Module 2.2.З :The data for the program
Most of the programs in this book, as you will discover, are interactive —

58

Chapter2 Son et Lшníère

that is to say, as they run they request information from the user and act
upon it. This is the ideal method for most purposes, but when limited
amounts of data are being processed it is quite possible that the amount of
programming involved in providing the interactive routines gets out of
proportion to the possible benefits.

One simple solution is to make use of the often neglected DATA
statement, which allows information to be recorded within the program
itself and recaptured by the program using the READ statement. The
advantage of this is that, once information has been recorded in DATA
statements, it can easily be saved with a program, or saved as a separate
section and later merged with the core of the program. It can easily be
displayed by use of nothing more complex than LIST and, of course,
changes to the data ca ıı be made by use of EDIT. The current module ís an
exaniple of how a DATA module can be laid out so that the information it
contains is easily recognisable.

Module 2.2.3: Lines 5000-5380
5000 REMark *************************
5010 REMark: data
5020 REMark *************************
50.20 :
5040	 REMark NUMBER OF COLUMNS (1-10)
5050	 DATA 10
5060 :
5070	 REMark NUMBER OF BANKS (1-4)
5000 DATA 4
50,0 :
5100 REMark NAMES FOR BANKS
5110	 DATA "Bank 1"
5120	 DATA "Dank 2"
5170	 DATA 'Bank: 2"
5140	 DATA "Bank 4"
5150 :
5160	 REMark NAME FOR VERTICAL AXIS
5170	 DATA "VERTICAL"
5180 :
5190	 REMark: MAXIMUM VALUE VERTICALLY
5200 DATA 100
5210 :
5220	 REMark: NO. OF MARl:ERs VERTICALLY
5230	 DATA 10
5240 :
5250	 REMark: NAME FOR HORIZONTAL AXIS
5260	 DATA "Horizontal"
5270 :
5280 REMark DATA FOR BANK 1
5290	 DATA 100,65,60,100,51,47,42,40,28,27
5300 :
5310	 REMark: DATA FOR BANK 2
5320	 DATA 60,58,56,52,51,47,41,35,29,22

59

i
The Working Sinclпir Ql.

5370 .
53340	 REMark: DATA FOR PANK

J'5Ø	 DATA 2,4,6,9,12,15,19,27,20,15
5760 :
5370	 REMark: DATA FOR ØAN К 4
5780	 DATA 2,4,6,9,12,15,19,27,20,15

Coinineiitaiy
Lines 5040-5050: The program as currently written is intended to deal
with between one and four rows of three-dimensional columns. According
to the number of columns in a row, the width of the individual columns will
be adjusted so that the full width of the screen is used.

Lines 5070 – 5080: One to four rows can be displayed, each being drawn in
front of the previous row. For this reason, the program is most suited to
applications where there is a fair guarantee that one set of figures will
contain values which are less than those of a previous set. An example of
this might be the turnover and profit of a company over a number of years,
where profit is always going to be less than turnover. If the front rows of a
particular display are going to be consistently higher than the back rows,
the hack rows will be effectively hidden and the display of very little use.

Lines 5100 – 5140: The names of the individual rows, or banks, will even-
tually be displayed at the botton of the screen in colours appropriate to the

four banks.

Lines 5160-5230: The name to be displayed against the vertical axis and
the maximum number of units it is intended to represent. Figures input for
the height of the individual columns will be expressed as a proportion of
this maximum figure. The user may specify the number of units into which
the axis is to be divided.

Lines 5250 – 5260: The name to be displayed against the horizontal axis of
the graph.

Lines 5280 – 5380: The data for the 4* 10 columns specified for the graph.

Module 2.2.4: Reading in the data

Having entered the data on which the graph will be based, we now turn to
the module which will convert that data into variables which will be used by
the drawing routines.

Module 2.2.4: Liiies 1000— 1280
1000 RENark ********^****************

1Ø1Ø REMark-: control
1020 REMark ** ***********************

1070	 PAPER Ø : CLS : CLS#Ø

1040	 RESTORE 5ØØ0

60

Chapter2 Son et Lumière

1Ø5Ø	 READ columns,banks
1Ø6Ø	 DIM baпК t(ban к:s-1,2Øl
1070	 FOR í=0 TO bankas-1
1Ø8Ø	 READ bank-S(í)
1Ø9Ø	 NEXT i

11ØØ	 RESTORE 5160
1110	 READ v axis1,v_max,v_marks
1120	 READ h axísT
11.70	 wide=lNT(100/columns)
1140	 deep=5
1150	 grid
1160	 RESTORE 5290
1170	 FOR bank=1 TO banks
118Ø	 start r=25-deep*bank+wide
1190	 start y=10-deep*(bank-1)/2
12ØØ	 FOR i =1 TO columns
1210	 READ high
1220	 high=high*80/v max
1270	 FILL 1 : INK bank +1 : blocks
1240	 FILL 0 ; INk. 0 : blocks
1250	 start x=start и +wíde+2
1260	 NEXT i
1270	 NEXT bank
1280 STOF

Coninientaiy

Lines 1050-1090: The number of columns and banks is read from the
DATA section and the names for the four banks stored in the array
BANK$.

Lines 1100 – 1150: The DATA relat ing to the vertical axis and the name of
the horizontal axis is read. The width of the individual columns is calcu-
lated so that one row of columns will span one hundred graphics locations
across the screen. The variable DEEP records the amount by which an
individual column will appear to go back `into' the screen. Finally the call
to GRID, the next module, will produce the framework within which tl ı e
eventual graph will be displayed. Note the RESTORE statement which sets
the READ instruction to the appropriate line for data. It is important,
when setting up your own graphs, that you do stick to the same sections
within the data module as shown in the current program. If less than four
banks are to be used, do not delete the spare lines and renumber or you may
confuse the acquisition of data.

Lines 1160-1270: These lines read the figures from the last section of the
data module, which represent the height of the individual columns. The
two loops ensure that the correct number of columns are created for each
hank in turn. The variables STARTX and STARТ Y are set for each
bank so that each row of columns will start lower down and to the left of its
predecessor. As each column is completed, START—X ís incremented so
that the row will be drawn from left to right.

61

The Work іпg SіпclairQL

Lines 1210— 1240: The figures for the height of each column are read and
recalculated so that they conform to the maximum value laid down for the
vertical axis. The line drawing routines are now called up twice. On the first
call the columns are drawn with FILL set and with a different colour for
each bank — the result is a rather featureless shape. The second call
switches off FILL and sets the INK colour to black. The result is that the
edges of the column are picked out in black, giving a three-dimensional
effect. As each column is completed, STARTS is incremented so that
the row is drawn from right to left.

Testing
The module can only he tested if the reference to GRID is deleted iii line
1150, since that module has yet to be entered, or if the first three lines and
the last line of the next module are entered so that there is a dummy pro-

cedure called `grid' for the current module to call up.
Once that has been done, simply run the program aiid you should see the

four banks of columns drawn on a black screen. in comparing the height of
the columns with the figures contained in the data module, remember that
the 3-D effect means that each bank is slightly lower than the previous one.
To find the true height of a column, you need to follow back its top surface
to the back row, since it is the front top edge of columns on the back row
which accurately represents the height of the column. This will be clearer
when the next module has been entered, giving a grid against which to

measure the columns.

Module 2.2.5: Drawing the grid for the graph
A simple module which draws lines across the screen at the intervals
specified by the user, and which labels the various axes.

Module 2.2.5: Lutes 4000 — 4200
4Ø0Ø REMark ıε эиэε ıиэии *** эиэи ** эε+t эε эıэиэε эиэt эε эε эε ıt
4Ø1Ø DEFine PROCedure grid
4Ø2Ø REMarI *************************

4Ø7Ø	 INК 7
4040	 vunitBa/v marks
4Ø5Ø	 LINE Ø,9b TO Ø,Ø TO 15Ø,Ø TO 150,96

4ØbØ	 FOR i =Ø TO v marks

4Ø7Ø	 LINE Ø,1Ø+í*v_unit TO 150,lØ+í*v_unit

4Ø9Ø	 NEXT í
4Ø9Ø	 AT 0,12 : PRINT v_max;" UNITS"

41ØØ	 v ar; i s$=v_ax i s$ & "
c	 *" ?, v_mark:s

4110	 FOR i =1 TO LEN(vaxist)

4120	 AT í-1, 7.5 : PRINT v_axisT(i)

62

41'0
4140
4150
4160
4170
4190
4190
4200

NEXT í
PRINT #Ø,tı axis4,
FOR i =Ø TO

OТ 	 #Ø,i,2Ø	 :	 INK
PRINT #Ø, Ьank$(í)

NEXT i
AT #0,1,0

END DEFine grid

#0,í

Chapter 2	 Soп e1 Lum ίèгe

+2

Testing
Running the program should now result i ıı the same display of columns,
but in this case properly labelled.

PROGRAM 2.3: SCREEN

Program function
This program is, in its original form at least, a triumph of technique over
comrnonse ııse. Its purpose is to provide a screen dump, or copy to a
printer, of the contents of the screen. This is not an over-complex task,
though the details can be a little fiddly. What it is, however, in BASIC, is

very time-consuming. The screen covers a lot of memory within the QL
(32K), and every byte — indeed every bit — has to he analysed before the
full screen dump is achieved.

One of the major problems is that micros and printers work in different
directions. The QL, like most other micros, records the contents of the
screen in the form of 8-bit bytes, with each bit in a particular byte repre-
seiiting one in a line of eight pixels across the screen (in the QL it isn't quite
this simple, but we'll go into that later). Printers, or at least the dot-matrix
variety, are usually capable of receiving a byte and interpreting it as an
instruction to print eight dots in a line — but vertically.

The result of all this is that, while the screen memory of the micro is held
in straightforward bytes and while the printer can be sent straightforward
bytes, the whole thing falls apart because, in order to print exactly what is
on the screen, the bytes in the micro's memory have to be sliced apart and
combined with parts of others. Consider the 64-pixel square in Figure 2.3.

00 01 Π2 Π3 04 05 Π6 07
10 11 12 1 З 14 15 16 17
20 21 22 23 24 25 26 27
30 31 32 33 34 35 3б 37
40 41 42 43 44 45 46 47
50 51 52 53 54 55 56 57
60 61 62 63 64 65 66 67
70 71 72 73 74 75 7б 77

Figure 2.3: 64-Pixel Squ пre.

63

INT(v_ma к /v_mark:s)

To a typical micro, the small block represented would be stored in the
form of eight bytes, the first recording pixels 00-07, the second 10-17,
etc. For a typical printer to print the area represented, the information
would have to be supplied in the form of eight bytes, the first recording
00 – 70, the second recording 01 –71 etc. In the case of the QL the situation
is even worse, since, rather than recording the information in easily-
addressable blocks of eight bytes, the QL's screen memory is arranged in
single-pixel t hickness lines right the way across the screen.

Even so, with proper analysis of the screen memory bytes, and time-con-
suming tral ıslatio ııs, any printer capable of bit-mapped graphics can be
made to print out a black and white copy of the screen. The only problem is
that, for most conceivable purposes, all the work of translation is entirely
unnecessary. My co-author on several other books, Mark England,
pointed out that íf, in terms o f tiıe 8*8 square of pixels printed above, the
printer were sent eight bytes containing 70-77,60-67,50-57, etc, it
would print out the square perfectly, except that the piece of paper would
need to be turned through 90 degrees. The resulting program takes one-
fifth the time to do exactly the same job, except that on some printers,
where the horizontal spacing between the pixels is different from the
vertical, the image may be squashed one way or another. For the sake of
completeness, both methods are included within the program, though you
are free to regard the first four modules as nothing more than an interesting
example of how to analyse the contents of an area of screen memory, and
accordingly omit them.

Tl ı e arrangement of screen memory on the QL

Before we go any further, it would be wise to take a quick look at the way in
which screens memory on the QL is arranged, since it is, like previous
Sinclair machines, a little eccentric and has a major effect on the way the
program has been written.

In essence, the QL's screen memory consists of 32К of memory (32768
bytes) which begins at address 131072. The screen which the user sees (on a
domestic TV) is 1024 pixels across, and a single line across of 1024 pixels is
represented by 128 bytes of consecutive memory. Thus a picture of screen
memory might look like this:

TOP LEFT	 TOP RIGHT
131072 	 131199
131200 	 131327

163584 	
163712 	
BOTTOM LEFT

163711
163839

BOTTOM RIGHT

The Working Sinclair QL
Chapter2 Son el Lu ııtiare

This, of course, is the whole screen, including the areas given over to the
border and to the *0 command lines at the bottom. The part normally
used by the program ís 896 pixels wide and 200 pixels high, and its start and
finish addresses are as follows:

TOP LEFT	 TOP RIGHT
133128 	 133239

BOTTOM RIGHT

But even this does not actually define the situation for there is no simple
one to one relationship between the bytes and the screen pixels, rather the
relationship varies according to the screen mode being employed.

In mode 8, the lower resolution mode, each group of eight pixels hori-
zontally has two bytes co ıı trollíng it. The two bytes dictate four char-
acteristics about each pixel in the group — whether their colour includes
green, red, and blue, and whether they are flashing. Elementary maths
leads to an obvious conclusion here. Two bytes contain 16 bits, so, using
two bytes, there is no way in which four facts can be recorded about eight
pixels, íe 32 facts. The solution to this is that in the lower resolution mode
the pixels are grouped in horizontal pairs, so that each characteristic
applies to two pixels in a group of four double pixels. Each two memory
bytes are arranged in the following manner:

BYTE 1	 BYTE2
PIXEL PAIR 1/2 3/4 5/6 7/8	 1/2 3/4 5/6 7/8

[GF] [GF1 [OF] [GF]	 [RB] [RB] [RB] [RB]

where F records whether FLASH is set for the pixel pair and C, R and B
record whether green, red and blue are included in its colour.

In high resolution mode, where the four available colours can all be
produced from two primary colours, and the flash characteristic is not
available, there are accordingly only two pieces of information to be
recorded about each pixel, and two bytes can deal with eight individual
pixels, rather than grouping them into pairs:

BYTE 1	 BYTE 2
PIXEL No.	 1 2 3 4 5 6 7 8	 1 2 3 4 5 6 7 8

[GI [CI 1G1 [GI [CI IG] [0][GI 	 [RI [RI [RI [RI [RI [RI [RI [RI

In the program which follows, we take advantage of this two-byte structure
to exclude certain colours from the screen dump, thus allowing a greater

158600 	
BOTTOM LEFT

158711

6564

The Working Sinclair QL Chapter2 Son et L иnnière

variety of background colours. The ever-present problem with screen
dumps is how to choose the basis on which a pixel is going to be regarded as
`set' and therefore printed — if all the colours are regarded as setting the
pixel, then only areas of the screen which are black (ie have no colour
whatsoever) will be left blank in the screen clump. For the sake of simplicity
I have chosen to look only at the second of the two bytes when choosing
pixels which will be printed. This means that in both low and high resolu-
tion, backgrounds (or lettering) of either black or green will be left blank
on the paper.

Module 2.3.1: Control
In use, this module would be altered substantially. in its present form, its
job is to fill the screen with a range of characters before calling up the
modules which carry out the screen dump.

Module 2.3. 1: Lines 12000— 12190
12000 REMar k ***************** *******
12010 DEFine PROCedure screen
12020 REMark: ************************
12O'Ø	 PAPER Ø : INK 7 : CLS : CLS#Ø
12040	 FOR i =1 TO 20
12050	 PRINT "*";FILL$(CHR$(47+í),35);"*"
12060	 NEXT i
12070	 CIRCLE 80,50,20
12080	 CIRCLE 80,50,40
12090	 REPeat check
12100	 INPUT #0,"OUICK: OR SLOW (0/0): ";Ut
12110	 IF O$ "q" OR 0$=" О " OR 0$="s" OR 0$="S"

THEN EXIT check
12120	 END REPeat check
12120	 CLS#0
12140	 OPEN #8,serl
12150	 PRINT #8,CHRS(27);"A";CHR$(9)
121&0	 IF 0$="s" DR OF="S" THEN line_start
12170	 IF 0$ "q" DR 0$="D" THEN lí пe_start_2
12180	 CLOSE #8
12140 END DEFine screen

Cominelltаl'y
Lines 12090 — 12120: These lines allow the user to specify which of the two
methods of dumping the screen is to be employed — see the introduction to
the program for further explanation.

Line 12150: Any screen dump program must be aimed at a specific printer
or printers and be capable of generating the specific commands needed by
that particular machine. The current program is intended for an Epson
FX-80 dot-matrix printer. This particular sequence of characters sets the
spacing between each line of characters printed at 8/72 of an inch, remov-
ing the small gap which is normally left between each line. If you are using a

66

different printer, you will have to consult your manual as to the correct
method of achieving this or, indeed, any of the special printer commands
contained within the program. If your printer is not capable of altering the
distance between lines, you will probably find that, when solid blocks
extend over two character lines, a thin white line will be seen.

Test ing

There is no effective way of testing any of these modules until the whole
screen dump routine is entered. The program is not a long one, so this
should not represent a major inconvenience.

Module 2.3.2: Stepping down the screen
The method in this first program section will be to scan the screen from left
to right in 8*8 pixel squares, thus allowing a block of eight bytes to be
translated for the benefit of the printer. Since the screen memory is
arranged in lines of one pixel thickness which cross the entire width of the
screen before beginning again on the next line down, not in neat 8*8 pixel
squares, the first need is to identify the start position in memory of each
line of 8*8 blocks.

Scree ıı memory for the central part of the screen starts at address
133128. To move eight pixels down the screen we have to move on 1024
bytes through the screen memory — eight lines, each 128 bytes long. The
loop which determines the start of each line of 8*8 pixel squares will there-
fore start at 133129 (re ınember that we are using only the second of each
pair of bytes) and move through the two hundred lines of pixels down the
screen in steps of eight lines (8* 128).

Module 2.3.2: Lines 4000-4090
4000 REMark *************************
4010 DEFine PROCedure line_start
4020 REMark *************************
4030	 FOR 1_start=123129 TO 133129+199*128 STEP

128*8
4040	 t$=""
4050	 read me
4060	 PRINT #8,CHR#(27);"L";CHR$(192);CHR#(1);
4070	 PRINT #8,t$
4080	 NEXT 1_start
4090 END DEFine line_start

Commentary
Line 4060: In the case of the FX-80 printer, the sequence CHR$(27);"L"
puts the printer into bit-mapped graphics mode. CHR$(192);CHR$(1) des-
cribe the number of items of data which the printer should expect to receive
before printing a line. This is set to 448 (192+256*1) because we shall be
printing one vertical byte for half the number of bits which represent the

б7

The (Forking Siпdair QL

width of the screen. The screen is 112 bytes wide, giving 8*56 vertical lines
to be sent to the printer before one line is complete. For other printers, you
will need to know what the sequence is to enter bit-mapped mode, and
whether they accept a block of data or print each vertical line as it is
received — consult your manual.

Line 4070: The string of characters which later modules have built up,
representing the first eight lines on the screen.

Module 2.3.3: Stepping across the screen
Having found the beginning of each block of eight lines, this loop scans
across the screen in steps of two bytes, thus selecting the second of the two
bytes which refer to eacl ı group of pixels.

Module 2.3.3: Lines 3000-3060
7.000 REMark *************************
3810 DEFine PROCedure read_líne
3020 REMark *************************
3030	 FOR start = 1_start TO l start+111 STEE 2
3040	 read dit
3050	 NEXT start
3060 END DEFíne read line

Module 2.3.4: Stepping through eight bits
We can now identi fy the position of a single byte in the screen memory but,
as we have seen, that byte is of no interest to the printer, which prints
downwards rather than across. Referring back to Figure 2.3, what we have
to do is to identify eight bytes which fall in a line downwards and then to
read the 64 pixels in the form of eight downwards bytes. The first step is to
set up a loop which reads through eight bit positions.

Modide 2.3.4: Lines 2000-2060
2880 REMark *************************
2010 DEFine PROCedure read_bit
2020 REMark *************************
2030 FOR bit=0 TO 7
2040	 read 8
2050	 NEXT bit
2868 END DEFine read_bit

Module 2.3.5: Translating from horizontal bytes to vertical
The final module required by this method takes one bit from each of the
eight bytes iii the block and creates a new byte out of them which is a
recording of one eight-pixel vertical line on the screen.

i
Chapter 2 Son et Lumière

Modu1e2.3.5: Lines1000-1080
1800 REMark эΡиэε эε * эε *** эε эиэε * эε эε эε * эьэε эε эε ** эε эε эε
1018 DEFine PROCedure read В
1020 REMark *************************
1025	 t_byte=0
1030	 FOR byte=0 TO 7
1040	 IF PEEK (start+byte*128) &&
1050	 t_byte=t_Ьyte+2--(7-byte)
1060	 END IF
1070	 NEXT byte
1075	 t$=t:t= & CHRŠ(tbyte)
1080 END DEFine read 8

Commentary
Line 1025: T_BYTE will be used to store the vertical byte as it is built up.

Lines 1040-1060: These lines use the && operator to discover whether a
particular bit is set i ıı each of the eight bytes which the loop shuttles
through. The effect of &&is to compare two numbers and to return a result
consisting of a number which has a binary `1' wherever both of the
compared numbers also have a binary `1'. Thus comparin ıg:

16 — 00010000 w/th 127 — 01111111

the result is 16, since that is the only bit which is set in both. To find out if a
particular bit is set within a byte, all we have to do is to compare 2'BIT
NUMBER with the byte. If the result is stillt"BIT NUMBER, then that bit
is set in the byte. The loop therefore shuttles down the eight bytes, using
these lines to detect which of the eight bits are set and adding the value of
the vertical byte. Note that though the memory is read from top to bottom,
the particular printer involved requires the pixels to be represented in the
opposite order, so the value added to the vertical byte is 2^(7 — BYTE), not
2"BYTE.

Li ııe 1075: Having run through the eight bytes and created one vertical
byte, the value of this is added to the string which will eventually be printed
out.

Testing
If you have an Epson FX-80 printer, or one of the many other types which
have a compatible set of commands, you are now in a position to type
SCREEN, call for a slow printout and see the demonstration screen created
and dumped to the printer. Be warned that this process will take some 20
minutes or more.

If you have a printer which is not compatible with the Epson command
set, I am afraid it is a matter of adjusting the printer commands contained
within the program to your own machine. Provided that you have a bit-
mapped graphics capability, however, this should not be difficult.

2 (7-bit)

68 69

•
The Working SinclairQL

Module 2.3.6: Stepping through the lines with the sideways
method
We now turn to the first of the two modules which produce a quicker
printout by turning the image sideways, thus reducing the amount of calcu-
lation to be done. I will not go into detail in the commentary on these three
modules, since they are far simpler to follow than those for the previous
mııethod.

The current module starts the program reading the bottom lefthand byte
of the screen. Later modules will dictate that each line is read from the
bottom of the screen to the top, a single line of bytes. Each new line will
start, therefore, on the next byte along the bottom of the screen, or rather
the next but one since we are only using every other byte. The bottom to top
lines are 200 bytes long but, as you can see from line 11060, the printer is
told to expect 400 bytes. This is because on the particular printer being
used, a better effect is gai ııed by printing each set of pixels twice.

Мodıјle 2.3.6: Lines 11000— 11090
11ØØØ REMark ************************
11Ø1Ø DEFine PROCedure line _start _2
1100 REMark ***********************
1lØ38	 FOR 1_start=158601 TO 158601+111 STEP' 2
11040	 t5="'
11050	 read Іјгі 2
11060	 PRINT #B,CHR#(27);"L";CHR$(144);CHR#(1);
11070	 PRINT #8,t$
11080	 NEXT l_start
11090 END DEFine line start

Module 2.3.7: Stepping up the screen
Having established the bottom of a line of bytes to be read, all that remains
is to step up the line, jumping 128 bytes each time and placing the byte
found into 1$ to be printed. In fact, as mentioned, the effect is better with
the FX-80íf each byte is printed twice.

Мodı^le 2.3.7. Lines 10000— 10060
10000 REMark ************************
10010 DEFine PROCedure readlíne_2
10020 REMark ************************
100'0	 FOR byte = 1start TO 1_start-199*128

STEP -128
10040	 tt$ & CHR$(PEEK(byte))

(byte))
10050	 NEXT byte
10060 END DEFine read_lí π e_2

70

•
Chapter 2 Son et Lumière

Testing

As with the previous method, but this time you will find that a column of
characters is printed across the screen every eight seconds or so.

Using the program
As it is presently set up, the program is no more than a demonstration of
the fact that a screen dump can be done. In use, it should be renumbered
with a high starting number and line i ııcrements of 1, so that it can be
merged in with the program from which you want a dump. When the
screen display is as you want it, either stop the program and enter `screen'
or call up SCREEN from within the program. Remember that the program
is designed to ignore green and black. if the colour combinations you have
chosen give problems, you will have to use the RECOL command to
achieve something which makes sense when translated into black and
white.

PROGRAM 2.4: CHARACTERS

Program function
Having looked at some of the high resolution capabilities of the QL, we
now turn to one slightly unusual aspect of using low resolution graphics —
a program to allow you to change the shape of the characters which the QL
prints on the screen. But before we go on to the program proper, a word of
explanation is needed about the way characters are created and printed on
the screen.

The QL's screen, in low resolution mode (mode 8), has space for 20 lines,
each of 37 characters, a total of 740 character spaces. In other words you
could print 740 separate items on the screen, though some of them would
be the same since the QL cannot generate 740 different characters at the
same time. That 740, however, is not the end of the story. If you were to
look closely at any character on the screen you would find that it is not
composed of solid lines, like the words you are reading now, but of dots. In
fact every one of the character spaces on the screen is made up of 64 dot
positions and it is combinations of these 64 dots which make up each char-
acter the QL can display. The letter `A', for instance, might be made up as
in Figure 2.4.

The dots which ııı ake up the characters are known as `pixels', which is
short for `picture elements', and they represent the smallest item which the
QL can handle on the screen, though], in mode 8, the QL will only handle
two pixels at a time.

Such complex shapes do not appear by chance, and it is clear that some-
where in the QL's memory it must be laid down that, when you press the

71

& CHR Σ(PEEK:

The Working Sinclair QL Chapter 2 Soi et Lumière

R' O61 1 - - > ! ј)

2 - - > ! іј i;	 0	 Γ1

3 --> ! 0 о i1	 iı
4 - - > ! Π 	 i: i: 	 Γ1 	 Γı 0>

5 --> ! Π ii

6 --> 1 ;:;	 iı Γ ı ii

7 - -> ! í^	 ii i1

н - - > !

Figure 2.4: Enlargement of Letter `A' as it might Appear On-screen.

key labelled `A', the pattern of dots shown in the illustration appears on
the screen. In fact, all the characters which the QL can print are stored in
the form of numbers, in the QL's ROM, an area called the `character
memory' or `character ROM'. Each character ís allocated nine bytes of
memory, and each of those bytes determines where the pixels shall appear
on one row of the character. This done by making the value of each byte
into a picture of the row in the binary numbering system used by the QL,
where numbers are expressed in terms of powers of the number 2 rather
than the number 10, as in our normal counting.

Thus, 201300 in our usual way of counting means:

(2*10"6)+(0*10'5)+(1*10"4)+(3*10-3)+(0*10"2)+(0*10"1)+(6*10-0)

In binary, however, the only digits allowed are `1' and `0', and a number
like:

11001010

means:

(2"7) + (2°6) + (2 - 3) + (2"1) — ignoring the zeros
A full understanding of binary is not necessary, provided that you

remember that a single byte of memory in the QL is capable of holding one
eight-digit binary number, and that all those ones and zeros are a perfect
way of recording which pixels i ti a single row of a character are switched
on. The letter `A', for instance, could be represented by the eight binary
numbers:

0 Π 0 1 1 0 0 0
0 0 1 1 l 1 0 0

0	 1 1 0 Π 1 1	 0
0	 1 i í 1 1 1	 0
0	 1 1 0 0 1 1	 0

0	 1 1 0 Π 1 1	 0

0	 1 1 0 0 1 1	 0

0 Π 0 0 0 0 0 0

If you look closely you can still see the `A' quite clearly, this time painted in
`1's rather than pixels, though you'd have a hard time recognising it as:

24,60,102,126,102,102,102,0

which is what the binary nun ı bers are when translated into our more com-
fortable decimal system of numbering.

The point of all this is that, when you call for a character to be printed on
the screen, the QL looks at the contents of the `character memory' and uses
what it finds there to draw the character on the screen.

It follows from all of this that if it were possible to change the contents of
the character memory, the shape of the characters printed on the screen
would also change. We could have customised lettering, new graphics
characters, anything at all which would fit into the basic 8*8 character
square.

The problem, however, is that the character memory ca;inol be altered.
It is part of the ROM, the `read only memory' which is permanently built in
to the QL. What we can do is to copy it to somewhere else in RAM, the kind
of niemory that can be changed, and then tell the ever-obedient QL that
that is where character details are now to be taken from. Having done that,
we can muck about with the character set as much as we like — and that is
the purpose of the following program.

'	 1 ::: ':1. '	 ј : 	
ј , јј ,:	 1:1' λ	 kï(:21...11'11	 :Cii:

I	 ι°1 I 	 λ 1:: 	 `: 3 iii jj :: 1 Γ 	 ј

11111111111111111

' 	 :1:	 '
Gí	 1. _ . [:j Y:; И :::	 1...1	 :1:	

Γ....1.. 	
liii

:1: 1	 1..!1:::1;,..1..

111111111111111111

'' ј 	 :C	 ј : ::	 r.	 ::: І
'' ј ''	 ј 	 t1

III 	 : 1 :1' λ 	 11	 11,11
II ii:	 l: i 1' λ 	 1"1	 :1	 ј 	 iii:: ι f^'

1....	 ' 1.... ı ;;;i Fr I C: i	
1.: C
	 Γ::η"1	 1"1	 :1:	 ς:::1 r	 C:	 1	 J 1 : г?	 :1: ..! Γ:

1 ::1 1 :::1111	 ј 	 ј 	 IIίï: C	 I ::::1 . .1 1 : : 1 1:;	
II I 	 ј 	 ј

	

1	 ј	 1 ... 11iíí: :1: 17;1...1..1..

	

1	 ј	 ι:1 :1: 11 1 	 t 1

	

Γ i:: ί ï ς:: F9^ :: 1íг í:	 ' 	 "^'C гг :C:' 1"'1 :1: 1' 1 ı 	 ^	 Cíí:

'' ј ''

Figure 2.5: Typical Display from Characters.
The display shows the screen during the character editing code, with a letter 'A'

which has been rotated by 180 degrees.

Module 2.4.1: Initialisation
A standard initialisation module, which also calls up the next module to
transfer the character data from ROM to RAM. Note, as in previous pro-

72 73

•
The Working Sinclair QL

grams, the provision to start the program without initialising, by entering
DO 0. This is particularly important in the case of the present program
because part of the initialisation process is the setting aside of an area of
memory to hold character data. If, having set up the reserved area, the
program is initialised again, more memory will be reserved.

Module 2.4.1: Lines 11000— 11060
11000 REMark ***********************
11Ø1Ø DEFine PROCedure initialise
11Ø2Ø REMark ************************
11030	 DIM аг ray(7,7)
11040	 ch=32 : key=0 : high=0 : wide=0
11050	 transfer
11060 END DEFine initialise

Module 2.4.2: Transferring the cliaracter set
This short module is all that is needed to transfer the entire character set for
*0 into RAM and then to set up all the variables necessary to switch the
QL's attention to it. The actual switching will be accomplished by the con-
trol nı odr ı le since there is no need to go through the whole process of trans-
fer if the program is stopped and started again. The ease with which the
whole process can be accomplished depends on the fact that the QL keeps a
record in RAM of where the character set is to be found. This register is set
up when the QL ís switched on but it can be changed to indicate another
start address.

Module 2.4.2: Lines 24000-24100
24000 REMark ************************
24010 DEFine PROCedure transfer
24020 REMark ************************
24Ø3Ø char reg=167722
24040 rom_start=PEEK_L (char _reg)
24050	 user_start=RESFR(875)
24060	 char_start=user_start+ll
24Ø7Ø FOR í=0 TO 875 STEP 4
24080	 POirEL user _start+í,PEEK_L(rom_start+i)
24090 NEXT í
24100 END DEFine transfer

Coninientaiy
Line 24030: This the address at which is found the two-byte register
recording the start of the character data for channel 0.

Line 24040: ROMSTART is set equal to the contents of the register so
that the program will (a) know where to copy the data from and (b) know
where to tell the system to find the original characters when the program
terminates.

•
Chapter 2 Sπn et Lumière

Line 24050: The RESPR command is used to achieve two things, the set-
ting aside of 876 bytes of memory in the space allocated to the procedures
and the setting of the variable USERSTART to the beginning of that
area. This ís the area which will be used to store the character data. The
characters which can be printed, and therefore which We can manipulate,
are 32 (space) to 127 (copyright symbol), 96 in all. Each of them requires
nine bytes to define, making a total of 864 bytes, plus 11 attached to the
beginning of the character set for internal housekeeping purposes. Note
that this allocation of memory is permanent in any one session. Loading
subsequent programs will leave the memory area reserved — to free it, you
must restart the system.

Line 24060: As indicated in the commentary on the last line, the first 11
bytes of the character data are of no use to us, so the actual cliaracters will
start at USERSTART plus 11.

Lines 24070-24090: The ROM character data is read, four bytes at a tune
using PEEKL and placed into the specially reserved area of RAM.

Testing
Type:

transfer[ENTERI
poke1 chaг_reg,userstart[ENTER]
print 123

If everything is well, you will see 123 printed on the screen in a perfectly
normal way, even though you have instructed the system to take its char-
acter data from the reserved area of RAM. Before colltinuing, it might be
wise to enter:

poke1 char_reg,romstart

to switch back to the ROM character set.

Module 2.4.3: Displaying a magnified character
The essence of this program is that it will make it easy to edit characters.
One way in which this is achieved is by printing an enlarged version of a
specified character so that a cursor can be moved around it. This module
allows the character to be specified and then prints it.

Module 2.4.3: Lines 12000— 122 70
12Ø0Ø REMark **************** *******
12010 DEFine PROCedure grid
12Ø2Ø REMark **************** *******

74
	

75

The Working Sinclair QL Chapter 2 Son et Lumière

12030	 REPeat screen
12Ø4Ø	 ín$=""
12050	 PAPER 4 : CLS
12060	 PAPER 3
12Ø7Ø	 FOR í=Ø TO 7
12080	 AT í,ß : PRINT "
12Ø9Ø	 NEXT i
121Ød	 PRINT FILL$(" ",9)
12110	 FOR i=0 TO 7
12120	 byte=PEEK(char start+(ch-32)*9+í)
12130	 FOR j=7 TO θ STEP -1
12140	 array(í,7-j)=(2"j=(byte
12150	 NEXT j
12160	 NEXT í
12170	 redraw
121ßØ	 INY. 0 : PAPER 4
12190	 AT 12,1 : PRINT 'CHARACTER NUMBER: ";ch
12200	 INPUT\\" NUMBER TO MOVE (O=REDEFINE): ";q$
12210	 ch=ch+q$
12220	 IF ch32 THEN ch=32
122_0	 IF ch?100 THEN ch=100
12240	 IF q$="0" THEN change
12250	 IF key=27 THEN EXIT screen
12260 END REPeat screen
12270 END DEFíne grid

C0111/11ent ΠΓ '
Lines 12060— 12090: The outline of an 8*8 box is printed in the top left-
hand corner of the screen, using inverse spaces. The character itself is
defined on an 8*9 (9 bytes of 8 bits) grid but one of the lines is reserved to
maintain the spacing between characters, so we shall work with only eight
lines.

Lines 12110— 12170: These two loops scan each of the binary digits of each
of the eight bytes recording the character shape. The variable СН records
the number of the character to be extracted — in the INITIALISATION
module it is set to 32, or space, the first of the characters in the set. The &&
operator is used to determine whether a particular digit is `1' or `0'.

In the program itself, the value of the loop variable J is used to create the
eight powers of 2 which can be contained in a single byte and then to test
whether they are present in the byte being examined by use of &&. If a ` I' is
found, then the corresponding element of ARRAY is set to 1, indicating
the presence of a set pixel. Eventuall y , the next module REDRAW will be
used to draw the picture contained in ARRAY within the box, with an
inverse space where there would be a pixel — if not, a space is printed. In
this way an enlar ged version of the character shape recorded in the bytes is
printed.

Liiies 12200 — 12230: You can change the character on display by adding to
or subtracting from the value of СН , within the range of character codes

76

from 32 to 127. To move on to another number simply enter a number to
add or subtract from the current value of СН (eg 10 or — 10).

Testing

This must wait for the entry of the next module, which is used to draw the
enlarged character.

Module 2.4.4: Drawing (lie shape

Nothing complex here, simply a matter of printing a black space in the
appropriate position for every element which is set to 1 in ARRAY.

Module 2.4.4: Lines 15000-15120
15ØØØ REMark ************************
15010 DEFíne PROCedure redraw
15020 REMark ************************
15030 FOR í=0 TO 7
15040	 FOR j=0 TO 7
15050	 AT i,j
15ØbØ	 PAPER 4
15Ø7Ø	 IF array(í,j)=1 THEN PAPER 0
15Ø8Ø	 PRINT " "
15Ø9Ø	 NEXT j
15100	 NEXT í
15110	 PAPER 4
15120 END DEFine redraw

Testing

You can now make a proper test of what you have entered so far. Make
sure the program is initialised, run the test suggested for the TRANSFER
module and then type:

grid[ENTERI

You should see the square drawn and the prompt for an input displayed.
By entering positive or negative numbers you should be able to page
through the available characters, seeing them displayed in large format on
the screen. As with TRANSFER, it would be wise to move the character set
back into ROM before proceeding.

Module 2.4.5: A flashing cursor

This is a straightforward module similar to the one you entered in De-
signer. The only real difference is that here what is being flashed is simply
an asterisk.

77

&& 2" j))

•
The Working SinclairQL

Module 2.4.5: Lines 14000 — 14140
14ØØ0 REMark
14010 DEFine
14020 REMark
14030	 REPeat loop
14040	 OVER -1 : INK 4
14Ø5Ø	 AT yl,x1 : PRINT
14Ø6Ø	 FOR delay=l TO 20 : NEXT delay
14Ø7Ø	 AT yl,x1 : PRINT "*"
14Ø8Ø	 FOR delay=l TO 20 : NEXT delay
14090	 ín$=INK:EY$(1)
141ØØ	 INK: Ø : OVER Ø
14110	 IF ín$<.>"" THEN EXIT loop
14120	 END REPeat loop
14130	 key=CODE(in$)
14140 END DEFíne flash_test

Conllnentaÿ
Line 14130: It may seem odd to take the code of a string character to work
on, but this deals with a major problem encountered on my particular
version of the QL, and that is the inability to distinguish between char-
acters whose codes are 160 apart. Tests for cursor characters and function
keys are rendered a nonsense, since they also pick ordinary characters with
codes 160 less than the characters being tested for.

Testing

Type:

xl =0: y1 = 0IENTERI
flash_testIENTERI

and you should see a flashing `*' in the top lefthand corner of the screen.
Press a key and the program will stop.

Module 2.4.6: Entering commands

This module combines to present a menu, to move the flashing cursor, to
ink in or erase the magnified pixels and to accept commands to manipulate
the current character. Instructions for its use are contained in the menu
itself.

Module 2.4.6: Lines 13000— 13600
13000 REMark
13010 DEFine
13Ø20 REMark
130З0	 x1=0 : x2=0 : γ1 =0 : y2=0
13Ø40	 AT 10,0 : CLS 2
13®50	 OPEN #4,scr

78

•
Chаpter2 Son et Lumière

130bØ	 WINDOW #4,320,240,160,16
13Ø7Ø	 PAPER #4,4 : INK #4,0
130ØØ	 AT #4,1,0
l309Ø	 PRINT #4,"'F1' INK IN SQUARE"
13100	 PRINT #4,"'F5' BLANK SQUARE"
13110	 PRINT #4,"'B" BLOCK SHIFT LEFT"
13120	 PRINT #4,""I" INVERT"
l З l ЗB	 PRINT #4,"'M' MIRROR"
l314Ø	 PRINT #4,"'T' TURN"
13150	 PRINT #4,""P' PLACE IN MEMORY"
13160	 PRINT #4,"'S' SAVE ON MICRODRIVE"
13170	 PRINT #4,"'L' LOAD FROM MICRODRIVE"
13180	 PRINT #4,"'A" ANOTHER CHARACTER"
l319Ø	 PRINT #4,"'H' CSIZE HEIGHT"
13200	 PRINT #4,""W' CSIZE WIDTH"
13210	 PRINT #4,"'ESCAPE' TERMINATE"
13220	 PRINT #4,"CURSOR ARROWS TO MOVE"
13230 CLOSE #4
13240	 REPeat keys
13250	 AT 12,0 : PRINT "
13260	 PRINT "
13270	 CSIZE wide,high
13280	 AT 12/(high+1),4 : PRINT CHR$(ch)
13290	 CSIZE 0,0
133ØØ	 flash test
13310	 IF xl >B AND key=192 THEN xl=x,1-1
l332Ø	 IF x1<7 AND key=200 THEN x1=x1+1
13330	 IF y1>Ø AND key=208 THEN у 1=у 1-1
l334Ø	 IF yl<7 AND key=216 THEN y1=y1+1
13350	 IF key=232
13360	 array(y1,x1)=1
13370
	

AT y1,x1 : PAPER 0 : PRINT "
13380
	

END IF
13390
	

IF key=248
13400	 array(yl,xl)=0
13410
	

AT yl,xl : PAPER 4 : PRINT
13420
	

END IF
13430
	

SELect ON key
13440
	

ON key=66 : block_shift
13450
	

ON key=7.3 : invert
13460
	

ON key=77 : mirror
l347Ø
	

ON key=84 : rotate
13480
	

ON key=BØ : memory
13490
	

ON k:ey=72 : high=l-high
1 з5nn	 ON key=87 : wide=wide+1-4*(wíde:>2)
1-3510
	

ON key=83 : store : EXIT keys
13520
	

ON key=76 : recall : EXIT keys
13530
	

ON key=65 : EXIT keys
13540	 ON key=27
13550	 POKE_L char_reg,romstart
13560	 EXIT keys
13570	 END SELect
135ßØ	 PAPER 4
13590	 END REPeat keys
13600 END DEFine change

79

PROCedure flash_test

PROCedure change

•
The Working S ίnг(aίг QL

Commentary
Lines 13060– 13230: The menu for the program is printed in a WINDOW
opened to the riglı thand side of the screen. This has the advantage of
making it easier to position the items in the menu without having to use AT,
but also ensures that the menu will not become corrupted by changes made
to the character set. All we are editing with this program, remember, is the
character set for if 0— opening a new window called it 4 means an unaffec-
ted character set.

Lines 13250– 13290: The current character is printed underneath the 8*8
square, in the current character size. Since it is printed on the normal
screen, #0, if its configuration in memory is changed, its appearance will
change.

Lines 13310-13340: These lines detect the use of the cursor keys and alter
the coordinates of the flashing cursor.

Lines 13350– 13420: The tests for the two function keys F1 and F5.

Lines 13490– 13500: Pressing the H or W key shuttles through the legal
values for the CSIZE command. The reason for allowing the user to
change the CSIZE of the character displayed by lines 13250– 13290 is that
the QL interprets character data differently according to the CSIZE of the
character — setting pixels in columns 1, 7 and 8 has unpredictable results.
When designing a character to be used at a larger CSIZE than 0,0 the Hand
W keys should be used to view it at the appropriate size.

Line 13540: If the program is terminated properly, through the menu, the
address of the ROM character set is POKEd back into the register which
tells the QL where to look for character data. It is important to terminate
the program only through the menu, since otherwise running the program
again could result in the system becoming confused as to the correct value
for ROM—START and so on.

Testing
Start the program with `grid' and select a character. When it has been
drawn you should be able to enter `0' and see the menu displayed. You
should be able to move the flashing cursor around the square without
corrupting it. Pressing the function key Fl will ink in a new pixel, while F5
will erase one. None of the other commands, with [lie exception of `A' to
return to the previous module, will have any effect apart from stopping the
program with an error message. Note that throughout the use of this menu,
only capital letters will be accepted as inputs, lower case letters will have no
effect.

r
Chapter2 Sπn et Lumière

Module 2.4.7: Creating an inverse character

We now turn to a series of modules which make the task of editing a char-
acter a little easier by performing operations on the whole character, like
turning it into its mirror image or rotating it through 90 degrees. The cur-
rent inoduule simple creates an inverse of the existing character by swapping
all the ones and zeros in ARRAY and then calling REDRAW. Any pixel
which was set will be erased, and any position which was blank will have a
pixel printed in it.

There is a difficulty about using this module, however. Although the
program gives you the ability to edit the character on the 8*8 grid, bits 7, 1
and 0, that is to say the leftmost and two rightmost columns, are not used
by the QL for the character. Setli τıg pixels in these columns can lead to
unpredictable results when the character is displayed, with chunks of it
disappearing completely. This needs to be remen ıbered when inverting
characters, which will usually mean inking in all the pixels in those
columns. Unless you are looking for special effects, you may want to go
through the character after inversion, clearing columns 1, 7 and 8.

Module 2.4.7: Lines 1 7000 —1 713 0
17000 REMark ************************
17Ø1Ø DEFíne PROCedure invert
17Ø2Ø REMark ************************
17Ø3Ø	 FOR í=0 TO 7
17Ø4Ø	 FOR j=0 TD 7
17050	 IF array(í,j)=0
17Ø6Ø	 aг ray(i,j)=1
17Ø7Ø	 ELSE
17Ø8Ø	 array(i,j)=Ø
17Ø9Ø	 END IF
l71Ø0	 NEXT j
17110	 NEXT i
17120	 redraw
17130 END DEFine invert

Testing
Start the program with `grid' and enter the edit mode. When the menu is
displayed, press `I' and you should see an inverse character created. Now
press `I' again and the character should be restored to normal. Note that
this only refers to the magnified character — not tl ı e normal-sized one to
the right of the 8*8 square. The normal-sized character will only change if
you decide to enter your edited character into memory using a later
module.

Module 2.4.8: Copying the array
Before we go on to the other routines to manipulate a character, we shall
need this one which copies an array called TEMP into ARRAY. TEMP will

80 81

The Working Sinclσir QL Chapter 2 Son et Lumière

be used as a ten ı po' ary storage place when manipulations are being made
on ARRAY.

Module 2.4.8: Lines 16000 —16080
1b0Ø0 REMark ************************
1bØ1Ø DEFine PROCedure array copy
1bØ2Ø REMark ************************
1b03Ø	 FOR i=0 TO 7
l6Ø40	 FOR j=0 TO 7
16050	 array(i,j)=temp(i,j)
16ØbØ	 NEXT j
1bØ7Ø	 NEXT i
1bØ8Ø END DEFine array_copy

Module 2.4.9: Creating a mirror image
This module takes the character displayed and 'turns it over' as if it were
being viewed in a mirror. Unlike the INVERT module, which operated
directly on ARRAY, this one uses the array TEMP to store the result until
the transformation is completed. The reason for this is that when moving
items around within the 8*8 square, the program would be overwriting the
ori ginal contents and so would be come confused as to what had to be

moved and what had already been moved.

Module 2.4.9: Lines 18000— 18130
18Ø0Ø REMark ************************
1BØ1Ø DEFíne PROCedure mirror
18020 REMark ************************
18030	 DIM temp(7,7)
18040	 FOR i=0 10 7
18050	 FOR j=0 TO 7
18060	 IF array(i,j)=1
18070	 temp(í,7-j)=1
l8Ø80	 END IF
18Ø9Ø	 NEXT j
18100	 NEXT i
l811Ø	 array_copy
l812Ø	 redraw
18130 END DEFine mirror

Coiıııııeıı tary
Lines 18060— 18080: The lines which are being read from left to right in
ARRAY are copied into TEMP from right to left. Note that there is only a
need to copy the elements set to 1, since TEMP was filled with zeros when it
was dimensioned at the beginning of the module.

Testing
Start the program with 'grid' and call up the editing menu. Press 'M' and,

after a pause while the character is being copied into the array, you should
see it printed in mirrored form.

Module 2.4.10: Turning a character
If you think of the character you are editing as being printed on a sheet of
transparent plastic, then apart from holding it at an angle, everything you
could do with that plastic sheet can be accon ı plished by a combination of
mirroring the character and/or turning it through 90 degrees one or more
times. The current module again uses the arra y TEMP, but this time to turn
the character in the 8*8 square 90 degrees anti-clockwise.

Mod ı lle 2.4.10.• Lines 19000-19130
l900Ø REMark ************************
19Ø1Ø DEFine PROCedure rotate
19Ø20 REMark ************************
1 аза 	 DIM temp(7,7)
19040
	

FOR í=0 TO 7
19050
	

FOR j=0 TO 7
19Ø6Ø
	

IF array(i,j)=1
19070
	

temp(7-j,i)=1
19080
	

END IF
19Ø9Ø	 NEXT j
19100
	

NEXT í
19110	 array_copy
1912.0	 redraw
19130 END DEFine rotate

Coin mCommentary

Lilies 19060 — 19080: Rotation is achieved by reversing the two coordinates
I and 1 when an element is copied into TEMP, and also inverting J so that
7 — J is used.

Testing

Start the program with 'grid', call up the editing menu and then press 'T'.
After a pause, the character will be reprinted, turned through 90 degrees. If
you press 'T' three more times, the character should be restored to its origi-
nal position. Try experimenting with combinations of mirror, turn and
inverse until you are familiar with their effects.

Module 2.4.11: Shifti ıı g a character left
One final simple operation is provided by tins module, which allows a
character to be shifted to the left by one positio ı . if pixels move off the
lefthand edge of the square, they reappear at the right. I ıı fact, by rotating
the character before it is shifted and then rotating it again, characters can
be shifted in any direction within the square.

82 83

•
The Working Sinclair QL

Module 2.4.11: Lines 20000-20130
20000 REMark ****************** ******
20010 DEFine PROCedure block shift
20020 REMark: ************************
2øø30	 DIM temp (7,7)
20040	 FOR í=0 TO 7
20050	 FOR j=u TD 7
20060	 IF array (i,j)=1
20Ø7Ø	 temp(í,j-1+8m(j=u))=1
20080	 END IF
20090	 NEXT j
20100	 NEXT i
20110	 array_copy
20120	 redraw
2Ø1'Ø END DEFine block shift

Module 2.4.12: Enteri ıı g an edited cliaracter into memory
So far, you have been able to manipulate the magnified character in the 8*8
square until it perhaps bears no relation to the original pattern. All of this,
however, has made absolutely no difference to the normal-sized version of
the character which is printed underneath the 8*8 square. The changes you
have made have not yet been entered into the character memory and they
will not be entered until you are satisfied with what you have created. Once
you have arrived at what you want, however, this module will make the
pattern in the square into part of your customised character set.

Module 2.4.12: Lines 21000-21100
21000 REMark ************************
2101 й DEFine PROCedure memory
21Q20 REMark: ************************
21Ø3Ø	 FOR i=0 TO 7
21040	 byte=0
21050	 FOR j=0 TO 7
21060	 byte=byte +
21070	 NEXT j
21Ø80	 POKE char_start+(c η -32) *9+i,byte

21090	 NEXT i
21100 END DEFíne memory

Com merrtary
Line 21060: The effect of this line is to take a position it ı which there is a `1'
in ARRAY and to translate it into a binary digit in a ııııınber which will
represent the row of eight elements, zeros and ones, in which it líes. Each
element set to 1 will represent a power of 2 in the same way as when we
earlier analysed how a binary number could be used to represent one line
across the character. When each of the eight lines has been translated into a
nu ııı ber, it is POKEd into the character memory at a position correspond-
ing to one of the lines across the current character.

•
Chapter 2 Son et Lu ıniere

Testing

Start the program and move the character pointer on to character 65,
which is the `A'. Move into edit mode and turn the character twice — if you
turn it only once and store it in meniory you will turn the letter A into two
dots, since the top of the letter will be in the forbidden lefthand column.
Now press `P' and watci ı the screen. The `A' beneath the 8*8 square is
transformed so that it is turned on its side. The QL is taking its character
í ıı for ı cation from your custoinised set. It is wise to remember, when edit-
ing characters, that unless you waiit customised lettering, it is often best to
edit either upper or lower case letters only. Making too many changes to
letters and numbers can result in a situation where you can no longer
understand what the program is saying to you!

Module 2.4.13: Storing the character set
Having edited the character set, we now want to be able to keep it so that it
may be used in future, otherwise the whole exercise is rather pointless. T1 ı is
module stores your custoinised characters on microdrive. The n ı odule is
simpler than that employed iii many other programs, since what we are
saving is an easily identifiable block of memory and it can be sent to the
microdrive with the simple use of SPYTES.

Module 2.4.13: Lines 22000-22090
22000 REMark ************************
22010 DEFíne PROCedure store
22020 REMark ************************
22030 CLS
22Ø4Ø	 AT 1,14 : PRINT "SAVE DATA"
22N5Ø	 INPUT\\" Name of data file:";file$
22060	 tfile$="mdvl " & file$
22070	 DELETE tfíle$
22080	 SPYTES "mdvl_" & fíle$,user_start,876
22090 END DEFine store

Testing

Having edited a few characters and placed them into memory, call up this
module to save them on to microdrive. The only check at this moment is
that the nodule executes without producing any kind of error. After the
next module has been entered you wí11 be able to reload the character set to
check that it has been properly stored.

Module 2.4.14: Reloading a character set
Having stored the character set on disk, this module performs the task of
reloading the character data, using [BYTES. Note that, in order for this

2(7- ј)* (аггау (і , ј)=l)

8584

в
The Working Síпclа iг QL

module t о work, the value of USER_START must have been set. This is,
of course, done automatically in the present program but, once you have
designed a customised character set, you will want to be able to load it back
into menıory for the use of other programs. This module wí11 do the job for
you, provided that you have chosen the place in memory where the char-
acter data ís to go, using RESPR.

Module 2.4.14: Lines 23Π00 — 23080
23øØ0 REMark ********************* ***

23Ø1Ø DEFine PROCedure recall
23020 REMark ************************
23Ø3Ø ELE
2Ø4Ø	 AT 1,14 : PRINT "RECALL DATA"
23050	 DIR mdvl_
23Ø6Ø	 INPUT\\" Name of data file:";file$
23070	 LPYTES "mdvl_" t. file#,user_start
23ØØØ END DEFine recall

Testing

You should now be able to reload the character set which you SAVEd as
part of the test of the previous module by pressing `L' in the character edit
mode. Before you reload what you have just saved, do ensure that you are
back with the normal (unedited) character set or it wí11 be impossible to tell
whether different characters have been loaded from disk.

Module 2.4.15: Tlı e control module

A standard module.

Мod ı і le 2.4.15: Lines 10000-10090

1ØØØØ REMark ************************
1ØØ1Ø DEFine PROCedure do (fresh)
1ØØ2Ø REMark ************************

10030	 CLS : CLS#Ø
1ØØ4Ø	 OVER 0
1ØØ5Ø	 IF fresh=l THEN initialise
1ØØ6Ø	 PEWE_L char _reg,user_start
1ØØ7Ø	 grid
10Ø8Ø	 STOF'
1ØØ'Ø END DEFine do

Testing
The whole program should now be available to you. In addition, íf every-
thing works satisfactorily here, you wí11 know that you are safe to lift
modules out to enable you to employ customised characters in other
programs.

Chapter 2 soπ e!Lun ı ière

PROGRAM 2.5: SOUND DEMO

Program function

Sound Demo, consisting of two modules, can hardly be dignified with the
name of a program. It is a tool, designed to allow you to explore the QL's
rather confusing set of sound commands and to get the most from them. I
have refrained from giving advice as to the way the sound parameters can
be be set for the simple reason that, like the writers of the QL manual who
simply advise experiment, I have found diem not to be consistent in their
effects. With Sou ııd Demo, however, you wí11 at least be able to experiment
with ease, rather than continually enter the relatively complex BEEP
corn iii and.

bC:LlNCi DEMGN-^_•TF' ŇT I ґг fλ
C i7 Г1r1Ň hλ D b AIIA I L ŇE:LE :

`--: t с. р ci .a
г». t._

R I. t á -^ F. i . t .= fı 1
Ň I. t .-r p í , t _ Nı '
Ň t.a,,- rλΓ ^Cλ d . е,,- t
H I. t.? Y- r,λ Γ-- C7.d i. ~ Γi t ..^.
Ň I. +е, 1 - i Γ' C7 ρ
Ň І. t._^-- f'u^-.
Ň I. t .±r- г- ci r, ci,-,
_: t .:.P rı c, t F

F' i. ±+_řif =5	 Pt tг-η2-5
GиcчrJ Х= ίı 	 Gм'гıιi "i' =ε̂
tJr CJp = Eı	 t u<--^ _ E+

. : Pюs Cчd ιηΛl=Г-y-y ..
	 ..	 .

Figure 2.6: Screen I) ispiay fromn Sound Demo.

Module 2.5.1: Displaying parameters

The module is designed to clear an area of screen towards the bottom and
to pri ıı t out a clear display of the current settings of the various sound
parameters. The variables on which it functions will be explained during
[lie course of the commentary on the next module.

Module 2.5.1: Lines 2000 —2100
20ØØ REMark *************************
2Ø1Ø DEFine F'ROCedLıre parameters
2Ø2Ø REMar); *************************
2Ø'Ø	 ALOCk: 448,45,Ø,t55,4
2Ø4Ø	 F'APER 4 : INK:: Ø
2Ø50 	AT 1b,ø
2060	 F'RINi, "Pitcht= ";tp1,"F'itch2=";tp2
2Ø7Ø	 PRINT,"Grad X = ";tgl,"Grad Y=";tg2

86 87

a
The Working Sinclair QL

20ßO	 PRINT,"Wrap = '; ter, 'Fuzz = ";tfu
2090	 PRINT,"	 Fandom=";tra
2100 END DEFine parameters

Module 2.5.2: A menu for experimenti ııg
Tlus is the main module, which is desig ııed to present the user with a range

of choices as to the ı lote characteristics to be changed and to allow the

sounding of the results.

Module 2.5.2: Lines 1000— 1610
1000 REMark ********
l01Ø DEFine PROCedure demo
1020 REMart: ************************

10'0	 p1=5 . p2=5 : g1=0 : g2-0
1040	 wr=0 : fu=0 : ra=Ø

1050	 tpl=pl : tp2=p2
1060	 tgl=gl : tg2=g2
1070	 twr=wr : tfu=fu : tra=ra
1080	 PAPER 2 : CLS
1100	 PAPER 0 : I Nk:. 7
1120	 AT 0,9 : PRINT "SOUND DEMONSTRATION"

1170	 PAPER 2
1140	 PRINT\"COMMANDS AVAILABLE:"

1150	 PRINT\"	 0) Stop demo"

1160	 PRINT "	 1) Sound note"

1170	 PRINT "	 2) Alter pitch 1"

1180	 PRINT "	 2) Alter pitch 2

1190
1200
1210
1220
1220
1240
1250
1260
l27Ø
1280
1290
1300
1310
12215
1 370
1340
1350
1760
1._T•7Ø
1380
1390
1400
1410
1420
1 430

88

Chapleг2 Soп e! L ıιııı ière

1440	 INFUT#0,"PITCH 1: ";p1
1450	 ON q=3
1460	 INFUT#0,"PITCH 2: ";p2
1470	 ON q=4
1480	 INFUT#0,"GRADIENT X: ";g1
1490	 ON q=5
1500	 INFUT#Ø,"GRADIENT Y: ';g2
1510	 ON q=6
1520	 INFUT#0,'WRAP (1-15): ";wr
1530	 ON q=7
1540	 INPUT#0,"FUZZ (0-15):";fu
1550	 ON q=8
1560	 INFUT#Ø,"RAND (-32768 to 32767):

ra
1570	 ON q=9
1580	 BEEF'
1590	 END SELect
1600	 END REPeat response
1610 END DEFine demo

Coinnieiit(ny

Lines 1030— 1040: The initial settings for the demonstration. P1 and P2
are tlıe two pitches. G I, G2, WR, FU and RA refer to GRADIENTS 1 and
2, WRAP, FUZZ and RANDOM.

Lines 1050-1070: The variables beginning with T represent temporary
copies of the active parameter settings.

Lines 1080— 1240: There is only one main screen for the demonstration.
This menu re ııı ains in the centre of the screen at all times.

Lines 1280 — 1310: Since there are only 10 choices on the menu, they can all
be accessed with a single key press, using INKEY$.

Lines 1340— 1360: Pressing `0' results in the current note being silenced and
the demonstration terminating. If you stop the program using CTRL/
SPACE the current note will continue to sound until you enter BEEP.

Lines 1370-1420: Pressing `1' results in the note defined by the current
parameters being sounded. The temporary copies arc made at this point
because the other program functions, which allow [he note parameters to
be changed, do not immediately affect the note being sounded. It is pos-
sible to change every parameter without changing the sound of the note
until `1' is pressed again. The tenıı porary variables record the parameters
actually being played, while the main variables may have been changed.

Lines 1430-1560: Pressing `2' to `8' gives the user the opportunity to
change one of the parameters.

Lines 1570 — 1580: Pressing `9' silences the current i ıote without terminat-
ing the program.

89

PRINT "	 4) Alter gradient X"
PRINT "	 5) Alter gradient Y"
PRINT "	 6) Alter wrap"
PRINT "	 7) Alter fuzz"
PRINT "	 8) Alter random"
PRINT "	 9) Stop note"
REPeat response

CLS#0
parameters
REPeat number

q$=INКEY$(-1)
IF q$> = "Ø " AND qi(=9 THEN EXIT number

END REPeat number
q q Г
SELect ON q

ON q=0
BEEP
STOF'

ON q=1
BEEF' 0,p1,p2,g1,g2,wr,fu,ra
tpl=pl : tp2=p2
tgl=gl : tg2=g2
twr=wr : tfu=fu
tra=ra

ON q=2

The Working Si»clair QL
	

Chapleг2 Soп e Г L ιι nгίère

Testing
The only way to test the program is to play with it by entering `demo' and
messing around with parameters. in practice, i renumber Sound so that it
will fit in with the next program, Music. This allows me to try out different
combinations of parameters before they are entered into a tune to be
played.

PROGRAM 2.6: MUSIC

Program function
We have already noted, in the comments on the last program, that the QL's
sound commands are complex and a little con fusing. The purpose of Music
is to take the effort out of the programming of simple tunes by allowing the
user to specify musical ıotation in an easily understood format, making
full use of the various controls possible over the notes produced. The pro-
gram adopts a 'hvo pass' approach, first processing the tune specified and
translating it into a series of ıiurnbers, then using the numbers themselves
to activate the BEEP command. The advantage of this method is that

ı usic can be played more quickly, without gaps creeping in when large
numbers of short notes are to be played.

Module 2.6.1: A table of note values
Musically, microcomputers can be divided into two categories: those
whose sound commands are set up so that they can be progran ı med in a

comprehensible way, and those that aren't. Unfortunately, the QL falls
into the latter group so, instead of being able to specify a note, either as a
number or in some kind of musical ııotation, a value bearing a vague (and
inverse) relation to frequency has to be used. if we ace going to program
music, then we need to be able to specify notes. The table contained in these
lines of data represents my best attempt to translate two chromatic octaves
into the values used by the BEEP command. The two octaves are in C
major and represent about as far as the QL can usefully go.

Mυdule 2.6.2: Initialisation
A standard initialisation module.

Module 2.6.2: Lines 2000-2100
2Ø0J0 REMark ************************
2010 DEFíne PROCedure initialise
2020 REMark ************************
2030	 DIM notes%(1,11),p1a у%(1000,7),temp(7)
2040 RESTORE 5000
2050	 FOR i=0 TO 1
2060	 FOR j=0 TO 11
2070	 READ notesX(i,j)
2080	 NEXT j
2090	 NEXT i
2100 END DEFíne initialise

Co ııımentary

Line 2030: NOTES% will he used to store the values of the 24 notes the
program can deal with. PLAY% will contain the tune in its final form, up
to to 1000 notes. TEMP will hold the values associated with a particular
note as it is translated.

Lines 2040-2090: The 24 note values are read into the two sides on
NOTES%, representing the two octaves.

Module 2.6.3: The data for the tune

Before the program can begin to process anything, it must have a tune to
work on. Tunes are entered in the form of DATA statements, for ease of
examí ısatío ıı and editing. The notation will be explained during the course
of the commentary on the next module. Note that, due to the QL's lin ı íta-
tion in only being able to READ strings enclosed in quotes, the whole of
each DATA line is enclosed in quotes. It would be simpler from the pro-
gramming point of view to enclose each item separately but would make
the entry of the tune itself far more laborious.

Module 2.6.3: Lines 6000 — 6100
6000 REMark: ************************
6010 REMark: data for tune
6020 REMark:: ******* κ ********** ıε **-**

Module 2.6.1: Lines 5000 — 5050
REMark: ************************
REMark note values
REMark: ************************

DATA 78,77,69,64,60,56,53,49
DATA 42,40,2.7,34,2.4,32, 20,29
DATA 26,74,22,20,17,16,14,13

6030 DATA
6040 DATA
6050 DATA
6060 DATA
6070 DATA
6080 DATA
6070 DATA
6100 DATA

"02,L3,1,L1,1,L4,7,L4,1,6"

"02,L2,1,L1,1,L4,7.,L4,1,8"
"L8,6"
"L3,1,L1,1,L4,12,9,6,5,3"
"L3,10,L1,10,L4,9,6,8"

"end'

5000
501.0
5020
5070
5040
5 050

90
	

91

The Working Sіпсln іr QL Chaρler2 Sπп e! Lwn έère

Module 2.6.4: Translating the tune
This is the module which performs the most laborious part of the task of
playing a tune, the translation from the easily-understood format, ín
which the music ís recorded in the DATA statements, into a series of
numbers which represent parameters for the BEEP command. The module
looks complicated but, once analysed, ít boils down to a series of simple
decisions as to what a particular set of characters ín the tune DATA means
and then one or more calculations to translate that instruction into a BEEP
parameter.

Module 2.6.4: Lines 3000-3700
REMark: эt* эε+ε эε *aиэε ıε *^ эt эи aε ^ı ^ э эε эиıtaи iиэt^

DEFine PROCedure process
REMar4: эиэε м * к w мэt* * эиэиэ ε * эε эиэε эиэи ^aε iиэε м

RESTORE 6ØØØ
count=0
pitch number=l
oct ave=l
next note=0
REPeat get note

READ temp?
IF temp$ 'end OR temp#="END" THEN EXIT
qet note

REPeat slice
comma="," INSTR temp$
IF comma-0

chars=LEN(temp$)
ELSE

chars=comma-1
END IF
t$=temp#(1 Ti] chars)
IF chars<.LEN(temp$)

temp#=temp$(chars+2
END IF
IF "Ø" s tß;`Ø

temp (pi tch пцеЬег - і) =поtе s7- (octave,
t$-l)

3?(Ø	 next note=l
'270	 END IF
7 2Bø	 IF tF(1) = "0 " OR t(ј)o'
'290	 octave=t#(2)-1
'3ØØ	 END IF
'.3111	 IF t$(1) = "L" OR t$(l)="1"
'T.2ø	 temp (7) t ΣΡ (2 TO)

_3'11	 END IF
3340	 IF t ="W" OR t="w"

'350	 temp(:)=tß(2 Ti])

330	 END IF

''70	 IF te(1) = "X " OR t#(1)="x"

'J8Ø	 temp(')=t3(2 TO)

'390	 END IF
34Ø0	 IF t£(1) ="Y" OR tΣ(1) ="y"
410	 temp(4) =tΣ(2 TO)
420	 END IF

'430	 IF t#(1) = " F " OR t£(1) ="f"
3440	 temp(5) =t #(2 TO)
34511	 END IF
'46Ø	 IF t$(l)="R OR ti(1) = " r "
74711	 temp(6)=t6(2 TO)
748 11 	 END IF
74911	 IF t#(1)="F" OR t (1) = " p "
75110	 pitch п uтЬег =tt(2)
35111	 END IF
7.520	 IF t #="s" OR t $=" 5"

temp (u)="-1"
3540	 next _rı ote=l
75511
	

END IF
.'S6Ø
75711
35811	 IF next note
_b9Ø	 FOR í=0 TO 7
7.6 1111	 playX(count,i)=temp(i)
36 1 11	 NEXT i
7620	 count=count+

next пое =11
36411	 END IF
F¡65Ø
'ббo
3670	 IF comma=Ø THEN EXIT slice
368Ø	 END REPeat slice
F69 11 	END REF'eat get note
37110 END DEFine process

Coin Піеііѓагу
Line 3040: The variable COUNT wí11 be used to record the number of the
note currently being worked on. This is not the same as the number of the
ilem of DATA being read. If the tune DATA specifies a series of changes to
the note quality, such as GRAD and WRAP, these do not affect the value
of COUNT. It ís only when the note value ís encountered that COUNT ís
increııı e ıı ted.

Line 3050: The number of the pitch ı which wí11 be changed for each note —
for the purposes of the program, the two pitches are numbered as 1 and 2.

Line 3060: The octave ín which a note to be played wí11 fall. The two
octaves are specified as 1 or 2.

Line 3070: NEXT_NOTE is used to decide whether COUNT needs to be
incremented. If, after translation of an item from the tmıe, NEXT_
NOTE ís set to 1, then a note has been specified and COUNT ís incre-
mented.

'ØØØ
'Ø1Ø
'020

'040
3Ø5Ø

3060

'Ø70
'08Ø
'090

' 100

3110
712Ø
' 1'Ø
:'140
'l5Ø
316Ø
3170
7 1 80
319Ø

'20Ø

210
_^2ø

'240

250

TO)

92
	

93

The Working Sinclańr QL
	

Chapter2 Son et Lumière

Lines 3090— 3100: The whole of a DATA line is READ into TEMP$. The
single word `END' on a DATA line indicates the end of the tune.

Lines 3140-3230: Using the I NSTR function ı , the program looks for the
first comma i ıı TEMP$, indicating the end of the first tune item. If no
conı mıa is found then (lie whole of TEMP$ is taken as the item to be pro-
cessed. If a comma is found, the characters up to the comma are transfer-
red to T$, which is the item to be processed and that item is sliced out of
TEМP$ so that it will not be processed twice.

Lines 3240 --3270: If the tune item is a number, then placing a zero in front
of it will not change its value — if it is not a nu ı nber then the zero will
prevent the program from crashing when we try to extract a value from it.
When a number is encountered, it is taken as an instruction to play a note
of the given value within the current octave. There are 12 notes within each
octave, each placed a semitone apart — these provide all the notes used
with an octave in western forms of music. The note value is placed into
TEMP%, from where it will be eventually transferred to ARRAY%.

Lines 3280— 3300: If the first letter of the tune item is O, then the following
number is taken as an instruction to reset the octave to either 1 or 2, though
note that the program thinks of them as 0 and 1.

Lines 3310-3330: If the first character is L, then the following number is
taken as the length of the notes to be played until further notice. The note
length must be set up at the start of the tune.

Lines 3340— 3480: Numbers preceded by W, X, Y, For R will be used to set
wrap, grad(, grad_y, fuzz or random.

Lines 3490-3510: 0 or I preceded by P will change the pitch nuviber which
is currently being acted upon. Note that with the program as currently set
up, you cannot change both pitch parameters between one note and the
next.

Lines 3520-- 3550: If the item consists of S, then a silence of the current
note length will be played.

Lines 3580 —3640: The contents of ARRAY%(COUNT), the current note,
are set equal to the contents of TEMP%. Note that this only happens when
COUNT is incremented. All changes to parameters will be fed into the
same line of ARRAY%, in other words changes to fuzz, wrap, etc., will all
affect the current line, since COUNT is not incremented by them.

Line 3670: If COMMA is equal to zero then there are no more items in the
current line of DATA and another line must be read.

Testing
Type:

initial ise[ENTERI
process[ENTER]

and you should be able to complete the analysis of the tune without
generating any errors. Of course you will not hear anything yet, since we
have not added the module which actually plays the tune.

Module 2.6.5: Playing the tune

We now come to the module which i makes it all worthwhile, since the cur-
rent module has the job of taking the values stored in ARRAY% and play-
ing a tune based on them.

1Vlodıile 2.6.5: Lines 4000— 4130
4ØØØ RENark- ************-***********
4Ø1Ø DEFíne PROCedure play (start)
4020 REMar k ************************
4't	 FOR í=start TO count-1
4Ø4Ø	 IF play%(i,Ø):>-1
4Ø5Ø	 PEEP Ø,p1ay Х (i3O),p1ayХ (i,1),p1ay х

(i ,2) ,play%(i ,.-) ,play%(i ,4) ,p1ay Х
(ı ,5) ,play%(ı , Ь)

4Ø6Ø	 END IF
4Ø7Ø	 FOR delay=l TO 50*p1ay Х (í,7)
4Ø8Ø	 NEXT delay
4Ø9Ø	 REEF
41ØØ	 tF=INк:EY$(Ø)
4110	 IF t$::"" THEN RETurn
4120	 NEXT i
4130 END DEFíne play

Commeıı taıy
Line 4010: This module is canen by entering `play' followed by a value
which is taken as the first note in ARRAY% to be played. This allows parts
of a tu ıı e to be heard during tl ıe process of tune development. If changes
are made to a tune, these will not be registered by the PLAY module until
PROCESS has first been called to translate the changed DATA.

Line 4030: The number of notes to be played has been automatically stored
in COUNT.

Lines 4040-4060: The two possibilities dealt with by these lines are that a
note is to be played or that there is to be a silence. If a note is to be played, a
BEEP of infinite duration (BEEP 0) is commenced, using (he parameters
contai ııed in ARRAY%. If the first parameter in ARRAY(I) is minus one,
however, then a silence is called for and no note is played.

94
	

95

The Working .Sinclair QL

•
Lines 4070 – 4080: The length of the note or silence is dictated by the length
of the delay loop. Using the loop variable to create the length of the loop
allows more ease in specifying the ııote lengths than if the huge values
necessary for BEEP were used directly.

Line 4090: At the end of the period specified for the delay, any note which
is being sounded is switched off by use of BEEP without parameters
attached.

Lines 4100 – 4110: The playing of the tune can be stopped at any point by

pressing a key.

Testing
Provided that the program has already been initialised and the tune pro-
cessed, entering PLAY 0 will play the tune `Happy Birthday To You'.
Entering PLAY followed by a parameter other than zero will start the tune
off at another point. You can now try changing the DATA statements
which make up the tune to see what difference they make.

Module 2.6.6: The control module

A standard module.

Mπdule 2. 6.6: Lines 1000— 1060
1000 REMark *** ε+t * эиэг iε * эε эиэı- эε эи * эε эи aε эε * эε ^ε at ıε

1010 DEFine FROCedure do
1020 REMark *************************
1Ø	 initialise
10 л 0
1Ø50

Using tlıe program
You can use this program on its own or as a tool to supply music for other
programs. in order to do this, all you need to do is to write microdrive
STORE and RECALL nodules to store the variable COUNT and the con-
tents of ARRAY%. Once a tune has been developed and processed, store
the information on microdrive. A subsequent program, which would have
to include RECALL and PLAY modules, would then summon up the con-
tents of ARRAY% from microdrive and play the tune exactly as the cur-
rent program would.

CHAPTER 3

Serіouser and Seríouser

At this stage in your progress you should be beconiiiig n ıore familiar with
the capabilities of your QL and with some of the technique 's needed to put it
to work for you. The time has come, therefore, to look at some substantial
programs which will allow your QL to do what microcomputers do best —
handle, sort and retrieve information for their owners.

In doing this we shall, in some ways, be re-inventing the wheel supplied
by Psion in the form of Quill, Archive, Easel, and Abacus since as a pack-
age these four can cover most tasks imaginable. Why then write applica-
tions packages in BASIC — well there are two answers to that. First, and I
think most importantly, is the question of who runs your QL, you or a
group of software writers you've never met. This may seem a trivial ques-
tion but the fact is that only you can decide whether you are going to run a
system which responds exactly to your needs, taking the best from
commercial programs and your own inventions, or whether you are going
to limit yourself entirely to what someone else thinks that you need. With-
out some practice in developing and writing your own applications, you are
going to be left with a black box which forces you to become just another
consumer, not the creative originator that most micro owners want to he.

The second reason, however, is more immediately practical, and that is
that these is no such thing as a perfect software package for every purpose.
There will many occasions in the use of the QL when a simple BASIC
package will serve you far better for a limited purpose than a sophisticated
commercial package. The programs in this chapter are, I think, cases in
point hut even if they do not fit your needs, the techniques contained

within them will allow you to tackle your own applications programming
with greater confidence.

The programs included iii this chapter are:

UNIFILE: A powerful personal filing system capable of storing a wide
variety of inforniation for instant recall.

NNUMBER: A program which creates a dictionary of Names and
Nıiznbers for almost anything you wish, allowing the user to create
invoices, stock valuations or even a calorie count of the day's menu.

MULTIQ: A multiple choice test generator.

process
play 0

1ØbØ END DEFine do

96
	

97

a
77ıc ii'orkin,g Sίπclσ ir QL

PROGRAM 3.1: UNIPILE

Program function

Unifile is a program which has been developed over the years in the
`Working Micro' books. Readers of previous books have written to say
that they are using it in their businesses, to teach schoolchildren about the
way micros handle information, to help with clubs and voluntary organi-
sations or simply to keep track of their books and records at home. This
current version for the QL uses some fairly sophisticated and extremely
fast data structures, to make it an ideal card-index type tool for quantities
of information capable of being held in the QL's memory at one time.

Er t r^ ' ј -1о : 1

Npm e :

ςorrпiı . чrı ds-	 '-_' í l cib I. E:

' ENTER ' l г?•л •. as f' í- á l d unch ппıged
I г рі t i t óm t0 г- ρ 1- cace Or,	 howrı
' DDD ' d? I. e tes ι ıho ί E r-'еcoгd
' ZZZ ' L e гavFS r-eг0г- d ur' ch с1rı г>ed

Wh í. ch do '_1ou r?gυ i, r á:

Figure 3.1: Typical Display in Unaiıe's Search Mode.

The new concepts introduced in this program include:

1) Binary searching.
2) Packing items into continuous strings.
3) Pointer arrays

Module 3.1.1: Setting up the structure of the file

Many books aimed at the home micro owner offer inferior filing programs
which are extremely inflexible in use. It is built into the program that, every
time the user stores something, it will be under the headings, Name,
Address, Phone No., or some similar structure. The beauty of Unifile is
that, while it will certainly allow you to use such a structure, it will also let
you create other files with very different structures — perhaps with one
heading, perhaps with 10 — without making any changes to the program
itself. Unifile is what I like to call a chameleon program: one that adapts to

Chapter$ Ser іouser and Seriouser

a variety of different uses, reacting ıo the user in different ways depending
on the task that it is performimig at the time.

The purpose of this first module is to initialise some variables, and to
allow data to be recalled from microdrive, but most importantly to allow
the user to set up the original file exactly as desired.

Module 3.1.1: Lines 10000— 10260
1ØØØØ REMark ************************
1ØØ1Ø REMark initialise
1ØØ2Ø REMark ************************
1 ØØ.'Ø	 PAPER 5 : INK 1
1ØØ4Ø	 CLS : CLS#0
10050	 AT 1,15 : PRINT "UNIFILE"
1Ø06Ø	 INPUT\\"Load from Microdrive (y/n)";q$
1ØØ7Ø	 IF q$="y , OR q$=HY"

1ØØ8Ø	 recall
1ØØ9Ø	 ELSE
1Ø1ØØ	 f total=0
10110	 empty$=""
1Ø12Ø	 INFUT\\"How many fields in a record:

n_fields\\
1Ø13Ø	 DIM fields(n_fields-1)
1Ø14Ø	 DIM fipld$(n_+ields-1,15)
1Ø15Ø	 FOR í=0 TO nfields 1
1Ø16Ø	 INPUT\("Name for field " & (í+1) &

");field$ (i)
1Ø17Ø	 INPUT "Length of field: ";fields(i)
1Ø18Ø	 (_total=f _total+fields (i)
1Ø19Ø	 NEXT i
1Ø2ØØ	 lines=INT(50000/f total)
10210	 DIM array$(1ines,f_total)
1Ø22Ø	 DIM new_temp$(гı _fields,38)
1Ø23Ø	 array$(Ø)=FILL$(CHR$(200),38)
10240	 array$(1)=FILL_$("z",1ØØ)
10250	 ptr$="ØØØØØØØ1"
10260	 END IF

Cmnmentaгу
Lines 10120-10190: Part of the secret of Unifile's flexibility. For each
`record', which you can think of as a filing card if it helps you, you can
define for yourself how many `fields', or individual headings, will appear
in the record. If you were storing your record collection, you might use
headings like: TRACK, ALBUM, COMPOSER, ARTIST, LENGTH. In
this case you would specify five fields and then input the names of the five.
In future, whenever you use Unifile to store or retrieve information on
your record collection, you will be asked to input an item of information
under each of those headings. For each field, you will also be asked to
specify the length of the field in characters — in future uses of the file, you
will be limited to that number of characters when inputting informationto

98 99

•
Module 3.1.2: The menu

A standard menu module.

A/Iodide 3.1.2: Lines 1 1000 —11360

The Working Sinclair QL

the particular field. The overall names given to each field, and their max-
imum lengths, are stored in the two arrays FIELD$ and FIELDS, whicli are
dimensioned according to the specified number of fields, recorded in
N FIELDS.

Lines 10200 — 10210: Having defined the sizes of all the fields and therefore
of the whole record, it is possible to determine how many such records will
fit into memory. l have allocated 50,000 bytes of the total memory to the
nıı ain data file, which is conservative. There are other variables, apart from
t he program itself, to be stored but you will probably be able to increase the
50,000 substaiitiaHy for most applications. For files containing a large
number of very short records, however, the associated variables will take
up a proportionately larger part of the memory and you may even find that
50,000 is too much for the main file. Experimentation will quickly reveal
the best figures for your particular usage.

Lines 10230— 10240: in any program which inserts data into an array in
order, some provision has to be made for the recognition of the beginning
and end of the data when new items are being inserted. One simple method
of achieving this is to set up the file with two dummy entries which, accord-
ing to the order to be imposed, will always fall at the beginning and end of
any sensible data. The use of a string of zs for the final item is self-
explanatory, but t he C H R$(200) in line 10230 needs some explanation. The
problem encountered in setting up an entry which will automatically be
seen as the first item by any alphabetical search is that, on early versions of
the QL, the string comparison facilities are a total mess. According to the
version of the QL on which the programs in this book were written, any
normal printing character outside the ranges 0— 9,A — Z and a — z is actu-
ally greater than any character inside those ranges. This means that a space
(character code 32), which is normally treated as the lowest normal print-
ing character when string comparisons are done, is considered greater than
'z', normally the highest normal printing character. You can verify for
yourself whether this applies to your machine by typing:

print " "> "z"

If the result is zero, then you can ignore the rest of this part of the commen-
tary and replace CHR$(200) with a space (CHR$(32)). If, however, the
result printed is `1', then your machine suffers from the same limitation as
mine and the space character cannot be used. CHR$(200) has been adopted
to replace the space because it is one of a limited range of characters which
are considered by the QL to he alphabetically less than the `0' character. I
am less than happy about the compromise because C НR$(200) is a cursor
control character and its use may have unintended side effects on future
QL versions. It is to be hoped that the string comparison facilities will soon
have been sorted out and the space character can assume its rightful role.

Chapter 3 Serίouseгопd Serίouser

1 1000 REMark ************************
11Ø1Ø REMark: menu
11020 REMark ************************
11Ø30	 REPeat display
11040	 PAPER 4 : INt:: Ø : CSIZE 1,1
11050	 CLS : CLS#0
110bØ	 AT 1,10 : PRINT "UNIFILE" : CSIZE Ø,Ø
11070	 PRINT\\" COMMANDS AVAILAELE: "
11080	 PRINT\"	 1) INFUT NEW ITEMS"
11Ø9Ø	 PRINT "	 2) SEARCH/DELETE"
111ØØ	 PRINT "	 з) DATA FILES"
11110	 PRINT "	 4) STOP"
11120	 INPUT\" WHICH DO YOU REQUIRE: ";Z
111'Ø	 IF (Z=2 OR Z=3) AND LEN(ptr$)=8
11140	 PRINT "NO DATA YET"
11150	 t$=INt:EY$(-1)
11160	 Z=0
1117Ø	 END IF
11180	 SELect ON Z
11190	 ON Z=1 : n items
11210	 ON Z=2 : user search
1123Ø	 ON Z=3 : store
11310	 ON Z=4
11:20	 CLS
11330	 PRINT#0,"Filing system closed"
1134®	 STOP
11350	 END SELect
11360	 END REPeat display

Module 3.1.3: Storing data

As you begin to develop more complex programs, whether from this book
or on your own, you will find it more and more desirable to enter the data
file module as early as possible. The reason for this is that it is only possible
to make proper tests of Unifile by entering fairly considerable quantities of
data. Since you are bound to make mistakes and will need to change lines,
you are faced with the prospect of having to re-enter data which may have
been corrupted time and time again as the program is being developed. The
answer is to store it on ı nı icrodrive from the very earliest of stages, recalling
information from the microdrive to make your tests if necessary.

The variables contained in these two modules wí11 be explained during
the course of the program.

Module 3.1.3: Lines 20000— 20320
2ØØØØ REMark ************************
20010 DEFine PROCedure store

100

•

101

The И'orkínд S ίnclσίг QL
	

Chapter 3 Seriouser and Seriouser

20Ø2Ø REMark ************************
2ØØ'Ø CLS
2ØØ4Ø	 AT 1,14 : PRINT "SAVE DATA"
2ØØ5Ø	 INPUT\\" Name of data file:";file$
2ØØb®	 tfile$="mdvl	 & file$
2Ø07Ø	 DELETE tfile$
2ØØ8Ø	 OFEN_NEW #8,"mdvl_" &. file$
2ØØ9Ø	 PRINT #8,LEN(ptr$)
201ØØ	 IF LEN(ptr$)<::>Ø
2Ø11Ø	 FOR i=1 TO LEN(ptr$) STEP 100
2Ø12Ø	 PRINT #8,ptr$(í TO і +99)
2Ø13Ø	 NEXT í
2Ø14	 END IF
29150	 PRINT #8,LEN(empty$)
2Ø16Ø	 IF LEN(empty$);>Ø
2Ø17Ø	 FOR í=1 TO LEN(empty$) STEP 1ØØ
2O1ßØ	 PRINT #8,empty$(i TO i+99)
20190	 NEXT i
2Ø2ØØ END IF
20210	 PRINT #8,f_total
2Ø22Ø	 PRINT #8,línes
2Ø23Ø	 PRINT #8,n_-fields
2Ø24Ø	 FOR í=0 TO n fields-1
2Ø25Ø	 PRINT #Ø,field$(i)
2Ø26Ø	 PRINT #Ø,fields(í)
2Ø27Ø	 NEXT í
2Ø28Ø	 FOR í=1 TO (LEN(ptr$)+LEN(empty$))/4
2Ø29Ø	 PRINT#8,array$(i-1)
2Ø3Øø	 NEXT í
2ø3tø	 CLOSЕ#8
2Ø32Ø END DEFine store

Module 3.1.4: Recalling data

This ís a standard data recall module with the necessary addition of facil-
ities to dimension arrays. You will remember from the initialisation
module that the arrays in Unifile are not of a fixed size, but vary according
to the kind of structure set up by the user. The same approach ı is necessary
when picking up items fron ı microdrive. Only once the variables which
describe the structure have been recalled, can the arrays be dimensioned.

Module 3.1.4: Lines 21000-21340
21000 REMark ***********************i ı
21Ø1Ø DEFine PROCedure recall
21Ø2Ø REMark ****** ******************
2iø3ø	 ELS
21Ø4Ø	 ptr$= ' : empty$=""
21Ø5Ø	 AT 1,14 . PRINT "RECALL DATA"
QØ6Ø DIR mdvl_
2107©	 INP(IT\\" Name of data file:";file$
21Ø8Ø	 OF'EN IN #8,"mdvl_" & file$
21Ø9Ø	 INPUT #8,chars

211ØØ	 IF chars>0
21110	 FOR i=1 TO chars STEP 100
21120	 INPUT#8,temp$
211?Ø	 ptr$=ptr$ & temp$
21140	 NEXT í
211SØ	 END IF
21160	 INPUT #8,chars
21 170	 IF chars<:: SØ
21180	 FOR i=1 TO chars STEP 10Ø
21190	 INPUT #Ø,temp$
212ØØ	 empty$=empty$ & temp$
21210	 NEXT i
21220	 END IF
2 1 23Ø	 INPUT #8,f_total
21240	 INPUT #8,lines
212SØ	 INPUT #8,n_fields
212tØ	 DIM array$(línes,f_total),fields

(n_f ieldm-l) ,f iel d$ (n_f ields-1, 15)
21270	 FOR i =0 TO n fields-1
21280	 INPUT #8,field$(í),fields(i)
21290	 NEXT i
213ØØ	 FOR í=1 TO (LEN(ptr$)+LEN(empty$))/4
21310	 INPUT #8,array$(i-1)
21320	 NEXT i
21330 CLOSE#8
21340 END DEFine recall

Module 3.1.5: Setting up a pointer
This module and the one which follows, though simple, are at the core of
the method of data storage used by this program. The probleni to be faced
with all programs which hold large quantities of data, is how to insert new
items into the file. It ís perfectly possible to find the right place ín an
ordered file and then shift everything one place upwards to make room for
the new item. The only problem with this ís that ít takes tine. What we shall
do ín the case of this program is to take advantage of one very fast method
of data manipulation available on (lie QL, string slicing. If we have a string
of 1000 characters (OLD$), a new character (NEW$) can be inserted at
position 500 by a simple line such as:

old$ = old$(l to 499) & new$ & old$(500 to)

Clearly, this is going to be a much faster method, but how can it be adapted
to the much larger masses of information i ııvolved in a filing program,
which ís far more easily dealt with by means of multi-dimensional arrays
like ARRAY$, dimensioned in Module 3.1.1. The answer commonly
adopted is to use what ís knoıvn as a `pointer array'.

The effect of a pointer array ís to allow data to be inserted into the main
file (ARRAY$) in no particular order, items simply being placed in the first
empty space, with no need to move other items to make room. The order of

102
	

103

ORDER OF POINTERS
5
4
2
3
б

Chapter 3 SerίouseraпdSerίouseгThe Working Sinclair QL

the data, in this case alphabetical order, is preserved by the fact that each
entry has an associated pointer which records its correct position in the
order. Take a look at the table given below:

ORDER OF DATA ITEMS
FFF
CCC
DDD
ввв
AAA
EEE

The data items on the left, which need to be recalled in alphabetical order,
are clearly a jumble. If we turn to the value of the pointers, however, we
can see that the correct place of each, in terms of alphabetical order, is
safely recorded, with the first pointer indicating the position of the first
item in alphabetical order (AAA), the second pointer indicating the posi-
tion of the second item in alphabetical order (BBB), and so on. To read
through the apparently jumbled file in perfect order, all we have to do is to
read the hems indicated by the pointers.

What this module is going to accomplish is to create a four-character
pointer which a later module will place in the correct position within a
single long string, PTR$ (PoinTeR$) The next module will retrieve the value
of a four-character pointer from a particular position within PTR$. How
the pointers will be used in detail will only become apparent during the
commentary on the rest of the program.

Module 3.1.5: Lines 19000— 19060
19000 REMark ************************
19Ø1Ø DEFíne FuNctíon four$ (ptr)
19020 REMark ************************
19Ø3Ø	 t$=ptr
19040	 t$=FlLL$('0",4-LEN(t$)) & t$
19050	 RETurn t$
19060 END DEFíne four$

T esti ı ig
Type:

print four$(1) [ENTER]

and the result should be `0001'. You should be able to enter any number up
to 9999 and see it transformed into a four-character string.

Module 3.1.6: Retrieving a pointer

Having given ourselves the ability to create a pointer which can be inserted
into a string, we turn our attention to the problem of getting a value out of
the same string. This simple module accepts an argument in the form of the
variable SS and slices out a four-character pointer from PTR$.

Module 3.1. (ı .• Lines 18000— 18060
18000 REMark ************************
18010 DEFíne FuNctíon p_va1 (ss)
18020 REMart:: ************************
180TØ	 tЈ tr =ss *4
18040	 tј tr=ptr$ (t р tr+1 TO t јэ tr+4)
18050	 RETurn t_ptr
18060 END DEFíne p_val

Testing
Type:

ptr$ = "000300020001 "[ENTER]
print p_va1(2)[ENTER]

The result should be '1', the value of the third four-character pointer in the
string.

Module 3.1.7: A better way of searching
In this module, and the two that follow, we take a look at how a new entry is
added to the main file contained in ARRAY$, or rather how the correct
position for its pointer is found in the string PTR$. The core of the method
is contained here, however, because it is this module which allows Unifile
to search rapidly through a large file of entries to find the correct place to
insert a new one, or to conduct a fast search for the presence of a key entry
in the file.

The method is known as `binary searching' and it can be used to drama-
tically reduce the time for searching iii any programs you write which hold
long lists of ordered data. Consider the following example.

A file has been established containing 2000 names and the task is to
insert a new name into the file, in the correct alphabetical order. If we cheat
and look at the list of names, we can determine that the new name
`YOUNGER' should actually go into the file at position 1731, though the
computer has no way of knowing this in advance.

One thing we could do is to set the computer examining the names one by
one from the beginning. It will begin with `ADAMS' and note that
`YOUNGER' should come after, then go on to 'ADAMSON' and so on.
Eventually, after examining 1732 names, the search will hit upon a name

104
	

105

•
The Working Sinclair QL

like 'YOUNGMAN' which must come after `YOUNGER', so the correct
position has been found.

This is a reliable method, but how much better if the number ofcompari-
sons made could be cut down a little. Well, in the case of our file of 2000
names, the whole process can be accomplished by just 10 commparisons.

Here's how it's done.
The computer begins the search by examining the name in position 1024

of the file, because 1024 is the greatest power of 2 (2 - 10) which will fit into
the total number of entries (2000). The name at position 1024 is found to be
alphabetically less than `YOUNGER' and so the computer adds 1024/2,
or 512, or 29 to the original search position, arriving at 1536. Once again,
the name at this position is alphabetically less than `YOUNGER' so this
tine 256, or 28 is added to 1536, making 1792. Now something different
happen because the name at position 1792 is later in the alphabetical order

than `YOUNGER ' so instead of adding 128, or 27, it is subtracted from

the search position, giving 1664.
The search goes on, adding or subtracting decreasing powers of two to

build a search pattern that looks like this:

COMPARISON NO. POSITION ACTION
1 1024 +512
2 1536 + 256
3 1792 — 128

4 1644 + 64
5 1728 +32
6 1760 — 16
7 1744 —8
8 1736 —4
9 1732 —2

10 1730 +1

Try it yourself for different numbers of entries and different target posi-
tions in the order — you will find that it always works.

Module 3.1.7: Lines 13000— 13160
13θθθ REMark
13010 DEFíne
13020 REMark
13Ø3Ø	 po=INT(LN(LEN(ptr$)/4)
13Ø4Ø	 ss=2''po-1
13Ø5Ø	 FOR i=po TO θ STEE -1
13060	 IF array$(p_val(ss))=:t1š
13070	 ss=ss+2"í
l308Ø	 IF ss>LEN(ptr$)/4-1 THEN ss=LEN

(ptr$)/4-1
13Ø9Ø	 END IF
131ØØ	 IF array$(p_va1(ss))>t1$

•
Chapter З Seгiouser and Seriouser

13110	 ss=ss-2' ı
13120	 IF ss<0 THEN ss=0
l313Ø	 END IF
l314Ø	 NEXT i
13l5Ø	 IF array$(p_ val (ss))<:tl$ THEN ss=ss+1
13160 END DEFine binary_search

Comп teн tпr y

Line 13030— 13040: These two expressions find the greatest power of 2
which will fit into the number of items in the file and then set the search
pointer (SS) equal to that number. The total number of items is recorded by
the length of PTR$ divided by four, since each pointer contains four char-
acters. The ` — 1' in the second expression takes account of the fact that the
array is numbered from zero, not one.

Lines 13050 — 13140: This loop conducts the search, using reducing powers
of 2. The main file is contained in ARRAY$ and the new entry in TI $. Note
that, as you would expect from previous explanations of the use of pointer
arrays, the search pointer does not scan through the main array but
through PTR$, using the PVAL function. If the item to be compared
with the new entry is item number 500, it is the value of the pointer at
position 500 which dictates which entry in ARRAY$ is to be compared with
the new entry.

Line 13150: In some cases the position arrived at will be 1 below the correct
position — in this case SS is increased by 1.

Module 3.1.8: Inserting an item

This module inserts the new entry into the first available empty space in
ARRAY$, then records that position in PTR$ at a place indicated by the
variable SS.

Modıι le 3.1. 8: Lines 14000— 14150
RF_Mark ************************
DEFS пе PROCedure ínsert (t1š)
REMark. ************************

IF empty$<>""
place=empty$(1 TO 4)
IF LEN(empty$)>4

empty$=empty$(5 TO)
ELSE

empty$=""
END IF

ELSE
place=LEN(ptr$)/4

END IF

******************
PROCedure binary_search (t1$)

/LN(2))

14000
14010
14020
14 30
14040
14Ø5Ø
14060
14070
14080
1409Ø
1410Ø
14110
14120

107

The {Forking Sinc lair QL	 Chapter 3 Serio иser and Ser іouser

14130	 ptr$=ptr$(1 TO ss*4) & four$(place) &
ptr$(ss*4+1 TO)

l414Ø	 array$(place)=t1Ø
14150 END DEFine insert

Commentary
Lines 14030— 14100: in order to explain what is going on here, I'm afraid
we have to jump ahead of ourselves a little to consider how items are going
to be deleted from the file.

We have al ı`eady said that one of the main advantages of using a pointer
string is that we do not have to shift all the data when a new item is being
entered — all that has to be moved is the pointers to the data, while the data
itself can simply be placed in the first empty space. But where is the first
empty space? To begin with, the answer to that question will be simple. As
each new item is entered, it can simply be placed at the end of the file. If
three items have already been entered into positions 0 to 2, the fourth item
is put into position З . That does not, however, solve the problem of
deletions from the file. When an item is deleted, it will leave a hole in the
array and, eventually, as the program is used, the whole of the array will
consist of such holes, with no space left at the end for new items. Clearly,
the holes have to be filled.

We could retreat to the cruder method of shifting everything down to
cover the hole — a straight forward method used by other programs in the
book — but that seems to defeat the object of using a pointer array, especi-
ally since all the pointers for the moved data would have to be changed to
reflect the move.

Much simpler, and much quicker, is to work out a method which allows
the positions of holes to be recorded and to use them for new items of data,
since we already know that it does not matter in the least where a new item
is placed, provided that its pointer is in the right place. This recording of
holes is the job of EMPTY$, which is created by the deletion module you
will enter later. EMPTY$ is the same in structure as PTR$, consisting of
four-character pointers, but this time the positions recorded are those of
empty slots in the array.

With this explanation under your belt, you can see that these lines are
quite simple. If there is an empty slot in the main part of the array (indi-
cated by there being a pointer in EMPTY$) then the address of the slot is
obtained and that is where the new item is placed, the address being sliced
out of EMPTY$. if EMPTY$ contains no record of holes in the array, then
the new item is simply placed above the existing data.

Line 14130: We have already obtained the correct position of the new item
in terms of alphabetical order amid ít is contained in the variable SS. A new
pointer is added to PTR$ at position SS, its contents being the address in
ARRAY$ of the new data iteiii.

Module 3.1.9: Making entries to the file

I laving entered the modules which do the real work, we can now proceed to
the one the user will have contact with when placing material into the filing
system. The function of this module is to prompt the user to input the
correct number of items, in the correct order, for each entry, to combine
those items into a single string which will fit into one line of ARRAY$ and
then to call up the two previous modules to insert the entry into the main
file.

Module 3.1.9: Lines 12000 —12300
REMark ******** *+ε **************
DEFine PROCedure n_ítems
REMark ************************

REPeat loop
REPeat confirm

ti$=""
CLS
AT 1,14 : PRINT "NEW ITEMS"
PRINT\\"Input item or 'zzz to
quit."\\

12Ø9Ø	 FOR í=0 TO n_fields-1
121ØØ	 CLS#0
12110	 PRINT M0,field#(í);": "
12120	 PRINT MØ,\FILL$("=",fíelds(i))
12130	 AT M0,1,Ø
12140	 INPUT MØ,new_temp Σ(i)
12150	 IF new t: еmр $(i)=z г OR new temps

(i) ="ZZZ" THEN RETurn
121bØ	 new_temp$(i) =new_temp£(í) & FILL$

(CHR#(2ØO),38)
12170	 CLS MØ
12180	 PRINT field$(i);":
12190	 PAPER 6 : INK Ø
122ØØ	 PRINT new temp$(i,l TO fields(i))
12210	 PAPER 5 : INK 1
12220	 tl$=t1$ & new_temp$(i,1 TO fields

(í))
12230	 NEXT í
12240	 INPUT \\"ARE THESE CORRECT (Y/N): ";q$
12250	 IF q$="y" OR q$="Y" THEN EXIT confirm
12260	 END REPeat confirm
1227Ø	 bínary_search (t1$)
12280	 insert (t1$)
12290	 END REPeat loop
123ØØ END DEFine n_items

Co ınnıentary
Lines 1.2090-12230: These are the lines which request the input of the
individual items for the new entry. The name for each item is taken from
the array F1ELD$, which was set up iii the initialisation module. Each item

12ØØØ
12Ø1Ø
12020
12Ø3Ø
12Ø4Ø
12050
12ØbØ
12070
l2ø80

108
	

109

•
Tire Working Sίпcta ίr QL

is input into the array NEW_TEM P$, and padded out with character code
200 to a standard length of 38. As an aid to the user, the inputs are done at
the bottom of the screen and the maximum length of the individual field to
be entered is indicated by a line of' _' signs underneath what is to be input.
Note that, as in the iiri[ialisation module, I am not entirely happy about the
use of C І IR$(200) for the purposes of padding. The problem once again is
that we need to add something to the end of the string which will not make a
nonsense of its positioii in an alphabetically-arranged file. When I started
to write [lie program, each new entry was padded to a standard length with
spaces but diis created the ludicrous situation that an entry of `A' as the
first field of a record, was placed after an entry of `AZ', since the space
after the 'A' was assessed as being greater than the letter `Z'. If, by the time
you read this, your QL is capable of recognising that a space is alpl ı abeti-
cally less dian a letter or digit, CНR$(200) can and should be replaced by a
space.

The last line of the loop accumulates the individual fields into a single
string, T1$, which, as we have already seen, is the string used for the binary
search. Each field is chopped to precisely the right length, as recorded by
the array FIELDS, which was set up in the initialisation module.

Testing
You are now in a position to test the last three modules that you have
entered. Run the pro gram and set up a file with two fields per record, called
'ONE' and `TWO', each three characters long. When you have finished
initialising tIre program and you get to [lie main menu, specify option 1 .
You will now be faced with the display created by [lie current module and
asked to input item `ONE'. Enter `AA1'. The prompt will repeat for
`TWO'and you should enter `AA2'. Repeat the process for `DD 1', `DD2',
'CC1', `CC2', `BBI', `BB2' to successive prompts. Now enter `ZZZ' and
you will return to the main menu. Select option 4 to stop the prograııı . Now
enter:

for í = 0 to 3 : print array$(p_val(i)):next i[ENTERI

and you should see:

AA1AA2
BB1BB2

CC1CC2
DD 1 DD2

If all has worked correctly, you might like to start the program again with
GOTO 11000 and use menu option 3 to store the data you have input on
microdrive. This will make subsequent tests less onerous if the data should
beco ıne corrupted in some way.

•
Chapter3 Ser ίouseraпd Serίouser

Module 3.1.10: Searching for items in the file
We can now proceed to the module which makes the program useful by
allowing the data which has been stored to be retrieved. The current
module will allow entries to be retrieved by one of four methods:

1) One by one in order from tl ıe current position.
2) By jumping forwards or backwards a specified number of items.
3) By entering a key item — the first item in the entry — for a fast search.
4) By searching for any occurrence of a combination of characters,

wherever it is within an entry.

Module 3.1.1 0: Lines 15000— 15660
l50Ø0 REMart' ***************u********
15010 DEFine PROCedure user_search
15020 REMark: ************************
ı 50з0	 s1=1
15040	 CLS
15050	 IF LEN(ptr$)=8
15060	 PRINT\\"No data yet!"
15070	 t$=INn'EY$(-1)
15080	 RETurn
15Ø9Ø	 END IF
15100	 PRINT\\"Commands available:"
1 5 110	 PRINT\"	 Input item for normal search"
15120	 PRINT " > '* first for initial search"
15130	 PRINT " > Return for first item on file"
15140	 PRINT\"* м*******************************

***"
15150	 INPUT "Search command: ';target$
15160	 IF CODE(target$)=42
15170	 target$=t гrget$(2 TO)
15180	 binary_search (target$)
15190	 sl=ss
15200	 target$=""
15210	 END IF
15220	 REPeat main search
15230	 IF target$<''
15240	 found=0
15250	 FOR i=s1 TO LEN(ptr$)/4-1
15260	 found=target ř INSiR array$(p_val(i))
15270	 IF found:Ø
15280	 s1=í
15290	 EXIT i
15'ØØ	 END IF
15310	 NEXT í
15320	 RETurn
1533.1>	 END FOR í
15340	 END IF
15351>	 REPeat print loop
15360	 IF sl::>LEN(ptr$)/4-2 THEN s1=LEN

(ptr$)/4-2
15370	 IF s1 С 1 THEN s1=1

110

f
The Working Sinclair QL

15380	 CLS
15390	 PRINT "Entry No: ';s1\\
15400	 start=l
15410	 FOR í=0 TO n +ields-1
15420	 PRINT field#(í);
15430	 PAPER 6 : INK 0
1544Ø	 PRINT array$(p_val(sl),start TO

start+fields(()-1)
15450	 P'AP'ER 5 : INK 1
15460	 start=start+fields(i)
15470	 NEXT i
1548Ø	 PRINT#0," . 'ENTER' = ne:ct 	 'AAA'

= amend"
15490	 PRINT#0,"	 'CCC" = continue '#nn'

= move"
15500	 PRiINT#0," . 'ZZZ' = quit"
15510	 INPUT#0,"Which do you require: ';q$
15520	 CLS#0
15530	 IF q#="" THEN q$="#1"
15540	 IF of="zzz" OR q$="ZZZ" THEN RETurn
15550	 IF q3="ccc" OR q$="CCC"
15560	 sl=s1+1
15570	 EXIT print loop
15580	 END IF
15590	 IF q#="aaa" OR q$="AAA"
15600	 amend
15610
15620	 END IF
15630	 IF q$(1)="#" THEN s1=s1+q-f(2 TO)
15640	 END RFPeat print loop
15650	 END REF'eat main search
15660 END DEFíne user search

COnτ lпentaιy
Line 15030: S I is the pointer to the current entry, and starts at 1 every time a
search is begun. In normal circumstances it would start at 0, but the first
record ín the main file is a dummy entry.

Lines 15050-15090: An error message is generated if no items have yet
been placed into the file.

Lines 15100-15130: This is the start-up menu for the search module. On
each search you will see it only once, when you begin. Using this menu, the
type of search to be made is specified — if you wish to change the search
type you will need to quit the current search and start again with this menu.
The term `NORMAL SEARCH' indicates a search for a given combin-
ation of characters — the first record returned will be the first one in the file
which contains those characters, in any position. `1NITIAL SEARCH'
refers to a search for a record which begins with the combination of char-
acters specified by the user. Thus, inputting `*SMI would find any record
beginning with the letters SMI, though not always the first one. If the string

Chapter 3 Seгіоиser and Se гiouser

specified is not present at the beginning of any record, the record returned
will be the one occupyilıg the place in which it would be inserted if input as a
new entry.

On a normal search, if the specified string is not found in any of the
records in the file, program execution will return to the main program
menu.

Lines 15160— 15210: This line does all the work necessary for an initial
search', by stripping off the leading asterisk and simply calling up the
binary search module to find the correct position.

Lines 15220— 15650: The main loop which will repeat a normal search if
the user so requests at a later menu. Note that the initial search routine does
not fall in this loop since there is no point ill repeating an initial search —
the result will always be the same record.

Lines 15230— 15340: By this point in [lie execution of the module, any
input must be a string to be searched for using the normal search. This is
done quite simply by scanning records using INSTR. If an item is found,
the variable FOUND is set to its position within the record, the position is
recorded in S1 and EXIT takes program execution out of the loop. If the
end of the loop is reached with FOUND still equal to zero, the search is
terminated and the program returns to [lie main menu.

Lines 15350— 15640: This loop will continue the secondary form of the
search, where the user can continue a normal search or page through the
items in the file, until the user specifies that the search is to be terminated.

Lines 15360-15370: Within the loop the user has the option to move
around the file by number — these lines check on subsequent passes
through the loop that the pointer has not been moved outside the valid
range for the current number of records.

Lines 15410 — 15470: These lines print out [lie record whose position (in the
pointer array) is indicated by the search pointer S1.

Lines 15480— 15510: The secondary menu which appears once a record is
displayed. The user has the option to move on to the next entry, to call up
the AMEND function (not yet entered), to search further for the pre-
viously specified string, to move through the file a specified number of
records, or to return to the main program menu.

Line 15530: The `#' synıbol will be used as an indicatioii that the user
wishes to move a specific number of places forwards or backwards through
the file. If ENTER is pressed on its own, Q$ is set equal to '4* 1', which later
lines will use to move the search pointer on to [lie next record.

Lines 15550-15620: Entering 'CCC' results in the continuation of a
normal search for the current TARGET$.

112 113

4

•
The Working Sinclair QL

Lilies 15590-15620: The AMEND function, which has not yet been
entered. Note that deletions are made in the AMEND mode, and, if this
results in there being nothing left in the n ıain array but the two dummy
records, the search module is terminated.

Line 15630: inputting a number preceded by the ` #' sign allows the user to
move forwards or backwards through the file by altering the search pointer
S1

Testing
If you have previously saved the series of four entries made in previous
tests, run the program and reload the entries. Specify' option 2 on the main
menu and then, when the SEARCH menu appears, page through the
records by pressing RETURN. Each record should be displayed on two
lines, with the appropriate item iı anıe, eg:

ONE: AAi
TWO: AA2

When you reach the fourth record you should find that you can go no
further using RETURN. Now enter ` # — 1' and you should move back to
record З . Continue to move back — you should find that you cannot move
off tl ıe beginning of the file either.

Enter `ZZZ' to return to the main menu and specify option 2 again. This
time, respond to the initial SEARCH menu with `CC'. Record 3 should be
displayed — the only one to contain the characters `CC'. You are now on
the second SE ΛRCH menu, so enter 'CCC' to continue the search. You
should find yourself back at the n ı ai ıı menu since there are no more records
which contain the specified characters.

Once again, choose option 2, and this time enter `2' as your search
target. Entry I should appear, since it contains the character `2'. Enter
`CCC' to continue the search and entry 2 should be printed — it also con-
tains the character 2. Continue to enter `CCC' until all record entries have
been displayed and li ıe search fails, returning you to the main menu.

Fi ııally, choose option 2 from the main menu and enter `*B' as your
search target. Entry 2 should be displayed — the only record to begi ıı with
`B'. Enter `ZZZ' to return to the main menu and terminate the program.

You have now tested all the search functions.

Module 3.1.11: Deleting entries
The final touches to the program are added by the following two modules,
which allow entries to be changed or deleted. The deletion module is added
first, since it is used whenever an entry is changed. The overall method
involved in deletion has already been described in the commentary on the

114

•
Chapter 3 Ser іouser and Serіouser

insertion module for this program. The function of the module is
threefold, to clear an individual record, to store the address of t he resulting
hole in EMPTY$, aud to remove the appropriate pointer from PTR$.

Module 3.1.11: Lines 17000— 1 7060
17000 REMark ************************
17Ø10 DEFine PROCedure remove
17020 REMart:: ************************
1 70.'Ø	 array$(p_val (slH=""
17040 	 emptyt=emptyt & fourE(p_va1(s1))
1705Ø	 ptrt=ptrt(1 TO s1*4) & ptrt((s1+1)*4+1 TO)
17060 END DEFíne remove

Co ırunentaiy
Lines 17040— 17050: Deletion is simply accomplished by slicing the rel-
evant pointer out of PTR$ and recording a hole in EMPTY$.

Testing
Run the program and reload the four items from microdrive. Specify
option 4 to stop the program. Now enter:

s1 ='[ENTER]
remove[ENTER]

When the flashing cursor returns, type:

goto 1 1000[ENTER]

and then call up the SEARCH option. You should find that the
AA1 /АА2 entry has disappeared from the file.

Module 3.1.12: Changing entries
The program would be of limited use to us if we were not able to change
existing data — this module fills that gap.

Module 3.1.12: Lines 16000— 16340
160ØØ REMark ************************
16010 DEFíne PROCedure amend
16020 REMark ************************
16Ø._'+Ø	 temp$=""
i6Ø40	 start=1
1bØ5Ø	 FOR í=0 TO n_fíelds-1
16Ø6Ø	 CLS
1bØ7Ø	 PRINT "Entry No: •':s1\\
1bØ80	 PRINT fíeld$(1):":
1bØ9Ø	 PAPER 6 : INK Ø
1b1ØØ	 PRINT array$(p_val(s1),start TO start

+fields(i)-1)

115

•
The Working Sinclair QL

16110	 FARER 5 : IN'. 1
1612Ø	 AT 1Ø,Ø
16130	 PRINT " Commands available:"
16140	 PRINT\\"	 'ENTER leaves field

unchanged"
16150	 PRINT "	 Input item to replace

one shown"
16160	 PRINT "	 'DDD' deletes whole record"
l617Ø	 PRINT "	 'ZZZ' leaves record

unchanged"
16180	 INPUT " Which do you require: ';q$
1b19Ø	 IF q$="ddd" OR q$="DDD" THEN remove

RETurn
162ØØ	 IF q$="zzz" OR q$="ZZZ" THEN RETurn
16210	 IF q$= >''
16220	 q$=q$ & FILL$(CHR$(200),fíelds(i))
l623Ø	 q$=q$(1 TO fields(i))
16240	 ELSE
16250	 temp$=temp$ R, array$(p_va λ(sl),st гrt

TO start+fíelds(i)-1)
16260
	

END IF
16270	 start=start+fields(i)
16290
	

temp$=temp$ & q$
16290
	

NEXT í
16,300	 remove
16310
	

binary_search (temp$)
16320
	

insert (temp$)
16330	 s1=ss
16340 END DEFine amend

Co ın ıneıı taıy

Hues 16050-16290: This loop, while it looks very similar to the loop
which prints the record in the previous module, is different in that it prints
only one item at a time.

Line 16190: input of `DDD' when any field is displayed deletes the wl ı ole
record of which that field is a part — note that an individual field cannot
simply be deleted, only replaced, since the number of items per entry is
fixed.

Line 16200: Input of `ZZZ' in response to any item returns execution to the
SEARCH module. Any changes made to previous fields in the record will
be ignored and the record will he unchanged.

Lines 16210 — 16230: If any input is made other than 'DDD' or `ZZZ' then
it is interpreted as being a replacement for the field displayed. The
CHR$(200) padding is added, as in the input module.

Lines 16240 16260: Pressing ENTER without an input copies the item
displayed without changes. If only one item is to be changed, simply press
ENTER for all the others.

•
Chapler3 Serίouserand Serίouser

Lines 16300-16330: The amended entry has been built up in TEMP$.
When the entry is complete, the original entry is deleted from the file. The
reason for this is that the changes made may have altered the correct posi-
tion of the entry in the ordered file. Once deleted, the entry is sent to the
binary search module and re-inserted. Its place in the file is copied into the
variable S 1, so that the SEARCH nodule will know which item to display
if the position has been changed.

Testing

Run the program and reload the four items of data from disk. Call up the
search option and press ENTER to get entry 1 displayed. Now enter `AAA'
in response to the second SEARCH menu. You should see the first item
'AA1' displayed, together with the AMEND menu. Enter 'AAO' and,
when the second item is displayed, press ENTER. You should now have
returned to the SEARCH module, and the entry should be displa yed as:

ONE: AAO
TWO: AA2

Try making other changes and deleting entries. If all works properly, the
program is now complete.

PROGRAM 3.2: NNUMBER

Program function

Not all filing is concerned with words. One of the things which microcom-
puters do best is store and manipulate figures. The current program,
Nnumber (short for `Name and Number'), allows you to store the names of
items, the units in which they are usually measured and an associated quan-
tity. Now, before you say that you can't see a use for such a program,
consider the average shopkeeper or even domestic cook.

The shopkeeper has a mass of items which are called stock. All of the
items which make up the stock have names, they come in different units
(box, bottle, bag, etc) and all have a very important quantity associated
with them — their price. in order, therefore, to make a microcon ı puter
help with stocktaking or make out an invoice, it must remember these three
facts about each item. In the home, the foods we eat each have a name, they
come in different units (spoolısful, pounds, pinch, etc) and if we are inter-
ested in their effect on our weight, then they all have a quantity associated
with them known as calories'.

These are just two examples — you can think of many more for yourself
— of the importance of being able to record names, units and an associated
quantity for a whole variety of items.

The purpose of Nnumber is to allow you to create a 'dictionar y ' of items

117116

•
The Working Sinclair QL

— up to 1000 of t hem — together with the units in which they are measured
and the values associated with those units. Based on that dictionary you
will be able to construct lists of items which the program will display and
total the quaı tity for you. Nnumber is as easy to use in adding up the
calories for a day's recipes as it is in providing a total price for a collection
of goods.

í [óm: wí dp?ts
UhI I TS : 1 E Ьс''л'. І? 15.95
TOTAL: 159.5 5
О Ос' с' с' с' cx О Ос' с' с' с' cx Ос' С' О С'О О О с' с' с' с' с. с' с' с' с' CX С' С' CXC' с'
I t'mrri : f і.
UNITS: 22 bcags @ ř .5
TOTAL: 165
GGOOOOOOO.DOOOOGO ГJO .DO ΓJ Π OOOO ГJГ. ГJOГJLλ c. Γ. QL1G
í ± örrı : gut.b í na
UNITS: 36 pots (3.'5
TOTAL : 135
GGC•oC•OGOOOOO πО0ι7 G Oс'GO ς. OОс O π Zıη OGι.OGс'Oс'
OVERALL TOTAL: 459 .5

f-Эn ıј k у to г є t ' Ј Г- іІ tc. manu

Figure 3.2: Example of Nuumher in Curren) List Mode.

Module 3.2.1: I ııilialisпtion
A standard m оd пı le, the only thing worthy of note being that the user is
asked to specify the type of item the program will be dealing with. This will
be a name such as `Food item' or `Stock item'. The phrase input will be
used during the course of the program to prompt the user to input another
item.

Module 3.2.1: Líves 10000 — 10100
10000 REMark ************************
10Ø1Ø REMark initialise
10020 REMark ************************
10025	 CLS
1ØØ3Ø	 DIM array$(1L00,1,20),array(1000),

currerı t$ (100, 1 ,20) ,curre гı t (100)
10060	 c_1íst=0 : ít=0 : c_total=0
10070	 INPUT "LOAD FROM MICRODRIVE (Y/N): ";Q$
10080	 IF Q$="y" OR Q$="Y"
185	 recall
1ØØ90	 ELSE
10095	 INFUT "OVERALL NAME FOR ITEMS:";NAME$
10100	 END IF

Co ı m ımeıntary
Line 10030: The array ARRAY$ is used to record the item name and unit
ııanıe for each of the items in the dictionary. Tile associated quantity for
each unit is stored in the equivalent element of the array ARRAY.

•
Chapter 3 Seriouser and Seriouser

CURRENT$ and CURRENT will serve a similar purpose to ARRAY$
and ARRAY but for the `current list' which is extracted from the
dictionary.

Line 10060: C LIST will record the number of items in the `current list' —
the list derived from the mai ıı dictionary. It records the number of items iii
the main file — in this case the dictionary.

Module 3.2.2: Menu
A standard menu module.

Module 3.2.2: Lines 11000— 11400
1 1 000 REMar k ************************
1 101 0 REMark menu
11020 REMark ************************
11030	 REPeat prompt
11040	 CLS
11050	 AT 1,15 : PRINT "NNIJMBER"
11060	 PRINT \\" COMMANDS AVAILABLE:"\\
11Ø7Ø	 PRINT,"1) Display current list"
1108!7	 PRINT,"2) Input to current list"
11Ø90	 PRINT,"3) Start new current list"
111ØØ	 PRINT,"4) Delete from current list"
11110	 PRINT,"5) Add to dictionary"
11120	 PRINT,"6) Examine dictionary items"
11130	 PRINT,"7) Save data to microdrive"
11140	 PRINT,"8) Stop"
11150	 INPUT\\" WHICH DO YOU REQUIRE: ';choice$
11160	 choice="0" & choice$
11170	 CLS
11180	 IF ít=0 AND (choice$="1" OR choice$="4"

OR choice$="6" OR choice Σ= "7")
11190	 AT lØ,13 : PRINT "NO DATA YET"
11200	 t$=INKEY$(-1)
11210	 choice$="Ø"
11220	 END IF
11230	 SELect ON choice
11240	 ON choice=1 : c_display
11250	 ON choice=2 : c_input
11260	 ON choice=3 : c_initialise
11270	 ON choìce=4 : c_delete
11280	 ON choice=5 : dinput
11290	 ON choice=6 : d_display
113ØØ	 ON choice=7 : store
11310	 ON choice=8
11320	 EXIT prompt
113'0	 END SELect
11340	 END REPeat prompt
11350	 CLS
1 1360	 AT 10 , 1 1

118 119

The Working Sinclair QL.

11370	 F'RINT "NAME AND NUMBER"
11380	 AT 12,9
11390	 F'RINT "PROGRAM TERMINATED"
11400	 STOP

Modules 3.2.3 and 3.2.4: Data files
Two standard modules.

Module 3.2.3 and 3.2.4: Lines 21000-22260
21000 REMark ************************
21010 DEFine PROCedure store
21020 REMark ************************
21030 CLS
21040	 AT 1,14 : PRINT "SAVE DATA"
21050	 INPUT\\" Name of data file:";file$
21060	 tfíle$="mdvl_" & file$
21070	 DELETE tfile$
21080	 OFEN_NEW #8,"mdvl_" & file$
21090	 PRINT #8,ít
21100	 F'RINT #8,c list
21110	 PRINT #8,NAME$
21120	 FOR i=0 TO it-1
21130	 PRINT #8,array(i)
21140	 FOR j =0 TO 1
21150	 F'RINT #8,array$(i,j)
21160	 NEXT j
21170	 NEXT i
21160	 IF c list>Ø
21190	 FOR í=0 TO clíst-1
21200	 PRINT #8,current(í)
21210	 FOR j =0 TO 1
21220	 PRINT #8,current$(í,j>
21230	 NEXT j
21240	 NEXT i
21250	 END IF
21260	 CLOSE#8
21270 END DEFine store
22000 REMark ************************
22010 DEFine PROCedure recall
22020 REMark ************************
22030 CLS
22040	 AT 1,14 : PRINT "RECALL DATA"
22050	 DIR mdvl _

22060	 INPUT\\" Name of data file:";file$
22070	 OPEN_IN #8,"mdvl_" & file$
22090	 INPUT #8,it
22090	 INPUT #8,c _list
22100	 INPUT #e,NAME$
22110	 FOR i=0 TO it-1
22120	 INPUT #B,array(i)
22130	 FOR j=0 TO 1
22140	 INPUT #8,array$(i,j)

•

120

Chapter Seriouser and Seriouseг

22150	 NEXT j
22160	 NEXT i
22170	 IF c list:>0
22180	 FOR i=0 TO c_list-1
22190	 INPUT #9,current(í)
22200	 FOR j=0 TO 1
22210	 INPUT #8, current$(i
22220	 NEXT j
22230	 NEXT i
22240	 END IF
22250 CLOSE#8
22260 END DEFine recall

Module 3.2.5: Binary search

For a full conmientary on this module, see the equivalent module in Uní-
file. Sorting is done on the basis of the item name in the zero column of
ARRAY$. Note that pointer arrays will not be used in the case of this
program, so the search takes place directly on [lie array, not via the value of
a pointer.

Module 3.2.5: Lines 16000— 16200
16000 REMark ************************
16010 DEFine PROCedure binary_search
16020 REMark ************************
16030	 IF ít=0
16040	 ss=0
16050	 RETurn
16060	 END IF
16070	 po=INT(LN(ít)/LN(2))
16080	 ss=2po-1
16090	 FOR i =po TO 0 STEP -1
16100	 IF array$(ss,0):t1$
16110	 ss=ss+2^í
16120	 IF ss>ít-1 THEN ss=it-1
16130	 END IF
16140	 IF array$(ss,0)>t1$
16150	 ss=ss-2i
16160	 IF ss(0 THEN ss=0
16170	 END IF
16180	 NEXT i
16190	 IF array$(ss,0)<tl$ THEN ss=ss+1
16200 END DEFine binary_search

Module 3.2.6: Inserting items into the main dictionary
The principle of this module is the simpler moving of items up and down.
Only you can decide whether it would be worth your while adapting the
method to use a pointer array, as in U ıı ifile.

121

Module 3.2.6: Lines 17000— 1 7130
170ØØ REMark *******W****************
17Ø10 DEFine FROCedure dínsert
17Ø2Ø REMark ******************-******
17Ø3Ø	 IF ít ß=:::0 AND it ss
17040	 FOR í=ít TO ss+1 STEP -1
17050	 array$(i3O)=array$(í-1,0)
17Ø6Ø	 array$(i,l)=array$(i-1,1)
17070	 array(í)=array(í-1)
17080	 NEXT i
17Ø9Ø	 END IF
17100	 array$(ss,0)=tl$
17110	 array$(ss, ıı =t2$
17120	 array(ss)=NN
171'0 END DEFíne d insert

Module 3.2.7: Entering items for the dictionary
Considerably less complicated than the equivalent module in Unifile, this
module accepts three inputs from the user: (a) the name of the item, (b) the
name of the units in which it is measured and (c) the quantity associated
with those units.

Module 3.2.7: Lines 15000— 15270
15000 REMark ************************
15010 DEFíne PROCedure d_ínput
15Ø2Ø REMark ************************
1530 REPeat entry
15040	 CLS
15050	 AT 1,6
15Ø6Ø	 PRINT "NEW ITEMS FOR DICTIONARY"
15Ø7Ø	 IF ít:%10ØØ
15080	 AT 6,12
15Ø9Ø	 PRINT "NO MORE ROOM"
15100	 t$=INK::EY$(-1)
15110	 RETurn
15120	 END IF
15130	 REF'eat confirm
15140	 PRINT\\NAME$;
15150	 INPUT	 ("ZZZ" to quit): '; t1$
151bØ	 IF tl$="zzz" OR tl$="ZZZ" THEN RETLIrn
15170	 INPUT\"UNITS: ";t2$
15180	 F'RINT\"QUANTITY PER ";t2$;": ";
15190	 INPUT NN
15200	 INPUT\\"ARE THESE CORRECT (Y/N):";Q$
15210	 IF Q$="y" OR Q$="Y" THEN EXIT confirm
15220	 END REPeat confirm
15230	 binary search
15240	 d_ínsert
15250	 ít=it+1
15260 END REPeat entry
15270 END DEFine d_input

Testing

It is now possible to make a real test of what has been entered so far.
Run the program, specify that you are not loading from microdrive and

give the name ITEM in response to the prompt for an overall name. At the
main menu, choose option 5 `Add to Dictionary'. When the `new items'
screen comes up, input the following three entries:

THING 1/BOX/10
TH ING2/BOTTLE/20
THINGS/BAG/40

These items have no particular meaning, they are purely for test purposes.
When you have input the items, return to the main menu by entering

`ZZZ'. Now call up the data file module (option 7) to store the informa-
tion. Stop the program with menu option eight and enter:

for í = 0 to 2:print array$(i 3 O),array$(i,1),array(i):next i[ENTER]

You should see this:

THINGI	 BOX
	

10
THING2	 BOTTLE

	
20

THINGS	 BAG
	

40

Now run the program and specify that you do want to load from micro-
drive. Give the name you supplied when storing the data. When the drive
has finished, you should be able to perform the same test of the contents of
the arrays, with the same result.

Module 3.2.8: The search routine

As in Unifile, this module provides the user with the opportunity to move
through the file of dictionary items, to search for named items or to delete
items from the file. The module is simpler than that given in Unifile since it
is designed to search for whole items only, rather than combinations of
characters stored anywhere in an item. In addition, the structure of a
complete entry in Nnumber is far simpler than the structure of an item in
the main array of Unifile.

Module 3.2.8: Lines 18000-18400
1BØØØ REMark ************************
18010 DEFíne PROCedure d_display
18020 REMark ************************
18030	 ss=0
18Ø4Ø	 REPeat search_prompt
i805Ø	 CLS
18060	 AT 1,15
18070	 PRINT "SEARCH"

Chap/er З Serίouserand SeriouserThe Working Sinclair QL

122 123

•
Tire Working Sinclair QL

18Ø8Ø	 PRINT \" ITEM NUMØER: "ass+1
18090	 PRINT\" ";NAME$;": ';array$(ss,O)
181ØØ	 PRINT " UNIT: ";array$(ss,1)
18110	 PRINT " QUANTITY PER ";array$(ss,1);

";array(ss)
18120	 PRINT\"*********************************

**** .
18130	 PRINT\" COMMANDS AVAILABLE:"
10140	 PRINT\"	 >Item to be searched for"
18150	 PRINT "	 >'* then number to move

pointer"
181bØ	 PRINT "	 ,'ENTER' for next item"
18170	 PRINT "	 >'DDD' to delete item"
18180	 PRINT "	 ı 'Z.ZZ' to quit"
18190	 INPUT\" WHICH DO YOU REQUIRE:	 tl$
l820Ø	 IF tl$="" THEN tl$="M1"
1.0210	 IF tl$="ddd" OR tl$="DDD"
1822Ø	 d_delete
18230	 IF ít=0
18240	 EXIT search_prompt
1Ø25Ø	 END IF
18260	 ti$="*0"
18270	 END IF
18200	 IF ti$="z г z" OR tl$="ZZZ" THEN
18290	 E К IT search_prompt
183 И 	 END IF
16310	 IF tl$(1)<)"M"
18320	 binary_mearch
16330	 END IF
1Ø34Ø	 IF tl$(1)="*"
18350	 ss=ss+tl$(2 TO)
18360	 IF ss>it-1 THEN ss=it-1
l837Ø	 IF ss<0 THEN ss=0
l838Ø	 END IF
1Ø39Ø END REPeat search_prompt
18400 END DEFine d_display

Testing
Simply run the program, reload the three items of data from disk and then
call up option 6 from the main menu. You should be able to page through
the items, forwards or backwards, using a number preceded by ` #', as in
Unifile. You should also be able to recover an item by entering the item
nanıe — not the unit name.

Module 3.2.9: Deleting an item

The direct equivalent of the delete module i ıı Unifile, but, once again, the
method of storage employed here makes for greater simplicity.

Modы le 3.2. 9: Lutes 19000— 19090
190ØØ REMark ************************
19010 DEFíne PROCedure d delete

•
Chapter З Seriouser and Ѕегіоиѕег

19020 REMark ************************
19030	 FOR í=ss TO ít-1
19040	 array$(í,O)=array$(i+1,0)
19Ø5Ø	 array$(í,1)=aг ray$(i+1,1)
l906Ø	 array(i)=array(i+l)
19Ø7Ø	 NEXT i
19Ø9Ø	 ít=it-1
19Ø9Ø END DEFine d _delete

Testing

Run the program, reload the data, call up option 6 from the main menu,
and enter `DDD' against one of the entries. You should find that it is
removed from the file.

Module 3.2.10: Copying items into the current list
The purpose of Nnumber is not simply to keep a dictionary of items and
their associated quantities, but to use that dictionary as the basis on which
temporary lists can be constructed. The modules which follow are there-
fore designed to allow the user to add items to the `current' list, to display
that list, to delete single items from it or to delete the whole list in one
operation. The current module allows the copying of items from the main
dictionary into the current list.

Module 3.2.10: Lines 13000— 13350
13ØØØ REMark ************************
13010 DEFine PROCedure c_input
BØ20 REMark ************************
13030	 REPeat c_prompt
13040	 CLS
13Ø5Ø	 AT 1,4
l306Ø	 PRINT "CURRENT LIST ADD ^ Г IONS"
13070	 IF c_1íst=101
13Ø8Ø	 AT 10,5
13Ø9Ø	 PRINT "CURRENT LIST NOW FULL"
13100	 t$=INКEY$(-1)
13110	 EXIT c_prompt
13120	 END IF
13130	 PRINT\\NAME$;" ('ZZZ' to quit):
13140	 INPUT tl$
1 з 15O	 IF tl$="zzz" OR tl$="ZZZ"
13160	 EXIT c_prompt
13170	 END IF
13180	 binary search
13190	 IF array$(ss,O)< tlt
132ØØ	 PRINT\NAME$;" ";t1$;" unknown."\

"Please check."
13210	 t$=INКEY$(-1)
l322Ø	 EXIT c_prompt
l323Ø	 END IF

124 125

•
The forking Sinclair QL

13240	 PRINT\ "LINTTB: ';arrayt(ss,))
13250	 PRINT\"NUMBER OF ";array$(ss,1):

" UNITS:	 .
13260	 INPUT qu
13270	 INPUT\"Are these correct (Y/N): ":G?$
13280	 IF D$="y" OR U$="Y"
13290	 curre пtt(c líst,0)=array$(ss,0)
133ØØ	 current$(c_list,1)=qu 1< " " & array$

(ss,1)
13310	 current(c_líst)=qu*array(ss)
1 з320	 c_1ist=c_1íst+1
133'0	 END IF
13340	 END REPeat c_prompt
13350 END DEFine c_ínput

Collllnentary
Lines 13180— 13230: These lines perform a check to see if the item input by
the user, which ís to be placed into the current list, is present in the main
dictionary. This is done by calling up the binary search module to obtain
the position at which the item would be inserted into the dictionary. The
actual contents of (lie dictionary at this point are then compared with what
the user has input. If the item input by the user is in the dictionary then the
two items will be the same, otherwise an error message is printed and the
module terrniiiates.

Lines 13240— 13260: Having found the item in the diction ıary, the module
prints out the units in which it is normally measured and asks how many of
those units are to be included.

Lines 13270— 13330: The user is requested to confirm the accuracy of the
entry before it is added to the current list, contained in the variables CUR-
RENT$ and CURRENT. Note that the quantity stored in CURRENT is
not the quantity per unit taken from the dictionary, but the total quantity
for the number of units specified by the user.

Testing
Run the program and reload the data from disk. Call up option 2 on (lie
main menu. Enter the following items and numbers of units:

THiNGI,1
THING2,2
THING3,3

Now try to get (lie module to accept `THING4', which is not present in the
dictionary. You should receive an error message asking you to check the
item name. Press any key and you will return to the main menu. Before you
do anything else, call up option 7 — this will store the current list you have
just created, along with the main dictionary. Finally choose option 8 to
stop the program.

126

•
Chapter 3 Ser ίouser and Serio г ιser

Now enter the following line in direct mode:

for í = 0 to 2:print current$(í,0),current$(i, I),current(i): next í[ENTERi

You should see this:

THINGi
	

I BOX
THING2
	

2 BOTTLE
THINGS
	

3BAG

Module 3.2.11: Displaying the current list
The sole purpose of this module is to print the entries which make up the
current list, one by one on the screen. After each entry, the user is required
to press a key before the next is displayed. This is because the list will
normally be longer than the screen itself and the user will not want the list
to scroll up off the screen faster than it can be read. At the end of the list,
the total of the associated quantities for the contents of the current list is
given.

Modи le 3.2.11: Liııes 14000-14180
14ØØ0 REMark: ************************
14Ø1Ø DEFine PROCedure c_display
14020 REMark:: ***********************
1407.0	 IF c list)0
14Ø4Ø	 OLE
14050	 c_tata1=0
14Ø6Ø	 FOR i =0 TO c_list-1
14070	 PRINT NAME$;": ':current$(i3O)
14080	 PRINT "UNITS: ':current$(i,l);" @ ";

current(i)/current$(i,l)
14090	 PRINT "TOTAL: ':current(í)
14100	 PRINT "000000000000000000000000000000

0000000"
l411Ø	 t$=INKEY$(1)
l412Ø	 c total=c total+current(i)
14130	 NEXT i
l414Ø	 PRINT "OVERALL TOTAL:	 c total
14150	 PRINT\"Any key to return to menu"
14160	 t€=INtEY$(-1)
14170	 END IF
14180 END DEFine c_dísplay

Module 3.2.12: Deleting items from the current list
This is a simplified version of the kind of search module used for the main
dictionary.

Module 3.2.12: Lines 2Π000 — 203 70
20000 REMark ************************
20010 DEFíne PROCedure c_delete

127

10
40
120

•
The Working SinclairQL

20020 REMark ************************
20Ø3Ø count=0
20040 REPeat c_prompt
20050
	

IF c_list=0 THEN EXIT c_prampt
20060
	

CLS
20070
	

AT 1,8
20080
	

PRINT "CURRENT LIST DELETION"
20090
	

PRINT\\"ITEM NUMBER ";count+l;" OF
c_líst

20100	 PRINT\current$(count,0)
20110	 PRINT\cur-rent$(count,i);" @ ";current

(count) /current$ (count, 1)
2Ø12Ø	 PRINT\\" COMMANDS AVAILABLE:"
2Ø13Ø	 PRINT\"	 >'000' = delete"
20140	 PRINT "	 >'ENTER' = next item"
20150	 PRINT "	 >'ZZZ' = quit"
20160	 PRINT "	 >'#' + number to move pointer
2Ø17Ø	 INFUT\"WHICH DO YOU REQUIRE: ";Q$
20180	 IF Q#="zzz" OR Q$="ZZZ"
2Ø19Ø	 EXIT c_prompt
20200	 END IF
20210	 IF Q$="" THEN Q$="#1"
20220	 IF Q$(1)="#"
2Ø23Ø	 count=count+ Q$(2 TO)
20240	 END IF
20250	 IF Q$="ddd" OR Q$="DDD"
20260	 FOR í=count TO c_líst-1
20270	 current$(i3O)=current$(í+1,0)
20280	 current$(i,1)=current$(i+1,1)
2Ø29Ø	 current (i)=current(i+1
2Ø30Ø	 NEXT i
20310	 c_1ist=c_list-1
2Ø32Ø	 IF c_1íst=0 THEN EXIT c_prompt
2Ø33Ø	 END IF
20340	 IF count>c list-i THEN count=c_líst-1
2Ø35Ø	 IF count!Ø THEN count=0
20360 END REPeat c_prompt
20370 END DEFíne c_delete

resting

Run the program and reload the data file containing the current list. Call
up option 4, `Delete from Current List', from the main menu. You should

now be able to page through the three items in the current list and delete one
— the fact that it has been deleted may be checked by displaying the current
list.

Modide 3.2.13: Iiiitialisiiig the current list
For many applications, the need will be to construct a current list, obtain
the total involved, and then quickly move on to a fresh list. This simple

module wipes out the contents of the current list in one operation.

•
Chapter Seriouserand Seriouser

Module 3.2.13: Li ıies 12000— 12060
12Ø0Ø REMark: ************************
12010 DEFíne PROCedure c_initíalise
12020 REMark: ************************
120 30	 DIM current$ (100,1,20)
12040	 DIM current (1ØØ)
12050	 c_líst=0
12060 END DEFine c initialise

Testing
Run the program, reload the datafile which includes the current list and
specify option 3, `Start Fresh List', from the main menu. The main menu
should be alnı ost instantly re-printed. Now try calling option 1 fro ııı the
main menu. Once again, all that happens is that the main menu reprints
itself — the display module has been called but since there is nothing to be
displayed, execution immediately returns.

If this test is completed satisfactorily, the program is complete and ready
for use.

PROGRAM 3.3: MULTIA

Program function
In the final program iii this chapter, we turn to the worthy subject of edu-

cation for a little bit of fun. I'm not entirely sure how much you can learn
about your chosen topic using this program, but it is fun to use, and makes
answering questions addictive. Not only that, the program is a star in its
own right, for an earlier version of MultiQ on the Sinclair Spectrum was
the first program (at least according to the press hand-out) to set a listeners'
quiz on radio in Britain.

M ıı ltiQ is, as the name suggests, a multi-purpose program that can at
one moment be a language tutor and the next be quizzing you on abstruse
points of 19th century history. It does all this by creating random answer
tests of the type increasingly used in public examinations, setting a ques-
tion and providing five possible answers, only one of which is correct. A
running score is kept, providing an assessment of the user's knowledge on
the current topic. Of course, the main work is on the part of the program-
mer, since not only does tl ı e program itself have to be entered, there is also
the small matter of entering a large enough body of questions to ensure that
the tests are meaningful.

Module 3.3.1: Initialisation
As with all the multi-purpose programs in this chapter, this module
includes provision for describing the type of file to be handled in the cur-

rent session.

129
128

1 1

11

111,

ıı

1 1'
σ '

ı I

111!

!!;

m

1 İı

^I^ ıı

^111

11 i1

I,11

ıııı

111

1 ı 1

I11

III

Í İİ

ııı

1 ı

^11 η

11111

11

11

^ Θ

Ill

1,1

I ı
11 η1 ' III

1 1 11

ı u

II^^

iii,

11

i
Chapter3 Seriouser nud Serinuser

The Working SinclairQL

QTYPES will hold the names of types which may be allocated to ques-
tions and answers and NTYPE will store the number of each type in the
main file.

Lines 10110— 10180: MultiQ, as we have already noted, sets tests, íe it asks
questions and displays possible answers. These lines enable the user to give
a general title to questions and answers. If the program were to be used for
the purposes of learning French, for instance, you might call the question
`ENGLISH WORD' and the answer `EQUIVALENT FRENCH WORD'.

Module 3.3.2: The menu
A standard menu module.

Figure 3.3: Mu tio's Command Menu.

Modu ίe 3.3.2: Lirгes 11000— 11330
11000
11Ø1Ø
11020
1 1 Ø2Ø
11040
11050
11Ø6Ø
11Ø7Ø
1108Ø
11090
11100
11110
11120
11170
11140
11150
11160
111 7 й
11180
11190
112ØØ
11210
11220
11270
11240
11250
11260
11270
11280
11290
11300
11310
11320
11 22

Module 3.3.1: Lines 10000— 1 0240
1ØØ0Ø REMark: ************************
10010 REMart:: initialise
10020 REMark: ************************
10Ø2Ø	 PAPER 7: INk: Ø
1ØØ4Ø	 DIM name$(1,20),qu(4),array$(499,1,20),

q_typeT(9,20),n_type(1,9)
1Ø05Ø	 right=) : total=0 : IT=O
1ØØ60	 OLD : CLS#Ø
1ØØ7Ø	 INFUT\"LOAD FROM MICRODRIVE (Y/N): ";Q$
10080	 IF 0$="y" OR 0$="Y"
10Ø9Ø	 recall
1Ø1ØØ	 ELSE
1Ø11Ø	 REPeat check:
10120	 CLS
10130	 AT 1,12 : PRINT "TEST STRUCTURE"
10140	 INFUT\\"NAME FOR ANSWER: ";T1$
10150	 INFUT\"NAME FOR QUESTION: ";T2$
10160	 INFUT\\"Are these correct (y/n): ';OT
10170	 IF O$="Y" OR O$="y' THEN EXIT check:
10180	 END REPeat check
1Ø19Ø	 q_type$(Ø)="No type"
1Ø2ØØ	 n_types=1
10210	 name$(0)=TIT
10220	 nameΣ(1)=T2T
10220	 types
1Ø24Ø	 END IF

Con ııue ıntary

Line 10040: The array NAME$ will he used to record the general names
given by the user to questions and answers, QU will be used in the setting of
random tests, ARRAY$ will hold the main file of questions and answers,

REMark: ************************
REMark: menu
REMark: ************************

REPeat display
PAPER 2. : INK Ø
OLD : CL5#Ø
AT 1,16 : PRINT "MULTIO"
PRINT\\" COMMANDS AVAILAELE: "
PRINT\"	 1) INPUT NEW ITEMS"
PRINT "	 2) ENTER NEW TYPES"
PRINT	 7) SEARCH/DELETE"
PRINT "	 4) GENERATE QUESTIONS"
PRINT "	 5) DISPLAY OR RESET SCORE"
PRINT "	 6) DATA FILES"
PRINT "	 7) STOF'
INFUT\" WHICH DO YOU REQUIRE: ";Z
IF (Z>2 AND Z::7) AND IT=t
PRINT "NO DATA YET"
TT=INK EYt-1)
Z=Ø

END IF
SELect ON Z

ON Z=1 : niterns
ON Z=2 : types
ON Z=3 : search
ON Z=4 : questions
ON Z=5 : score
ON Z=6 : store
ON Z=7

OLD
PRINT#Ø,"Classroom closed"
STOP

END SELect
END REF'eat display

131130

The {Dorking Sinclair QL

Module 3.3.3: Setting question types
In the course of entering later modules you will discover that MiltiQ makes
provision for two different levels of difficulty in the tests that it sets. It does
this on the basis of question types. Turning again to the example of using
the program as a French language tutor, it is clearly possible to divide up
the kinds of words being displayed into different grammatical groups, like
verbs, nouns, adjectives and so on. If an English word is displayed which is
a verb, and of the five possible French answers only o ıı e is a verb, the test is
a great deal easier than if all five of the possible answers were verbs. The
purpose of the current module is to allow the user to define up to 10 types
into which questions or answers will fall, with the facility to tag a type on to
a question as it is entered. When MiiltiQ later comes to set a test, it will ask
whether the user wishes possible answers to questions to be drawn only
from the same type as the correct answer or from the whole stock of
answers.

A7odule 3.3.3: Lines 12000— 12210
REMart:
DEFíne
REMark:

PROCedure types

REF'eat loop
CLS
AT 1,16 : PRINT "TYPES"
PRINT\\" Types so far:"\\
FOR i =0 TO n_t ypes-1

PRINT "	 ';i +1ç")	 :q_type$(i)
NEXT í
IF n_types=l0

PRINT\\"NO ROOM FOR MORE TYPES."
Т$=INr::EY$(-1)
RE Turn

END IF
PRINT\\"INPUT 'ZZZ TO QUIT OR:-"
INPUT\"INPUT NEW TYPE: ";0$
IF O$="zzz" THEN RETurn
q_type t (n_ types) =0$
п _types=n_types+1

END REPeat 1 oop
END DEFine types

Testing
You should now he ill a position to run the program and enter up to 10
question types. You can eonfirm that the types have been accepted by stop-
ping the program and typing:

for í= 0 to 9:print q_type$(i): ıı ext i[ENTER]

132

•
Chapter 3 Seriouserand Seriouser

Module 3.3.4: Binary search
A standard search module, working alphabetically on the basis of the
answers to questions. Note that, as you will discover when you enter the
new items module in a momear, each answer is preceded by a single char-

acter (0-9) to indicate which type it is. The file will therefore be sorted first
of all on the basis of types and, within types, on the basis of the alphabeti-
cal order of answers.

Module 3.3.4: Lines 14000-14200
14Ø0Ø REMart **i *********************
14Ø1Ø DEFine PROCedure Ь_search
14020 REMart ************************
14 	 IF I T=0
14Ø4Ø	 ss=0
14Ø5Ø	 RETurn
14060	 END IF
14070	 po=INT(LN(IT)/LN(2))
14Ø8Ø	 ss=2''po-1
14090	 FOR i=po TO Zt STEP -1
14100	 IF array$(ss,0)<:T1$
14110	 ss=ss+2 "i
14120	 IF ssIT-1 THEN ss=IT-1
141.'0	 END IF
14140	 IF array$(ss,0)>T1$
14150	 ss=ss-2"i
14160	 IF ss-=:0 THEN ss=0
14170	 END IF
14180	 NEXT i
1419Ø	 IF arrayΣ(ss,0):T1€ THEN ss=ss+1
14200 END DEFine binary_search

Module 3.3.5: Inserting an item
A standard insert module.

Mπdule 3.3.5: Lines 15000— 15130
15000 REMart:_ ************************
1S01Ø DEFine PROCedure insert
15020 REMart:: * ****** *** ******* **** ***

1SØ70	 IF IT гΡ: '='0 AND IT>ss
15040	 FOR i =IT TO ss+1 STEP -1
15050	 array$(i3O)=arra у$(í-1,0)
15060	 array$(i,1)=array$(i-1,l>

15070	 NEXT í
15Ø8Ø	 END IF
15Ø9Ø	 array$(ss,0)=T1$
15100	 array$(ss,l)=T2$
15110	 IT=IT+1
15120	 update
15170 END DEFine insert

133

12000

12010
12020
12070
12040
12050
12060
1207Ø
12080
12090
12100
12110
12120
1ц 70
12140
12150
1216Ø
12170
12180
12190
12200
12210

i
The Working Sinclair QL

Module 3.3.6: Keeping track of types
We have already entered the module which allows types to be recorded but
we also need to give the program the ability to record how many of each
type there are in the file and where each group of types starts. The record of

how many of each type there are is dealt with by the input module, which
simply adds 1 to the relevant element in the array N_TYPE. This module
is called whenever a new entry or deletion is made. Its purpose is to record
in the other side of N_TYPE the cumulative totals of types from 0-9.
Eventually the answers will be arranged in type order within the main file,
so knowing the total of items which fall under types 0 to 2, for instance,
tells us where the items under group 3 start.

Module 3.3.6: Lines 16000 —16080
16u00 REMark ************************
1bØ1Ø DEFine PROCedure update
16020 REMark *************M**********
16030	 su=0
1b04Ø	 FOR í=0 10 9
16050	 n_type(1,í)=su
16060	 su=su+n_typetu,í)
1b07Ø	 NEXT i
16080 END DEFine update

Module 3.3.7: Entering a new item
A straightforward module which allows the user to enter a new question
and answer, then attach a type to it.

Module 3.3.7: Lines 13000 —13320
13000 REMark ************************
13010 DEFine PROCedure г items
13020 REMart ************************
130.'0	 REPeat loop
1 з040	 CLS
1 з050	 AT 1,15 : PRINT "NEW ITEMS"
13060	 IF IT=5ØØ
13070	 PRINT\\"NO MORE ROOM"
13Q8Ø	 T't=lNtEYt
13090	 RETurn
13100	 END IF
13110	 F'RINT\"INPUT ITEM OR 'ZZZ TO QUIT:"\\

name$(0); .
13120	 INPUT T1$
13130	 IF T1$="zzz" OR T1$="ZZZ" THEN EXIT loop
13140	 PRINT namet(1);" σ
13150	 INPUT T2$
13160	 PRINT\"TYPES:"
1T17Ø	 FOR i =0 TO n_types-1
13180	 PRINT " ';i+1;") ';q_type$(i)
13190	 NEXT í

Chapter 3 Seriouser and Ѕегіоиѕег

13200	 INF'UT\ "Which is it: ';t3
13210	 t3=t з-1
13220	 IF t3<::0 OR t3ïn_types THEN t3=0
1 3230	 Γ'RINT "Type: ";g_type^(t3)
13240	 INFUT\ "ARE THESE CORRECT (Y/N):
13250	 IF D$="y" OR Dt="Y"
13260	 ntype(u,t')=ntype(n,t)+1
13270	 Ti$=t & T1#
13280	 Ь search
13290	 insert
1 ?3ØØ	 END IF
13310	 END REPeat loop
λ3320 END DEFine г items

Commentaryy

Line 13260: The element of the array N_TYPE representing the type
specified for the current question and answer is increased by 1. It is this
array, as we have seen, which is worked on by the UPDATE module in
recording where each group starts in the array.

Testing

You should now be able to run the program, specify types and then call up
menu option 1 to begin entering questions and answers. To verify that
items are being received correctly, enter the following data:

QUESTION
	

ANSWER
	

TYPE

Q111
	

All!
	

3

Q222
	

A222
	

2

Q333
	

A333

and then quit the program. Now type:

for i =0 to 2:for j =0 to ! print array$(i,j):next j:next i[ENTER]

You should see:

OA333
Q333
1 A222
Q222
2A333
Q111

Module 3.3.8 and 3.3.9: Storing data
Now that items of data can be entered, it is time to enter the two standard

modules which will store and recall items.

;I

135134

•
Chapter 3	 SerίouseraпdserіouserThe Working s јпгta іr QL

Modules 3.3.8 and 3.3.9. Lines 22000-23220	 Module 3.3.10: Lines 20000-20360
22Ø0Ø REMark:	 эΡ ı ******+******* эt********	 ^ØØ0Ø REMark:	 ********** W******* эиэı * эε * и

22Ø1Ø DEFine PROCedure store 	 2ØØ1Ø DEFine PROCedure search

22Ø2Ø REMark ************************	 2ØØ2Ø REMark:: ************************

22ø3ø	 CLs	 2ØØ'Ø	 ss=0

22040 AT 1,14 :	 PRINT "SAVE DATA"	 2ØØ4Ø	 REF'eat search_prompt

22Ø5Ø INPUT\\" Name of	 data file:";fílei	 2ØØ5Ø	 CLS

22Ø6Ø tfíle#="mdvl	 "	 l	 file$	 2ØØ6Ø	 AT	 1,15

22Ø7Ø DELETE tfile$	 2ØØ7Ø	 PRINT "SEARCH"

22080 OFEN_NEW #B,"mdvl_" R_' file#	 2ØØ8Ø	 PRINT \"	 ITEM NUMBER:	 ';ss+1

22Ø9Ø PRINT#B,IT 2ØØ9Ø	 PRINT	 "	 ';name#(0);":	 ';array#(ss,0,2

221ØØ FOR í=0 TO 1 TO)

22110 PRINT#Ø, пame(i) 2Ø10Ø	 F'RINT	 "	 ';name?(1);":	 ';array$(ss,l)

22120 FOR j=0 TO 9 2O11Ø	 PRINT	 "	 Type:	 "gq_type^(array$(ss,0,1))

2213u PRINT #8,n_type(i,j) 2Ø12Ø	 F'RIh1T\"**************^****************

22140 NEXT j
2215Ø FOR j=0 TO IT-1 2Ø1'Ø	 PRINT\" COMMANDS AVAILABLE:"

22l6Ø
221 70

F'RINT#9,array$(j,i)
NEXT j

2Ø14Ø	 PRINT "	 '	 '	 then number to move
pointer"

221 00 NEXT í 2Ø15Ø	 PRINT " ENTER'	 for net	 item"

221SØ FOR í=0 TO 9 2Ø16Ø	 PRINT " 'ODD'	 to delete item"

22200 PRINT #8,q_typet(i) 20170	 PRINT " :'ZZZ'	 to	 quit"

22210 NEXT	 í CØ180	 INPUT\" WHICH DO YOU REQUIRE:	 Tli

22220 CLOSE#8 2Ø19Ø	 IF TII=""	 THEN T1$="#1"

222'0 END DEFine store 2Ø2Ø0	 IF T1t="ddd" OR T1$="DDD"
2021 Ø	 d_delete

23ØØØ REMark ************************ 2Ø22Ø	 IF IT=Ø
23Ø1Ø DEFine PROCedure recall 2Ø2.'Ø	 EXIT searc _prompt
2'Ø2Ø REMark ************************ 2Ø24Ø	 END IF
23Ø3Ø CLS 20250	 T1="#Ø"
2'Ø4Ø AT 1,14	 :	 PRINT	 "RECALL DATA" 2 Ø26Ø	 END IF
23Ø5Ø DIR mdvl_ 2Ø27Ø	 IF T1f="z	 " OR T1t"ZZZ"
23Ø6Ø INPUT\\"	 Name of	 data file:";file$ 2Ø28Ø	 EXIT search_ı rompt
23Ø7Ø OPEN IN #8,"mdvl_" & file$ 20290	 END IF
230BØ INFUT#B,IT 2Ø3ØØ	 IF	 T1í(1)="#"
2?Ø9Ø FOR í=0 TO 1 2Ø'1Ø	 ss=ss+TlI(2 TO)
231ØØ INFUT#B,name$(í) 20 20	 IF ssIT-1 THEN ss=IT-1
2z11Ø FUR j =Ø TO 9 Z0'_Ø	 IF ss::Ø THEN ss=0
23120 INFUT #B,n_type(i,j) 2Ø'4Ø	 END IF
23l3Ø NEXT j 2Ø'5Ø	 END REPeat search -prompt
23140 FOR j-0 TO IT-1 2Ø'6Ø END DEFine d_display
2?150 INFUT #Ø,array$(j,í)
2Z16Ø NEXT j

2.170 NEXT í Testing
23180 FOR í=0 TO 9
23190 INFUT #8,q_typ еY(í) Run die progranı and recall the data you have stored on microdrive. Using
232ØØ NEXT i menu item 3 you should be able to page forwards and backwards through
23210
2220

CLOSE# В
END DEFine recall

the items.

Module 3.3.10: The user search
A simple search module which allows the user to search backwards and
forwards through the main file, displaying and, after the next module is
entered, deleting hems.

136

Module 3.3.11: Deletín an ítem

А standard deletion module.

137

a
The Working Sinclair QL

Module 3.3.11: Lines 21000 — 21100
21000 RENark ************************
21010 DEFine PROCedure d_delete
21020 REMark: ************************
210.70	 n_type(0, аrraу$(ss,Ø,1)-1)=n_type(Ø,

array$(ss,0,1)-1)-1
21040	 FOR i=ss TO IT-1
21050	 arr аy-$(i,Ø)=array$(í+1,0)
21060	 array$(i,1)=array$(i+1,1)
21070	 NEXT í
21080	 IT=IT-1
21090	 update
211ØØ END DEFine d delete

Testing

Follow the procedure as for the previous module but enter 'DDD' against
one or other of the items. You should find that the specified item has been
removed.

M ıı d ıı le 3.3.12: Setting questions

We now turn to the modules which constitute the novelty of MultiQ by
setting the multiple choice tests. The current module handles the visible
part of the process, the display of the questions and possible answers and
the user's choice of correct answer.

Module 3.3.12. Lutes 17000 —1 7450

PROCedure questions

17Ø4Ø	 AT 1,15 : PRINT "QUESTIONS"
17050	 PRINT\\"Do you wish answers to be drawn"
17Ø6Ø	 PRINT "from one type only (harder) or

from"
17070	 PRINT "the whole stock (easier)?"
17Ø8Ø	 PRINT\\" 1) one type only"
17Ø9Ø	 PRINT " 2) all types"
171ØØ	 INFUT\"Which: ";rq
17110	 IF rq<:1 OR rq::>2 THEN rq=2
17120	 REPeat loop
17170	 r select
17140	 CLS
17150	 PRINT name$(1);":	 ;array$(qu(q_pos),1)
17160	 PRINT\\\\name$(Ø);":"
17170	 FOR í=Ø TO 4
17180

	

	 PRINT " ';i+1;") ';array$(qu(i),0,2
TO)

17190	 NEXT i

Chapter Seriouser and Seriouser

17200	 REPeat check
17210	 INFUT\"Which is the right answer: "Ira
17220	 IF ra:Ø AND ra::6 THEN EXIT check
17270	 END REPeat check
17240	 IF ra-1=q_pos
17250	 CLS
17260	 FLASH 1 : CSIZE 7,1 : FILL 1 : INk:: 7

: STRIP 7
17270	 CIRCLE 82,55,15,2,0
17290	 INk:: 2
17290	 AT 4,11 : PRINT "RIGHT!"
1730Ø	 T$=INVEY$(-1)
17.'10	 FLASH Ø : CSIZE Ø,Ø : FILL Ø : IN:: Ø

: PAPER 3 : STRIP 3
17320	 right=right+l
177ZØ	 ELSE
17340	 PRINT\"Sorry, that s wrong"
17750	 FRINT\"The correct answer was
17760	 UNDER 1
l777Ø	 PRINT array$(main q,Ø,2 TO)
17.780	 UNDER Ø
17790	 END IF
17400	 total=total+l
17410	 AT 18,0
17420	 INPUT "Any more (y/n): ';0$
174'0	 IF O$ >"Y" AND O$ "y" THEN EXIT loop
17440	 END REF'eat loop
17450 END DEFine questions

Commentary

Lines 17050-17110: We have already noted that MultiQ is capable of
setting two levels of test. These lines allow the user to specify whether

possible answers are to be drawn from the whole file or from the same type
as the correct answer.

Lines 17170-17230: The question and the five possible answers, wl ı ich
will be selected by the next module, are displayed. The positions of tile five
possible answers are held in the array QU, and the position of the correct
answer within QU is recorded by the variable Q_POS.

Lines 17240-17390: If the user's chosen answer, as represented by the
variable RA, corresponds with the correct answer's position (QPOS),
then the screen flashes the enlarged word `RIGHT' in the centre of the
screen. The variable RIGHT, which records the number of right answers,
is incremented by 1. 1 f the wrong answer is given, the user is informed that
the answer is wrong and told what the correct answer was.

Lines 17400: TOTAL, the variable which records the total number of ques-
tions asked, is increiiiented by 1.

17000 REMart::

17010 DEFine

17020 REMark:

1 70'0	 PLC

138
139

Chaρler З SeriotΓSeг allll Seriou3er
The Working Sinclair QL

Module 3.3.13: Selecti пı g the random questions
Having given ourselves the ability to display the questions and answers, we
turn to the considerably more complex matter of selecting the questions
and answers. Before the detailed comme ıı tary, we shall take a general look
at the method involved.

What we want is to select one question and its corresponding correct
answer and then fill the array QU with five numbers, representing the posi-
tions in the main file of the five potential answers, i ılcluding the correct
answer. The main question and answer are first chosen randomly from the
entire file and the number of the question in the nain array placed iii a
random position within the array QU.

Having placed the main question into QU, four alternative answers have
now to he found. Depending on whether the user wants the easy or harder
form of the test, the four alternative answers will be selected either from
the whole of the main file or from that section which contains answers
whose type is the same as that of the main answer. The four answers are
chosen randomly from the appropriate section of the file, with checks
being made that the same answer is not included twice and that no answer is
included which appears to be identical to the correct answer.

Мо(1We 3.3.13: Lines 18000— 18320
18000 REMark **********************
18010 DEFine RROCedure reelect
18020 RENark. ***-*********************
l803Ø	 start=0 : finish=IT-1
18Ø4Ø	 main_q=RND(start TO finish)
18050	 c_type=arra у$(main_q,0,1)
18060	 IF rq=1
1Ø07Ø	 start=n_type(1,c_ type)
18Ø8Ø	 finish=start+n_ type (Ø,c_ type)-1
1B09Ø	 IF finish-start.4
1a1ø0	 start=0
18110	 finish=IT-1
181_0	 END IF
1913Ø	 END IF
18140	 q p os=RND(4)
18150	 qu(q_pos)=main_q
l816Ø	 FOR í=0 TO 4
1Ø17Ø	 IF í<::>q_pos
18180	 REPeat choose
18190	 duplicate=0
18200	 duff=RND(start TO finish)
18210	 IF array#(duff,0,2 T0)=array$(ma

0,2 TO) THEN duplicate=l
18220	 IF i;0
18270	 FOR j=0 7O i-1
18240	 IF array#(duff,0,2 TO)=array$(qu

(j),Ø,2 TO) THEN duplicate=1

140

18250	 NEXT j
18260	 END IF
1E127Ø	 IF duplicate=Ø THEN EXIT choose
18280	 END REPeat choose
18290	 qu(i)=duff
1e'øø	 END IF
1Ø_1Ø	 NEXT i
18.320 END DEFine r select

Commeгı tary
Line 18030: START and FINISH represent the range of the file from which
random selections of questions will be made. Originally they are set so that
the whole file is included.

Line 18040: The main question and answer are selected and their position
stored in MAIN_Q. The type of the answer is recorded by the variable
C_TYPE.

Lines 18060— 18130: If the user has specified the harder type of test, then
START and FINISH are reset so that they point to the beginning and end
of the group of questions of the same type as the main question. If it turns
out that there are less than five questioiis in that group, so that it would be
impossible to choose five different answers, START and FINISH are
again set to the beginning of the file. if you specify the harder form of the
test and find that the program does not provide it, the probable reason is
that there are no answers of the same type as the main question.

Lines 18140— 18150: The position in the main array of the main question is
placed in a random position with QU.

Lines 18160-18310: This loop chooses the four alternative answers from
the part of the file indicated by START and FiNISH, each temporarily
stored in the variable DUFF. Within the loop, checks are made comparing
the new answer with the correct answer, which may be anywhere in QU and
the answers previously placed in QU. Note that it is not sufficient simply to
check that the same answer from the niain file is not duplicated. Two ques-
tions from different parts of the main file may well have identical answers.
By the end of the loop, QU contains the positions of five different answers
within the main file.

Testing
The only effective way to test these modules is to enter a sufficient body of
data to allow tests to be generated. The best short test would be first to
register two question types, entitled TYPE 1, TYPE 2...TYPE 6. Now
enter a series of questions in the form Q1, Q2...Q10, with answers in the
form Al ,А2. . .А 10. The type for the first five questions should be TYPE 1,
with the remaining questions as TYPE 2...TYPE 6. This provides one set

141

n _g ,

a
The Working SinciairQL

of questions capable of generating the harder form of the tests, and five
others with only one question each.

Call up the random question generator and specify the harder form of
the test. You should find that you can continue to answer questions and to
be correctly informed as to whether your answers are right or wrong. When
a question from the first five is chosen, the five answers should be in the
range 1 – 5. When other main questions are chosen, you should be able to
see that the answers are drawn from the whole of the file of 10 questions.

Module 3.3.14: Calculating the score
The final touch we shall give the program is to enable it to calculate a
meaningful score for the tests. This is not quite as easy as it seems, since it is
not just a matter of taking the number of right answers as a percentage of
the total. If the user simply specifies the first answer for each test, on
average that will be the right answer once in every five questions. A straight
score of 20% may well indicate that the user has absolutely no clue as to the
correct answer. The solution adopted ís to subtract one-fifth of the total
questions (the number that could be expected by sheer chance) from the
right answers and to express that figure as a percentage of four-fifths of the
total number of questions.

Module 3.3.14: Lines 19000— 19180
19ØØØ RENark ***********************
19010 DEFine PROCedure score
1.9020 RENark: ************************
1907Ø	 CLS
19040	 AT 1 , 15 : PRINT "SCOF:E"
19050	 IF total=0
19060	 PRINT\\" NO SCORE YET"
19Ø7Ø	 TГ=INКEY#(-1)
19Ø8Ø	 RETurn
19090	 END IF
19100	 PRINT \\"TOTAL ANSWERS: ";total
19110	 PRINT\"CORRECT ANSWERS: ";right
19120	 PRINT\"SCORE: ";INT(((right—totali5)/

(total*.8))*1ØØ);"7."
19170	 INPUT\\\"Do you wish to reset score

(y/ π): ";0$
19140	 IF 0$ "y" OR 0$ "Y"
19150	 total=0
19160	 right=0
19170	 END IF
1.9180 END DEFine score

Tes İiiig
Run the test for the previous module again. When you have answered a few

Chapter 3 Serioиser and Serio і 'ser

questions, go back to the main menu and call up the score module. You
should find that the score you are given makes rough sense, even though it
will not be easy to relate it exactly to the number of right answers you have
given. You should also be given the option to zero the score and start a new
test from scratch.

If performance on this test is satisfactory, the program is ready for use.

142 143

•

CHAPTER 4

Money Matters

In this final chapter we turn our attention to one important aspect that we
have so far overlooked, the QL and money. It is a subject which cannot
realistically be ignored because microcomputers deal so superbly with
financial matters. The sums involved are seldom vast — or if they are then
it is unlikely that they are being dealt with on an inexpensive micro — and
the calculations involved are usually simple — a matter of addition and
subtraction as money comes in and goes out.

The real advantage of the microcomputer, however, is not simply that it
can deal with money, for so can the human brain: the microcomputer can
store information, retrieve it quickly and then present it in such a way that
it can be immediately understood.

The three programs in this chapter are:

BANKER: Allows a clear record of all payments into and out of a hank
account for a 12-month period. Optional printout of monthly accounts.

ACCOUNTANT: Produces a clear set of traditionally laid out accounts
from a set of figures.

BUDGET: Stores and processes large amounts of information about
family finances and produces a revealing analysis of the picture over a
12-month period. Allows `what if' decisions about possible expenditure to
be explored.

PROGRAM 4.1: BANKER

Program function

The object of this program is to allow the user to keep a clear and conti-
nuously updated record of a single bank account, the names of payments,
their date and the amount, including the ability to specify not only single
payments, but recurring expenses or receipts, no matter how irregular the
period. The program is designed to deal with an account for the period of
one calendar year and will output either to the screen or to a printer.

145

STATEMENT FUR F'EBRUAR"г

ØALANCE L/F:	 1 iJØùı . ИØ

İ TEM	 TOTAL

M Π R:TLA_E	 - 258.88	 7._,θ. ИØ

9 EL..ECTRICITY	 -	 57.97	 692.0''
12 CAR REFA]:RS
	

92.56	 6И9.47
15 R:ATES	 -	 98. 45	 511 . 02
18 GAS
	

45.12	 465.98
22 GROCER lEG	 -	 56.78	 409.12
Σ7 SINCLAIR: DL
	

399. ИØ	 10.12

Figure 4.1: Мlonlhly Statement Prepared by Banker.

Module 4.1.1: initialisation
A standard initialisation module.

Module 4.1.1: Lines 1000— 1150
1Ø00 REMark ********************=***
1010 REMark initialise
1020 REMark ************************
1030	 PAPER 2 : INK 7
1040	 CLS : CLS#0
1050	 sum = 0 : PA=O : space$=fill$(" ",8)
1060	 cl$=fill$(" ",37)
1070	 DIM payment$(499,15),p_month$(499,11)

amount(499,1)
1080 RESTORE
1090	 DIM mo$(11,9)
1100	 FOR i=0 TO 11
1110	 READ mo$(i)
1120	 NEXT í
1130	 INPUT "LOAD FROM MICRODRIVE (Y/N):";O$
1140	 IF D$="Y" OR O$="y" THEN recall
1150	 DATA "JANUARY","FEBRUARY","MARCH","AF'R1L",

"HAY", 'JUNE ","JULY","AUGUST","SEPTEMBER",
"OCTOBER","NOVEMBER","DECEMBER"

Coıtıııneııtary
Line 1070: The array PAYMENT$ will be used to store the names of
payments. PMONТН$ will contain a special string, explained later,
which records the months in which the particular payment is made. The
numerical array AMOUNT will store the amount of each payment and the
day of the month on which it is made.

Lines 1080 — 1120: This loop reads the names of the months of the year into
the array MO$.

Module 4.1.2: The program menu
A standard menu module.

Module 4.1.2: Lines 2000-2330
2000 REMark ************************
2010 REMark menu
2020 REMark ************************
2030 REPeat prompt
2040	 PAPER 2 : INK 7
2050	 CLS
2060	 AT 1,15
2070	 PRINT "BANTER"
2080	 PRINT\\" COMMANDS AVAILABLE:"
2040	 PRINT\\,"1) NEW PAYMENTS"
2100	 PRINT,"2) EXAMINE/DELETE PAYMENTS"
2110	 PRINT,"3) PRINT STATEMENT"
2120	 PRINT,"4) SAVE FILE"
2130	 PRINT,"5) STOP"
2140	 INPUT\\" WHICH DO YOU REQUIRE:";Z
2150	 IF PA=0 AND (Z=2 OR Z=3 OR Z=4)
2160	 PRINT\\,"SORRY, NO DATA YET"
2170	 T$=INKEY$(-1)
2180	 Z=0
2190	 END IF
2200	 SELect ON Z
2210	 ON Z=1 : ne'.'
2220	 ON Z=2 : search
2230	 ON Z=3 : statement
2240	 ON Z=4 : store
2250	 ON Z=5 : EXIT prompt
2260	 END SELect
2270	 END REPeat prompt
2280 CLS
2290	 AT 10,15
2300	 PRINT "BANKER"
2310	 AT 12,8
2320	 PRINT "CLOSED FOR BUSINESS"
2330 STOP

Module 4.1.3: Entering new items

This is a more complex input module than we have been used to so far, for
the simple reason that the entries themselves are more complex. For each
item recorded, five facts need to be known: whether the payment is a credit
or a debit (money received or money paid out), the name of the payment,
the amount, the mo ıı ths in which the payment is due, and the day of the
month on which the payment is made.

Module 4.1.3: Lines 3000-3660
300И REMark ************************
3010 DEFíne PROCedure newentries
3020 REMark. ************************

The Working Sinclair QL Chapter 4 Money Mailers

146 147

The !T Prking Sinclair QL

'030 REPeat nprompt
7Ø4Ø	 CLS
'050	 AT 1,14
3Ø6Ø	 PRINT "NEW ITEMS"
3Ø7Ø	 REPeat CREDIT
3Ø8Ø	 PRINT\\"1) CREDIT"\"2) DEPIT"
3Ø9Ø	 INPUT\"WHICH DO YOU REQUIRE: ":00
7100	 IF CD=1 OR CD=2 THEN EXIT CREDIT
3110	 END REPeat CREDIT
7120	 CLS
3130	 AT 1,14
3140	 PRINT "NEW ITEMS"
3150	 CD=CD-1
3160	 IF CD=O
3170	 PRINT\"CREDIT ITEM"
3180	 ELSE
7190	 PRINT\"DEPIT ITEM"
3200	 END IF
3210	 INPUT\"NAME OF PAYMENT: ";tpay$
3220	 INFUT\"AMOUNT: ";tpay
3230	 IF CD=1 THEN tpay=tpay*-1
3240	 rec_m$=""
_250	 FOR i=0 TO 11
7260	 AT 11,0
3270	 INFUT (mo$(i)&" (V/N): ");tm
7280	 IF tm$="Y" OR tm$="y"
290	 recmrec_m &. "1"

7300	 ELSE
3310	 rec m:#=rec m$ I, "Ø"
3320	 END IF
7370	 AT 11,ø
7.340	 PRINT cl$
3350	 NEXT i
3360	 AT 11,0
3370	 PRINT "TO RE PAYED IN: ";
3380	 FOR i=1 TO 12
7790	 IF rec_m$(i)="1"
74ØØ	 PRINT !mo$(i-1)!
7410	 END IF
7420	 NEXT i
7430	 INPUT\\"DAY OF PAYMENT (Ø-71): ";day
3440	 INPUT\"ARE THESE CORRECT (Y/N): ";T$
3450	 IF T$ "y" OR T$="Y" THEN EXIT n_prompt
7460	 PRINT\"NOT REGISTERED"
3470	 T$=INt:EY$(-l)
3480 END REPeat n_prompt
3490	 count=PA
35ØØ	 REPeat loop
3_+510	 IF dayiamount(count,l)
3520	 payment$(count+1)=tpay$
7530	 p_month#(count+i)=recm#
3540	 amount(count+l,0)=tpay
T55Ø	 amount(count+1,1)=day
3560	 EXIT loop

148

Chapter 4 Money Matters

3570	 END IF
7580	 payment$(court+1)=payment#(count)
7590	 pmonth$ (coiint+l) =p month$ (count)
3600	 amount(count+1,0)=amouпt(count,0)
7610	 amount (count+1,1)= amount (count,1)
3620	 count=count-1
3630	 IF count<::Ø THEN EXIT loop
7640	 END REPeat loop
7650	 PA=PA+1
3660 END DEFine new entries

Commentary
Lines 3030-3480: The overall loop which allows the user to confirm or
reject the information input.

Lines 3070-3200: The program clearly needs to know whether the item is
to be paid out or received, debit or credit. This is recorded in the form of
the variable CD (Credit/Debit), and an appropriate heading placed on
the screen.

Line 3230: If the user has specified a debit item, ie a payment out of the
account, the amount input is multiplied by minus one.

Lines 3240-3420: The months in which the payment is to be made are
input in response to a series of prompts. For each of the 12 months, a
character is added to the temporary string RECM$. If the payment is to
be made in the corresponding month, the character added is a `1', other-
wise it is a `0'. The FOR loop beginning at line 3380 prints out the names of
the specified months as recorded in REC _)VI$, so that the user can
determine that they are the months intended.

Lines 3500— 3640: This is the loop which inserts a new item into the main
file, in order of day of payment. The technique is a very simple one. Start-
ing with the last entry, the loop compares the day on which the new
payment is made with the day of payment of the item in the main file. If the
day of payment in the main file is less than the day of payment for the new
item, then the new item is inserted in the space following the item in the
main file. If the itemin the main file has a day of payment after the day of
payment for the new item, the loop shifts the existing item one space up the
file. In this way, as it scans down the file, it carries a spare line with it until
the correct location for the new item is found. Note that this technique
means that the first element in the main file, element zero, is always left
unused, acting as a buffer so that the loop will always know when the
beginning of the data has been reached.

Testing

Run the program and call up option 1 from the menu. Enter a new item as
follows:

149

•
The Working Sinciair QL

Debit (option 2 on the prompt)
Name: TEST
Amo ıııı t: 100
Months: FEBRUARY/MAY/AUGUST/NOVEMBER
Day: 15

After a pause you should return to the main menu. Stop the program by
using menu option 5. Now type:

print payment$(1),p_mo ıı th$(1),amount(1,0),amount(1,1)

The result should be:

TEST 010010010010 – 100 15

Module 4.1.4: Fπrmatting a number

Before we can go onı to enter the module which prints out the statement of
the account, two short modules must be dealt with. The first of them will be
used to translate numerical data into a standard format so that it can easily
be printed in columns, with decimal points neatly aligned. in addition, we
need to overcome the rather annoying limitation that (on early versions at
least) the QL kicks into what is called 'scíent í fie notation' for any value less
than 0.1. Try PR 'NT 0.09 on your machine and you will see what I mean —
what is displayed on the screen is 9E– 2, or 9 multiplied by 10 to the power
– 2. This is a ludicrous situation for a machine aimed to some extent at the
business market, since it means the QL cannot be relied on to print out
pence (or cents, or centimes. or...) in a normal format. Fortunately there
are ways round the problem and this module illustrates one of them.

Module 4.1.4: Lines 8000-8170
8000 REMark: ************************
8010 DEFine FuNction format# (nn,type)
8020 REMark ******W****************
80з0	 LOCal i,n
8040	 n=INT (н DЅ (пп * і) +5Е-2)
8050	 n'#=""
8060	 FOR i =6 TO 0 STEP -1
ßØ70	 n$=n$ & INT(п /10'í)
8N9Ø	 n=n-1Ø1i*INТ (п /10"i)
8090	 NEXT i
8100	 FOR i =1 TO 4
8110	 IF п $(i)<.:>"0" THEN EXIT i
8120	 n$(i)=" "
8110	 END FOR í
8140	 n$=n$(1 TO LEN(n$)-2) & '.' & n$(LEN(rT)

-1 TO)
8150	 IF type) THEN RETurn n$
8160	 IF type=2 THEN RETurn n$(4 TO 5)
8170 END DEFine format$

150

Chapter 4 Money Matters

Commentary
Line 8030: Si гıce the procedure may be called from within a loop, the loop
variable I is declared as a local variable — any changes made to it will not
affect its value anywhere else in the program.

Line 8040: The nunnber being sent to the module, NN, is multiplied by 100
to remove any decimal fraction. iii addition, since rounding errors were
encountered when the module was first used, result jug in figures like
12.99999999999 being produced rather than 13, a tiny decimal fraction is
added, and then the integer of the resulta ıı t number taken — the effect of
this is that the correct whole number is always produced.

lines 8060-8090: Using powers of 10 to divide the number successively,
individual digits can be be identified. Tl ı tı s, if the number were 1234, divid-
ing by 103 would produce 1. Subtracting the thousand, which has already
been analysed, 234 divided by 10-2 produces 2, and so on. Each digit is
stored in N$ as it is extracted. Since the loop runs from 6 to 0 in powers of 10
(1,000,000 to 1), the resulting string will be seven digits long, with leading
zeros if the number being worked on is less than 1,000,000.

Lines 8100 – 8130: The number in N$ is scanned to see whether it has any
leading zeros. If so, they are replaced with spaces.

Line 8140: N$ is translated back into a number with a decimal fraction by
adding a decimal point before the last two characters — in effect, dividing
by 100 but doing the operation on a string so that the QL cannot go into
scientific notation. In addition, if tile original number had no decimal frac-
tion, it will now have `.00' tagged on to the end, ensuring a standardised
format. Note, however, that the resultant string can only accurately con-
tain a figure of up to 99,999.99 due to the limitation to seven digits — it
could easily he adapted to cope with more than this but the range is suffi-
cient for the current program.

Lines 8150-8160: The module will be used to format two types of
numbers, Il ı e day of payment and actual cash values. What kind of format
it will return for a given number will depend on the value sent in the form of
the parameter TYPE.

Testing

To extract a number from the module, simply enter:

print format$(XX,type) [ENTER]

where XX is the number you want formatted and TYPE is either I or 2. If
you set TYPE to 1, you should get an eight character string, including lead-
ing spaces and two characters after the decimal point. If TYPE is 2, the
format will be two characters, including a leading space for values under 10.

151

The Working Siпсla іr QL
Chapter 4 MoneyMσtters

N'Iodtile 4.1.5: Dealing with negative numbers

One further problem, when it conies to formatting nunibers, ís raised by
negative quantities. it is quite possible simply to place minus signs in front
of them on the screen, but this does not stand out and so can lead to incor-
rect interpretation. A much clearer and more u ıiamhiguous method ís to

print the ııumbers, or their backgrounds, in red, and this is the solution
adopted here when output ís made to the screen. On the other hand, the
program can also output a statement to the printer, which would not recog-
nise such colour instructions — in this case, a simple minus sign must be

used.

Mod і .і le 4.1.5: Lines 7000— 7170
REMark: ************************
DE Γ ine F'ROCedure colour (flag)

REMar К

IF hard=0

IF flag =0
F'AF'ER #5,6	 INK #5,0

ELSE
F'AF'ER #5,2 : INk #5 ,7

END IF
END IF
IF hard=l

IF flaq:>=0
PRINT #5,"

ELSE
PRINT #5,"-';.

END IF
END IF

END DEFine colour

Coll]!!]eп iа1 ý

Lines 7030— 7090: HARD is the variable which indicates whether printer

output is required (hardcopy). This extended IF wí11 only be acted upon
when output ís to the screen. The number which is about to be printed ís
sent to this module, which accepts ít under the name FLAG. If FLAG ís a
positive number, the paper colour is set to yellow and the ink to black. If

fl ag is negative, the colour ís white ink on red paper. Explanation of the # 5

contained in the commands wí11 be kept until the commentary on the foll-

owing module.

Linen 7110- 7160: These lines are acted upon in HARD equals 1, indicat-
ing that output is to be to the printer. In this case a space ís printed in front
of positive numbers and a minus sign in front of ıiegative ones.

Testing
Type:

open # 5,scr_[ENTER]
colour — 1 [ENTER]
print # 5,1234[ENTER]

You should find that the number has been printed in white lettering on a
red background, since the parameter sent to the procedure was negative.
Now try `colour l' and you should find the number printed on a yello'v
background, indicating a positive number. Before moving on, type
`close # 5'. The use of channel 5 will be explained shortly.

Module 4.1.6: Displaying the statement
Though diere are more modules to come, the final task for the main part of
the program is to take the items which have been entered using the previous
module and compile them into a statement for any specified month of the
year. The statement will include a calculation of the balance carried for-
ward from previous months, and will also display in full all the payments
for the month and the continuing balance created by each payment.

Module 4.1.6. Lines 6000— 6560
6ø0Ø REMark ************************
bØ1Ø DEFi пе PROCed ııre statement
6020 REMark ************************
6Ø3Ø	 F'APER 6 : CLS : INK: Ø
6040	 INFUT \\" OUTPUT TO PRINTER (Y/N)";h аrd#
6ØsØ	 IF h а rd ="Y" OR hard$="y"
6ø6Ø	 OPEN #5,serl
bØ7Ø	 hard=1
6Ø8Ø ELSE
6090	 OPEN #5,scr__
61ØØ	 hard=0
6110	 END IF
6l2Ø	 REPeat check:
b13Ø	 INFUT\" NUMPER OF MONTH (1-12)::rno
6140	 mo=mo-1
6150	 IF mo=0 AND mo=11 THEN EXIT check
61bØ	 END REPeat check
6170	 CLS
b18Ø	 PRINT#5,"STATEMENT FOR ":mo$(mo)
6I9Ø	 sum=0
b2ØØ	 IF moØ
b21Ø	 FOR J=1 TO mu
6220	 FOR i=l TO PA
6230	 IF p_month$(i,J)="1"
6240	 sum=sum+amount(i,a>
6250	 END IF
6260	 NEXT i
6270	 NEXT J
6280	 END IF
629Ø	 PRINT#5,\" BALANCE C/F: '.

7øØ0
7010
7Ø20
7030
7040
705Ø
7060
7070
708И
7090
71ø0
7110
7120
71 30
7140
7150
7160
7170

152
153

The YY'oгking Sinclair QL

6300	 colour sum
6310	 PRINT #5,format$(sum,1)
6320	 colour 1
63	 IF NOT hard THEN UNDER #5,1
6340	 PRINT#5,\"

	 ITEM
TOTAL "\\-

6350	 IF NOT hard THEN UNDER#5,0
63bØ	 IF hard THEN PRINT #5,"
6370	 FOR i= 1 TO PA
6380	 IF p_month$(i,mo+1)="1"
6390	 PRINT #5,format$(amount(i,l),2);"
6400	 T$=paymert$(i) & cl$
6410	 PRINT #5,T$(1 To 15);"
6420	 colour amount(i3O)
6470 	 PRINT #5,formatš(amount(i3O),1):"
6440	 colour 1
6450	 sum=sum+amount(í,0)
6460	 colour sum
6470	 PRINT#5,format$(sum,1)
6480	 colour 1
6490	 IF hard=0 THEN Tt=INКEY$(-1)
b5Ø0	 END IF
6510	 NEXT í
6520	 CLOSE #5
65.0	 AT 18,0
6540	 PRINT\"ANY KEY TO RETURN TO MENU"
6550	 T$=INt:EY$(-1)
6560 END DEFíne statement

Comme ıı hry
Lines 6040 – 6110: You have already had notice that at some point a deci-

sion lıas to be taken as to where the output of the program is going to be
sent — to the screen or to the printer. These lines accomplish the choice.
Throughout this module all output is made to channel number 5. What
these lines do is decide whether that channel is a line of communication to
the screen or to the printer. The printer, as we have seen in earlier pro-
grams, is accessed through tue SERI port, whereas the screen, when open-
ing a channel, is simply called SCR_. Note that, if you do not have a
printer connected, you should not try to output data to SERI as you will

lock up the QL.

Line 6190: The variable SUM will be used to hold the balance in tIle
account — both the balance carried forward and the balance after each

item.

Lines 6200 – 6280: Provided that the statement is not for the first month, in
which case there is no balance to be carried forward, these two loops scan
the whole of the payments list once for each month which precedes the
month of the statement. In this way, each payment is examined to see
whether it is made in any of the preceding months, in which case the appro-

154

Chapter 4 Money Mailers

priate amount is added to the total iii SUM. By the cud of the two loops,
SUM contains the full total of any changes in the balance since the beginn-
ing of the year. (Keeping a complete balance, including any monies which
were in the account at the beginning of the year, can be easily achieved by
entering the balance from the end of the previous year as a payment on 1st
January.)

Lines 6300-63320: An example of the use of the two short modules just
e ıı tered, which will deal with the print colour and formatting of SUM.

Lines 6330-6350: Like the colour characteristics, the UNDER char-
acteristic means nothing to the printer and is only sent when the screen is
being used.

Lines 6370-6510: This loop scans through the complete list of payments,
while the extended IF from lines 6380 to 6500 selects only those which' have
a `1' in the relevant position of the string recording the months in which the
payment is to be made. When a payment is to be made in the month
specified for the statement, the loop prints out the day, AMOUNT(I,I),
the name, PAYMENT$(I), the amount of the payment, AMOUNT(1,0),
and finally the balance the payment produces, obtained by adding the
amount to the previous total in SUM. Notice that each time a number is to
be printed, it is sent to COLOUR and FORMAT$ to ensure that the correct
colour is set and that the number is in the correct format. When output is to
the screen, a key must be pressed before each item is displayed — this is to
prevent the statement scrolling quickly upwards off the screen if there are
too many lines of information.

Testing

Run the program and enter some test data. You should find that you get a
display something like the example given at the beginning of the program.
Try the statement for different periods of the year to ensure that the
nodule can cope with the different nmo ııths.

Module 4.1 .7: Sav' i ıııg data

A standard data storage module.

Module 4.1.7. Liizes 9000— 9180
9Ø0Ø REMark ************************
9Ø1Ø DEFine PROCedure store
9Ø2Ø REMark ************************
9Ø3Ø CLS
9Ø4Ø	 AT 1,14 : PRINT "SAVE DATA"
9050	 INPUT\\" Name of data file:";file$
9Ø6Ø	 tfile$="mdvl " S file$

155

The И'о rkіng RinсIа ír QL

156

Chapter Money Matters

4Ø7Ø
DELETE tfíle$ 4Ø8Ø
OPEN NEW #8,"mdv1_" i	 fí1eg 4090
PRINT#8,PA 4lØØ
FOR í=1 TO PA 4110

PRINT#Ø,payment$(í) 4120
PRINT#8,p_mOnth # (i) 4130
FUR J=0 TO 1 414Ø

PRINT#8,amount(i ,J) 4150
NEXT ј 4l6Ø

9Ø7Ø
9ØH0
9090
9100
9110
9120
9l3Ø
9140
9l5Ø
91bØ	 NEXT í
917Ø	 CLOSE#8
918Ø END DEFine store

Module 4.1.8: Loading data
A standard data recall module.

Module 4.1.8: Lines 10000— 1017 0

10Ø4Ø	 AT 1,14 : PRINT "RECALL DATA"
1ØØ5Ø	 DIR mdvl_
1ØØ6Ø	 INFUT \\" Name of data file:";file$
1ØØ7Ø	 OPEN IN #8,"mdvl_" 8. fi1 е
1Ø08Ø	 INFUT#8,PA
1Ø09Ø	 FOR i =1 TO PA
101ØØ	 INPUT#8,paymentf(i)
10110	 INPUT#8,p_month#(í)
1Ø12Ø	 FOR J=0 TO 1
10 1ýØ	 INPUT#8,amou п t(i,J)
l014Ø	 NEXT J
1Ø15Ø	 NEXT i
10160	 CLOSE#8
l017Ø END DEFine store

Module 4.1.9: Changing and deleting items

As in Nnunı ber, a simple user search module, which allows the user to scan
backwards and forwards or delete an item, though the delete function wí11

not be available until the next module has been entered.

Module 4.1.9:: Lines 4000-4340
4ØØØ RFMark ************************
4010 DEFine PROCedure search
л a20 REMark: ************************
40 ==0	 count=l
4Ø4Ø	 REF'eat display
4Ø5Ø	 CLS
4Ø6Ø	 PAPER Ø

BLOCK 448,9Ø,Ø,Ø,Ø
PRINT\"PAYMENT: ";payment$(count)
PRINT "AMOUNT: ";amount(count,a)
PRINT"MONTHS: ";
FOR i =1 TO 12

IF p month$(count,i)="1"
PRINT !moš(i-1)'

END IF
NEXT i

4170	 PAPER 2
PRINT\"DAY OF PAYMENT: ";amount(co ıınt,l)

418Ø	 AT 10,0
4i9Ø	 PRINT " COMMANDS AVAILABLE:"
42ØØ	 PRINT\"	 'ENTER 	 NEXT ENTRY"
4210	 PRINT "	 'DOD' > DELETE ENTRY"
4220	 PRINT "	 '#" THEN NUMBER > MOVE"
4230	 PRINT	 ZZZ' > DUIT"
4240	 INPUT\" WHICH DO YOU REDUIRE: ";D$
4250	 IF О ="ddd" OR O$="DDD" THEN remove
4260	 IF DE="zzz" OR O#="ZZZ" THEN EXIT display
4270	 IF O$='	 THEN tl$="#1"
4280	 IF O$(1)="#"
4290	 count=count-G-О (2 TO)
43ØØ	 END IF
4310	 IF count>PA THEN count=PA
4320	 IF count(1 THEN count=l
4330	 END REPeat display
434Ø END DEFine search

Testing

Though you cannot delete items, you should be able to page backwards
and forwards through any material you have in memory.

Module 4.1.10: Deleting items

A standard delete module, collapsing the file down on to the deleted item.

Modu le 4.1.10: Liııes 5000— 5100
500Ø REMark ************************
501Ø DEFine F'ROCedure remove
5020 REMark ************************
5030 FOR i =count TO PA
5Ø40	 payment^(í)=paymentš(í+1)
5050	 p_month$(i)=p month#(í+1)
5060	 amoLint(i,u)=amoLint(i+la)
5070	 amount (í , 1) = amoLlrmt (i +1 , 1)
508Ø	 NEXT í
5090	 PA=PA-1
5100 END DEFine remove

100Ø0 REMark:
10Ø10 DEFine
1Ø020 REMar4
i 0030	 CLB

****************** эε
F'ROCedure recall
эыи +ε эиэε ıεκ эε ** *+ε * эи ^ε ** эε эε * эε эt **

157

Tire Working Súτclaίг QL Chapter 4 Mone y Matters

Testing
You should now be able not only to page through your niaterial but to
delete items at will. The program is now complete and ready to use.

naives associated with each payment, are stored in the two sides of the
arrays ACCOUNT and ACCOUNT$. Up to 500 items can be stored on
both sides, although it would be be quite feasible to increase the size of the
arrays if more space were required.

PROGRAМ 4.2: ACCOUNTANT

Program function
The second program in this fi пal chapter is more complex than Banker. Its
function is to keep two sides of a simple set of accounts, setting them out in
the traditional format, with some items standing alone and others clearly
divided into groups representing different types of expenditure. Separate
screens are produced for the credit and debit side of the accounts, with the
overall balance of the account displayed.

DEBIT

OUSE
MORTGAGE
	

250.88
RATES
	

98.45

SINCLAIR QL
HOLIDAY
L Books

348.45
399.00
456. ϊ 1

2'3 .98

TOTAL:	 1233.56

CREDIT BALANCE IS	 8.88

OVERALL BALANCE IS — 1233.56

PRESS ANY KEY TO QUIT

Figure 4.2: Account Prepared by Accountant.

Module 4.2.1: Initialisation

A standard initialisation module.

Module 4.2.1: Lines 1000— 1070
lØ00 REMark ************************
101 й REMark initialise
1020 REMark ************ ***********
1030	 РAPER 4 : INK Ø
1040	 CLS : CLS#0
1050	 DIN account$(1,499,15),account(1,499),

cand(1)
1060	 INPUT\"LOAD FROM MICRODRIVE (Y/N): ";D$
lØ70	 IF tI$="Y" OR D$="y' THEN recall

Coп1111entary

Line 1050: The two sides of the accounts, credit and debit, including the

158

Module 4.2.2: The main menu
A standard menu module.

Module 4.2.2: Lines 2000-2410
2ØØØ REMark ************************
2010 REMark menu
2020 REMark ************************
2Ø3Ø REPeat menu
2040	 PAPER 4 : IN К Ø
2Ø5Ø	 OLD
2060	 AT 1,13
2Ø7Ø	 UNDER 1
2080	 PRINT "ACCOUNTANT"
2Ø9Ø	 UNDER 0
2100	 PRINT\\\"COMMMANDS AVAILABLE: "
2110	 PRINT\"	 1) INPUT NEW HEADINGS"
2120	 PRINT "	 2) CHANGE/DELETE ITEMS"
2130	 PRINT "	 3) PRINT ACCOUNTS"
2140	 PRINT "	 4) DATA FILES"
2150	 PRINT "	 5) STOP"
2160	 INPUT\"WHICH DO YOU RF_DUIRE: ";Z
2170	 IF cand(0)=0 AND cand(1)=0 AND (Z=2 OR

Z=3 OR Z=4)
2180	 PRINT\\"
	

SORRY, NO DATA YET"
2190	 Z=0
2200	 T$=INKEY$ (-1)
2210	 END IF
2220	 SELect ON Z
2230	 ON Z=1 : TYPE : heading
2260	 ON Z=2 : TYPE : search
2290	 ON 7=3 : TYPE : output
2320	 ON Z=4 : store
2340	 ON 7=5
2350	 CLS
2360	 AT 10,13
2370	 PRINT "ACCOUNTANT"
2380	 PRINT #0,"Program Terminated"
2390	 STOP
2400	 END SELect
2410	 END REF'eat menu

Module 4.2.3: Credit ıı r debit?
Unlike Banker, several parts of this program need to know whether a credit

159

or debit item is being specified, so the routine to request this information is
included in a separate module, the item type being recorded in the variable
CORD (C or D).

Module 4.2.3: Lules ЗOOP — 3110
3ØØØ REMark ************************
3010 DEFine PROCedure TYPE
3Ø2Ø REMark ************************
:030	 REPeat check
3040	 PRINT\\" 1) CREDIT"\" 2) DEBIT"
3050	 INPUT\"WHICH IS IT: ';cord
3060	 IF cord=l OR cord=2 THEN E К IT check
3070	 END REPeat check
3080	 cord=cord-1
3090	 cord$="CREDIT"
3100	 IF cord=1 THEN cord$="DEBIT"
3110 END DEFine TYPE

Module 4.2.4: The type of item
This module is trivial in itself but it gives a clue as to why this program is
bound to be longer than something like Banker. The purpose of the module
is to allow the user to specify which of three types an item about to be input
falls under. The three types are:

1) Λ single item: All that is required for this is the name of the item and the
amount. When the eventual account is printed out, individual items will
have their names priiited on the lefthand side and the amount associated in
the main column of figures on the right.

2) Λ main heading: It is this type which allows groups of items to be
specified within the overall accou ıit. if you were using the program to
prepare domestic accounts, for instance, you might set up `CAR' as a main
heading for a group of items including items like tyres, fuel, repairs and so
on in the eventual account, the name of the niain heading will be printed
on the lefthand side but there will be no amount printed against the main
heading itself.

3) Subheadi ııgs: As illustrated under (2) above, each main heading can
have a list of items following it, which are part of a separate group. I ıı the
accounts, the ıı anıes of s ıı bheadings will be printed under their relevant
main heading, inset from the left, while the amount associated with each
subheading will he printed to the left of the main column of figures.

Module 4.2.4: Lines 4000-4200
4000 REMark ************************
4010 DEFine PROCedure heading
4020 REMark ************************

4Ø3Ø REPeat h_loop
4O4Ø	 CLS
4Ø5Ø	 AT 1,14 : PRINT "NEW ITEMS"
4Ø6Ø	 PRINT\\cord#
4Ø7Ø	 PRINT\\"Is the item:"
4080	 PRINT\"	 1) A single item"
4Ø9Ø	 PRINT "	 2) A main heading"
41ØØ	 PRINT "	 3) A sub-heading"
411Ø	 PRINT "	 (Input 'Ø' to quit)"
4120	 INPUT\"Please specify: ";h_type
4130	 SELect ON h_type
4140	 ON h_type=Ø : EXIT h_loop
4150	 ON h_type=l : single
4160	 ON htype=2 : single
4170	 ON h _type=3 : subhead
4180	 END SELect
4190	 END REPeat h_loop
4200 END DEFine heading

Testing

Having entered all the parts of the program which do not employ any cal-
culation, it is probably best if you run the program and quickly test the
menu. If you specify that you wish to input a new item, you should be asked
whether it is a credit or a debit, and I lien asked to specify the type — though
that is as far as you can go. The only other menu function which will have
any effect is option 5 to stop the program. The menu itself should stop you
from accessing the functions to alter data or print the accounts, since no
data has yet been entered.

Module 4.2.5: Entry of single items and main headings
Two separate modules take care of the input of subheadings on the one
hand (see the next module), and single items or main headings on the other.
It is inport alit, in understanding later parts of the program, that you try to
follow the way in which the items are stored and the special indicator char-
acters which record tile item type.

Itlodiile 4.2.5: Lines 5000-5210

PROCedure single

INFUT\"Name of item: ";name$
IF h_type=l

INPUT "Amount for item: ";amount
END IF
INPUT "Is this correct (Y/N): ';O$
IF O$ "Y" AND O#<>"y"

PRINT\"NOT REGISTERED"
T$=INt:EY$(-1)

5ØØØ
5Ø1Ø
5Ø2Ø
5Ø3Ø
5040
5050
5Ø6Ø
5070
5Ø8Ø
5090
51ØØ

REMark
DEFine
REMark

. Chapter 4 ЛΓoney Matters
The Working Sinclair QL

160 161

•
Chapter 4 Money Matters

ı

•
The Working Sinclair QL

5110	 RETurn
5120	 END IF
5130	 IF h_type=l
5140	 name$="%" & name$
5150	 ELSE
5160	 hamel="*" &. name$
5165	 amount=0
5170	 END IF
5180	 account$(cord,c гΡπd(cord))=name$
5190	 account(cord,cand(cord))=amount
5200	 cand(cord)=cand(cord)+1
5210 END DEFine single

Co ııımeıı tary

Lines 5040-5060: As mentioned in the introduction to the previous
module, main headings have no money figure associated with them, so

these lines accept a figure only for single items.

Line 5130-5170: There are no separate storage areas for the different
types of item, apart from the credit and debit sides of the arrays. Later
parts of the program will determine the item type by looking at a special
indicator character at tached to the beginning of the item name. This will be
%' for a single item and `*' for a main heading.

Lines 5180-5200: You have already met the variable CORD, which
records whether an item is a credit or a debit. Here CORD is used to decide
on which side of t he arrays ACCOUNT and ACCOUNT$ the new item is to
he placed. In addition, we need to keep a record of the number of iten ıs on
the credit and debit sides, since these will normally be different. This is
done by the array CAND (C and D). The array was declared in the initiali-

sation module and has only two elements, CAND(0) and CAND(1), cor-
responding to tile credit and debit sides of the main arrays. Once again, the
value of CORD is used to indicate which of the two elements of CAND is to
be used. Applying this, we can see that when reference is made to:

ACCOUNT (CORD,CAND(CORD))
2	 3

what is meant is:

1) An element in the numeric array ACCOUNT.
2) On the side indicated by the value of CORD, ie credit or debit.

3) The first empty element on that side, determined by what is already
stored.

Testing

Run the program and call up the new entry option. Specify that you wish to
enter a main heading Oil the credit side, then enter TEST MAIN for the
item nanie — no value should be requested. Now specify a single item on

the credit side, with the name TEST and the value 100. Now do exactly the
same thing but on the debit side of the accounts.

Stop the program from the menu and enter, in direct mode:

print account(0,0),account(1,0),account$(0,0),account$(1,0)iRETURN]

You should see:

0	 0	 *TEST MAIN	 *TEST MAiN

Now perform the same procedure for line 1 of the arrays, eg

ACCOUNT(0, I) etc. You should see:

100	 100	 %TEST	 %TEST

Finally, print out the value of CAND(0) and CAND(1) — both should
equal 2.

Module 4.2.6: Entering a subheading

The question of entering a new subheading is not quite as simple as that for
a single item. For each new subheading that is entered, a check has to be

made for the presence of the relevant main heading and tile item placed
next to its main heading rather than simply tagged on to the end of the items
previously stored.

Module 4.2.6: Lines 6000 — 6260
bØØØ REMark ************************
611111 DEFine PROCedure sub_head
6020 REMark ************************
6Ø2.Ø	 REPeat check
6040	 INPUT "Main heading: ";search$
611511	 search$="*" R search$
6060	 FOR p1=0 TO ca π d(cord)-1
6070	 IF account$(cord,pl)=search$ THEN

EXIT p1
6090
	

NEXT p1
6090
	 PRINT "Heading not found."

611111
	 T$=INКEY$(-1)

6110
	

RETurn
6120
	

END FOR pl
6130
	 INPUT "Name of sub-heading: ';name$

6140
	 INPUT "Amount: ,*amount

6150
	 INPUT\"Are these correct (Y/N): ";D$

b16Ø
	 IF 0$="Y" OR D$="y" THEN EXIT check

6170
	

END REPeat check
6180	 name$="$" & namei
6190
	 FOR i=cand(cord)+1 TO p1+2 STEP -1

6200
	 account$(cord,í)=account$(cord,i-1)

162
163

•The Working Sinclair QL

b21Ø	 account(cord,i)=account(cord,í-1)
6220	 NEXT í
6230	 account$(cord,pl+1)=name$
6240	 acc_ount(cord,pl+1)=amount
625Ø	 cand(cord)=cand(cord)+1
626Ø END DEFine sub head

Co ıı i ınentary

Lines 6040 —6120: The name of the releva ı t main heading ís requested and
a check ís made of the items already in the file that the heading actually
exists — íf not, an error message is printed and the program returns to the
menu. Nate the use here of both NEXT and END FOR, to provide a
section of program which ís only executed íf the loop finishes normally. If
an object ís found, the EXIT command jumps to the END FOR, not to the
NEXT.

Lines 6190-6250: As previously mentioned, the whole point of a subhead-
ing ís that ít should appear in the main accou ıı ts as part of a group printed
under the relevant maid heading. In order to achieve this simply, the
nıethod employed ís to store ít in the file next to its main heading. The
position of the first item following the main heading has already been
found by the FOR loop at line 6060, so all that needs to be done is to move
up all the items above that point and place the new item into the array
directly after its main heading — note that this means that the latest
subheading ís always the first item under its relevant main heading.

Testing

input the items specified for the test of Module 4.2.5, then call up the new
entry module again to place a new subheading on the credit side, named
TEST SUB, with a value of 200. Do the same for the debit side.

Enter the following in direct mode:

for í=0 to 2:prí н t acco ıııı t(0,í),account(l,i),accou ıı t$(0,i), acco ıııı t$(l,i):
next í [RETURN]

You should see:

0 0 *TEST MAIN *TEST MAIN
200 200 $TEST SUB $TEST SUB
100 100 %TEST %TEST

Print out the values of CAND(0) and CAND(1) — these should both be З .

Mod ule 4.2.7: l)ala files — store

Since the data for Accountant is fairly complex to use, it ís probably wise to
enter the data file ııı odule at this point to eliminate the need for constant

164

Chapter 4 Money Matters

re-entry of data when testing. Once the module has been entered, enter and
save the data specified for the test of the previous module. Both modules
are completely standard.

Modı і le 4.2.7: 11000— 111 70
11ØØØ REMark ************************
11010 DEFine P'ROCedure store
11020 REMark: ************************
1103 CLO
11Ø4Ø	 A Г 1,14 : PRINT "SAVE DATA"
11050	 INPUT\\" Name of data file:",file$
11Ø60	 tfile$="mdvl_" R< file$
11070	 DELETE tfile$
1108Ø	 OPEN_NEW #8,"mdvl_" °< file$

11Ø9Ø	 FOR side=0 TO 1
11100	 РRINT#8,ca пd(si.de)
11110	 FOR í=0 TO cand(side)-1
11120	 PRINT#8,account$(side,i)

111'0	 PRINT#8,accoL ınt(side,i)
11140	 NEXT í
111SØ	 NEXT side
11160	 CLOSE#A
1117Ø END DEFine store

Module 4.2.8: Dala files — recall

MOd1/le 4.2.8: 12000— 12160
12ØØØ	 REMark ********K*W*************

12Ø1Ø	 DEFine PFtOCedure recall
12020	 REMar k: ************************

12030	 CLO
12Ø4Ø	 AT 1,14 : PRINT "RECALL DATA"

12Ø5Ø	 DIR mdvl_
12Ø6Ø	 INFUT \\" Name of data file:";file$
12Ø7Ø	 OPEN_IN #8,"mdvl_" & file$
1380 FOR side=0 TO 1
12Ø9Ø	 INPUT#8,candlside)
12100	 FOR í=0 TO cand(síde)-1
í211Ø	 INPUT#Ø,account$(side,i)
12120	 INPUT#ß,account(síde,i)
1213	 NEXT i
12140	 NEXT side
121SØ	 CLOOE#8
12160 END DEFine recall

Module 4.2.9: Changes to items

A standard module with some added features to take account of the fact
that some items do not stand alone but as part of groups of items under a
common nlain heading.

165

s
The Wo rking Sinclair Q7,

Module 4.2.9. Lines 7000— 7420
70ØØ REMark
7Ø1Ø DEFine PROCedure search
7Ø2Ø REMark ************************
7030
7Ø4Ø
7050
7060
7 70

count=0
REPeat

CLS
PAPER
RLOCY

display

0	 :	 INK 	 7
448,7Ø,0,Ø,0

7Ø8Ø	 temp$=account$(cord,count)
7Ø9Ø	 IF temp$(1))"$" THEN PRINT\\temp$(2 TO)
71ØØ	 IF temp$(1)="*" THEN hhT=temp$(2 TO)
7 110	 IF temp$(ı)="$"
7120	 PRINT\\hh$
7130	 PRINT\temp$(2 TO)
7140	 END IF
7150	 IF temp$(1)<(7"*" THEN PRINT format$

(account(cord,count))
7160	 PAPER 4 : INK Ø
7170	 AT 8,1
7188	 PRINT " COMMANDS AVAILAELE: "
7190	 PRINT\"	 ENTER'> NEXT ITEM"
7288	 PRINT "	 'CCC"	 CHANGE AMOUNT"
7210	 PRINT "	 '#' NUMØER	 MOVE POINTER"
7220	 PRINT "	 'DOD'	 DELETE ITEM"
7230	 PRINT "	 'ZZZ'	 RETURN TO MENU"
7240	 INPUT\" WHICH DO YOU REDUIRE: ";O$
7250	 IF 6?$="DDD" OR O$="ddd" THEN REMOVE
7260-	 IF D$="ZZZ" OR D$="zzz" THEN EXIT display
7270	 IF O$=" THEN Ot="#1"
7280	 IF 0$(1)="#"
7290	 count=count+О$(2 TO)
7300	 END IF
7310	 IF count:>cand(cord)-1 THEN

(cord)-1
7320	 IF countO THEN count=Ø
7330	 IF 0$="ccc" OR 0$="CCC"
7340	 INPUT "Amount to be added:" amount
7350	 INPUT "Is that correct: ";r$
7360	 IF r$"y" OR r$="Y"
7370

	

	 account(cord,count)=account(cord,
count)+amount

7380	 END IF
7390	 END IF
7480	 IF cand(cord)=O THEN EXIT display
7410	 END REPeat display
7420 END DEFine search

С0111111e111а1у

Lines 7060 — 7070: For the purposes of the search module, the upper part
of the screen, on which the items will be printed, will be coloured black,
and the simplest way to accomplish this is to have the QL draw a block over
the top of the screen.

Chapter 4 Mопeу Matters

Lines 7090-7150: If the item recalled from the file is a single item, then it is
printed — though stripped of the indicator character which is tagged on to
the beginning of the name. if the item is a main heading, not only is it
printed, but its name is stored in H1{$ so that it can be printed out above
any of its subheadings which follow. If the item is a subheading, H{H$ is
printed, followed by the subheading, stripped of its indicator character.

Lines 7330-7390: Apart from deleting items, changes can be made to the
value associated with a heading. Tl ı ís is done by entering a positive or
negative figure by which the value of an item may be changed — not an
absolute value which the item is to take. The advantage of this is that most
changes will result in the need to add amounts to existing items as further
expenditures or receipts are made under items which already exist. Thus, if
an extra £100 is to be spent on car repairs, for which there is already a
heading, all that needs to be done is to page through the file to that heading
and enter `100'.

Testing
Ruiı the program and call up the data which you have previously stored on
microdrive. Now call up option 2 from the menu and check that you can
page through the three items, finally returning to the menu again. Call up
option 2 again, and this time try adding to or subtracting from the two
totals you have previously entered. Paging through the items again should
reveal that you have successfully altered their values.

Module 4.2.10: Deleting items
One final facilit y to be added in relation to existing items is deletion. in the
case of Accountant, the deletion nodule is more complex than previous
examples of the type. The reason for this is the existence of the groups
formed around main headings. While there are no difficulties associated
with tl ıe deletion of a single item or a subheading, what happens when a
main heading is deleted? The answer, obviously, is that not only has the
main heading to be taken out, but also all the subheadings associated with
it — otherwise the account would become clogged with subheadings not
attached to a main heading, making nonsense of the account.

Module 4.2.10: Lines 8000 — 8200
8000 REMark ************************
801 8 DEFine PROCedure REMOVE
8028 REMark ************************
8030	 pl =count : group=1
8040	 IF account$(cord,p1,1)="*"
8Я50	 REPeat d_loop
8060	 IF account$lcord,pl+group,l)="$"

****** ***** ** ****** ** **

coLIfltcand

166 167

•
Chapter 4 Money Matters

•
The Working sindaіг QL

9070	 group=group+l
8080	 ELSE
9Ø9Ø	 EXIT d_loop
81ØØ	 END IF
8110	 END REPeat d_loop
8120	 END IF
Ø13Ø	 FOR k=p1 TO cand(cord)-group
8140	 account(cord,k)=accou пt(cord,+group)
8150	 account$(cord,k)=account$(cord,k+group)
8160	 NEXT k
8170	 cand(cord)=cand(cord)-group
81ØØ	 accour ıt$(cord,cand(cord))=""
8190	 ac гоunt(cord,caπ d(cord))=0
82ØØ END DEFíne REMOVE

Coin111entaiy

Line 8030: The position at which the deletion is to take place is sent from
the previous module in the form of the variable COUNT. This is transfer-
red for the purposes of the current module to PL. The variable GROUP
records how many items need to be deleted. It is initially set to 1, and will
only be increased if the item to be deleted is a main heading with subhead-
ings attached.

Liiies 8040-8120: These lines will only be activated if the item specified
for deletion is a main heading. The loop scans down the following entries,
counting how many of those items which follow are preceded by a
indicating that they are sub-items for the main heading. The result of the
count is kept in GROUP.

Lines 8130 – 8160: A typical loop to collapse an array and delete an item.
The difference here is that instead of copying item X into space X 1, and
therefore copyiiig each element down one place, items are transferred
GROUP places, thus deleting GROUP items, or the number of items in the
group based around a main item.

Testing
Following the test procedure for the previous module, you should not only
be able to page through the items and alter them, you should also be able to
delete itenis. If you delete the item labelled MAIN TEST, you should find
that SUB-TEST disappears with it.

Module 4.2.11: Formatting a number
With the exception that this module does not need to be able to format
dates in two character format, this module is identical to that used and
commented on in Banker.

Module 4.2.11: Liιıes 10000— 10160

1Ø000 REMark ************************
1001 0 DEFine FuNction format$ (n π)
10020 REMark ************************
100'0	 LOCal i,n
10040	 п=INT(Ab5(nn*100)+5E -2)
10050	 П $=" '
10060	 FOR í=6 TO 0 STEP -1
10070	 π $=п$ 1' INT(n/10'i)
10080	 u=π-1Ø^í*INT(Π/1 i)
10090	 NEXT i
1 0 1 00	 FOR i=1 TO 4
10110	 IF π $(i):_::-"0" THEN EXIT í
10120	 u$(і) =" "
1 0 1 'Ø	 END FOR í
1014Ø	 n$=n$(LEN(n$) -b TO LEN(п $) -2)

Ý. . "

& π Ь (LEN(n$) -1 TO)
1 0 150 	RETurn п $
1 01 60	 END DEFine format$

Module 4.2.12: Displaying tile accounts
After all the preparation, the one module which makes sense of the whole
thing, by displaying the account in its final form. Like the equivalent
ı :odlile in Banker, it looks complex, but, once you have seen the display,
you will quickly see why everything is arranged as it is. Note that, unlike
Banker, this module does not make provision for a printer output. Given
the simplicity of the print output and the absence of colour controls it
would be a simple matter to copy the techniques used in Banker across to
the program if you require a llardcopy.

Module 4.2.12: Lines 9000 — 9460
9ØØ0 REMark ************************
9010 DEFine PROCedure output
90{0 REMark ************************
9Ø'Ø CLS
9Ø4Ø	 tt=0 : ss=0
9Ø5Ø	 4Т 1,15 : PRINT cord$
9Ø6Ø	 FOR i=0 TO cand(cord)-1
9070	 IF account$(cord,i,1)="*" THEN PRINT
9Ø8Ø	 IF account$ (cord , i , 1) ="$" THEN PRINT

9090
	

PRINT account$(cord,í,2 TO);
9100
	

IF account$(cord,i,1)="*" THEN PRINT
9110
	

IF accoпnt$ (cord , i , 1) ^::: "*"
9120
	

tt=tt+ac:count (cord, ј)
91'0
	

PRINT "
9140
	

IF account$(cord,i,1)=" y.." THEN PRINT

9150	 PRINT format$, (account(cord,i))

168
169

The Working Sinclair QL

9160	 IF account$(cord,i,1)="$" THEN ss=ss+
account (cord,í)

9170	 END IF
9180	 IF ss<::>0 AND account$ (cord, i +1 , 1) <
9190	 F'RINT "
9200	 PRINT "
9210	 PRINT format$(ss)
9220	 ss=0
92	 END IF
9240	 T$=INFEY$(-1)
925Ø	 NEXT i
9260	 PRINT "

9270	 PRINT "TOTAL:
9280	 PRINT format$(tt)
9290 t2=0
93ØØ	 FOR i =0 TO cand(1-cord)
9310	 IF accoцп t$(1-cord,i,1)<:>"*"
9320	 t2=t2+account(1-cord,í)
9330	 END IF
9340	 NEXT i
935Ø	 IF cord^l
9360	 cord2$="CREDIT"
9370 ELSE
9380	 cord2$="DEBIT"
9390	 END IF
9400	 PRINT\cord2$;" BALANCE IS ";formatf(t2)
9410	 PRINT\"OVERALL BALANCE IS "
9420	 IF (tt-t2>*(1-2*(cord=1))<::0 THEN PRINT "-";
9430	 PRINT format$(tt-t2)
9440	 PRINT\"PRESS ANY KEY TO QUIT"
945Ø	 T$ = INK::EY$(-1)
9460 END DEFine account

Co ıııınenta y
Line 9040: The variable TT will be used to store the running total for the
account as it is printed. SS will hold sub-totals for groups of sub-items.

Lines 9070-9090: These lines print the item name. For a main item, one
blank line is printed first to separate it from what has gone before, while for
a subheading, the two spaces inset the item name by two spaces.

Lines 9130-9150: These lines deal with the printing of the amounts for
sí ııgle items and subheadings. subheadings will be printed at the twenty-
first position along the line, single items at position 30. If the item being
dealt with is a subheading, then the sub-total for the items in the current
group is stored temporarily in SS.

Lines 9180 —9230: This IF operates only when a group is being processed,
as indicated by the fact that SS is not equal to 0, and the next item is not part
of the group -- ie the group is complete. The effect of the loop is to print tlı e
total for the group in (lie main column of figures at position 30 along tile
line.

Chapter 4 Money Matters

Line 9240: O ıı ly one item is printed at a time. This is to prevent the top part
of the account scrolling off the top of the screen before it can be read. For
each fresh item, a key must be pressed.

Lines 9290— 9340: These lines scan the opposite side of the accounts to the
one currently being printed and obtain a total of the figures in the variable
12.

Lines 9350-9430: The fiiial items to be output are the total of the opposite
side of the account and the balance of the account.

Testing
Reload the data you have previously stored on disk and simply call up
option 3 on the main menu. Remember that to print out the whole account
you will need to press a key for each item — the whole account will not
appear immediately. If this test is successfully performed, the program is
ready for use.

PROGRAM 4.3: BUDGET

Program function

Budget, tile final program in this book, is, for most readers, one of the
largest programs they will ever enter (or want to enter for that flatter).
From letters I receive about earlier and less capable versions, however,
entering the program seems to be a worthwhile chore, given the results.

There is nothing terribly complex about Budget, it's just that it is
designed to carry a great deal of data and perform a range of calculations
on this data which help reveal a household financial picture over a rolling
12 month period. As i said at the beginning of this chapter, one of the
strengths of the micro is its ability to present figures in an orderly and
comprehensible fashion. Budget illustrates well a second strength, and that
is that, when large bodies of data are being handled, it becon ı es possible to
perform fairly straightforward calculations which would defeat most
people working manually and yet which, when performed, open up new
and enlightening ways of looking at the data.

The purpose of Budget is to allow the user to input figures for income
and up to 60 monthly payments (regular or irregular) and to have an
analysis performed upon them which will reveal the monthly balance of
income over expenditure, the cumulative balance over the year, (lie
average budget allocation needed to meet commitments over the year and
any shortfall, from month to month, of the average budget payment
compared to actual payments to date. In other words, Budget presents a
straightforward picture of how the user's finances will appear over the year
ahead. In addition, however, Budget is designed to be a `what if' tool,

170 171

ØNNNNNNNNNN1 q̂ 111111111111 p 1111111111^11111111 Π11111111111111д 11 11 . 	 . 1	
ί)1

. ,1 °Γ
c..11....1'	

..1..	 ii	 ii
f^N^1NØ1Π N1

1.	 fi
, 	 ..,

Nй11NØ11N111q111

1.	 ı i: л '::5;:!

NHNNØNЦM1 Π.11 1
1.	 ^i:ι!::i; г i

. 	 .::	 с :	 г г '' 1.¢п ' 1.'

Gii г 1.:11:: ι ς;σ Г°: "1"	 I	 I	 11.... Γ : 1 t•11::; L:i Í?1^}1Y¡λ i п 4 ^	 ςχ1 ^¡;11;;ή Y;j ' 	 ή ¿ ι Y;1 Γ,Я Γ 1

Γ11 "1:1:1'•1	 :1:	 t•1 г.:λ C і '1& π: ! г '.ï I	 I G ί 1.	 ! İffi İ ί J 1	 'F^ ı ;:: π İ Π
ε ¡;L1 Γ:ηa'	

^.	 :1:M ί :::Γ]1"1k: г : i iЧέ i'fi91 гг4 ^:ή ;;:!1 г ^ i^!^ ^,¡ì:1^: г 14Π
Ti.ı T111....	 111 1 	11111 1.	 Г" 	 ıίг 	 4í: 1. Y ι:ϊ ι ι::1 1.	 ' Iι ¡1

I і Гl г ј ,' ^,

111111111111111111111111 	 111111111111111111111111 	 111111111111111111111111

	

1'1 Y"^ h λ '1° 1-1	 ^ä.1 : 11....1'1 h λ ^: 71m:

11 11	 „	 I	 II	 1 	 1 t λ 1::::

1 111Π N11N11 Π1111111 N Π111 N Π 1Π1 N1111 Π1Π1 NN11 ΠΠ Π Π111111111111111 N 1Π 11 V1^11^^1N1111^1^^1111N

The Working Sίnclair QL

which allows the user to speculate about the effects of changes through the
year without corrupting the original data. This is achieved by means of a
set of 'shadow arrays' into which entries can be made, and the same
analysis carried out, with no effect on the original data. To simplify the
matter of entry, the whole of the current data on the 'real' side of the arrays
can be copied into the 'hypothetical' side with a single keystroke, so that
only changes relative to the real data have to be entered.

When all is said and done, really the only way to understand the attrac-
tions of Budget is to enter it and use it. An hour's playing with the program
will demonstrate just how much it can tell you about your finances.

Chapter 4 Money Matters

1Ø17Ø	 FOR í=Ø TO 11

lØ180	 READ month$(i)

10190	 month$(i)=month$(i) & "

102ØØ	 NEXT í
1Ø2.1Ø	 INFUT \\" Load from microdrive (Y/N): ":q$
10220	 IF q$="y" OR q$="Y"
1Ø2'Ø	 recall
1Ø24Ø	 ELSE
1Ø2.5Ø	 REPeat check:
10260	 INPUT\\" Current month number: ";q

1Ø27Ø	 IF qï=1 AND q<::=12 THEN EXIT check

1Ø28Ø	 END REPeat check
10290	 curr_m=q-1
103ØØ	 year=curr_m+11
1Ø3Ø5	 test data:G0 TO 11ØØØ

1Ø31Ø	 income
1Ø32Ø	 new headings
1Ø33Ø	 END IF
1Ø34Ø DATA "JANUARY","FEBRUARY","MARCH","APRIL",

"MAY","JUNE","JULY","AUGUST","SEF'TEMBER",
"OCTOBER","NOVEMBER","DECEMBER"

Module 4.3.2: The program ı ielı u

A standard menu module.

Figure 4.3: Part of Analysis Screen from Budget.
Module 4.3.2: Lines 11000— 11470

Module 4.3.1: Initialisation

The size of this module should be sufficient to convince you of the
complexity of the program. The use of the arrays and variables will be
described during the course of (he program commentary.

Module 4.7.1: Lines 10000— 10340
1ØØ0Ø REMark: ************************
10Ø1Ø REMark: initialise
1ØØ2Ø REMark ************************
1ØØ'0	 INK:: Ø : PAPER 4 : CLS
1Ø04Ø	 DIM payment$(1,59,14)
1ØØ50	 DIM payments(1,59,11)
1ØØbØ	 DIM monthly(1,59)
10070	 DIM paytotals(1,11)
10Ø8Ø	 DIM Ь Ь alance(1,11)
1ØØ9Ø	 DIM balance(1,11)
10100	 DIM income_1(1,11)
10110	 DIM income 2(1,11)
10120	 DIM month$(11,9)
1Ø13Ø	 DIM y_budget(1)
10140	 DIM items(1)
1Ø15Ø	 real=0
10160	 RESTORE

110Ø0 REMark ************************
11010 REMark menu
11Ø2Ø REMark ************************
11Ø3Ø
	

REPeat loop
11Ø4Ø
	

PAPER (4+real)

11Ø5Ø
	

CLS

110bØ
	 AT 1,16 : PRINT "BUDGET"

11Ø7Ø
11ØB0

	 PRINT\\"Commands available:"

PRINT\\"	 1) Display monthly analysis"

PRINT "	 2) Changes"11Ø9Ø	
PRINT "	 7) New budget headings"111ØØ	
PRINT "	 4) Delete budget heading"11110	
PRINT "	 5) Reset hypothetical data"11120
PRINT "	 6) Reset month"111.=0
PRINT "	 7) Store data"11140
PRINT "	 8) Change to "11150
 real=011160
PRINT "hypothetical";11170

ELSE11180
PRINT "real";11190

END IF112ØØ
PRINT " data"11210
PRINT "	 9) Stop"11220	
INPUT\\"Which do you require: ';z1 1270
SELect ON z11240

ON z=1 : display11250
ON z=2 : changes11270

172
173

•
The Working Sinclair QL

11290	 ON z=_ : new_headings
11310	 ON z=4 : remove
1133._T.Ø	 ON z=5 : reset data
11350	 ON z=6 : reset month
11370	 ON z=7 : store
11390	 ON z=8 : real=l-real
11410	 ON z=9
11420	 CLS
1143Ø	 AT 10,16 : PRINT "BUDGET"
1144	 PRINT #0,"Program terminated"
1145 	 STOP
11460	 END SELect
11470	 END REPeat loop

Commentary
Line 11040: The variable REAL will be used to indicate whether the real or
hypothetical data is being worked on at the moment. From the user's point
of view, this is made plain by the fact that when working with real data the
screen will be green, and when working with the hypothetical figures this
will change to cyan.

Lines 11150 — 11210: Just a small touch, this, but a nice one nevertheless.
Since the program can only chai ı ge between the two states of dealing with
real and h ypothetical data, this particular option on the menu indicates
which of the two will be accessed by choosing option 8, eg if the program ís
currently in the real data mode, the prompt will read:

Change to hypothetical data

and vice versa.

Module 4.3.3: Slıort functions
In the course of this program, we shall be calling on a number of trivial
functions or procedures. Rather than dignify them all with a module of
their own, we shall adopt the expedient of a single module consisting of
four short sections. They will be briefly commented on here, but their real
usefulness will only become apparent when they are used.

Module 4.3.3: Lines 25000-25260
RF_Mark ************************
REMark short functions
REMark: ************************

DEFine FuNctíon im
LOCal í m
ј rn=i -12* (і ıı)
RETurn i_m

END DEFine is

DEFíne PROCedure tahle (temp#)

•
Chapter 4 Money Mailers

25100	 space : PRINT tempi; : space
25110
	

PRINT
25120
	

END DEFine
2513Ø
25140
	 DEFine PROCedure tablet (temp)

25150
	

OVER 1
25160
	

PRINT FILL$(" ',16+5*(i-start));
25170
	

OVER 0
2518'
	

form_print (temp) : space
25190
	

PRINT
25200
	 END DEFíne table2

25210
25220
	

DEFíne PROCedure space
25230
	

PAPER 0
25240
	

PRINT "
25250
	 PAPER real+4

25260 END DEFíne space

Commentary

Lines 2530 — 25070: This function is intended to cope with the problem
which arises when the start of the year, as the program sees it, does not
correspond to the start of the calendar year. If the program is currently
starting from August and looking 12 months ahead, problems will be
encountered in program loops which scan the year, when the transition is
made from December to January, a move from month 5 to б as far as the
program is concerned but from 12 to 1 (or rather 11 to 0) as far as ally data
goes which is stored in arrays from January to December. The simple
answer adopted here is that all loops in this program completely ignore the
transition from December to January. If they are to start in December,
they count 12, 13, 14, etc. This function is given the job of providing a
variable to replace [lie loop variable, which is assumed to be 1, with another
which will count 12, 1, 2, etc.

Lines 25090-25120: A formatting aid. When it comes to printing out a
table, this procedure will accept a heading and print an inverse space
immediately before and after it, thus facilitating building up columns. To
do this it calls up SPACE, described below.

Lines 25140-25200: In the absence of a TAB facility in SuperВASIC, a
good simulation can be arrived at with OVER. This module will print a line
of spaces on the current printing line, with OVER set. This has the effect of
moving the print position to [lie right without corrupting anything which is
already on the screen. The module assumes that it is being called from a
loop with the loop variable i, and the position on the screen will depend on
the value of two variables, I and START.

Lines 25220-25260: These lines print an inverse or black space used in
laying out tables.

25ØØ0
25010
25020
2 5Ø3Ø
25040
25050
25060
25070
25080
25090

174
	

175

•
The Working Sinclair QL

Testing
1) If you set the value of I directly by entering:

= s [ENTER] (where X is a nun ıber between 0 and 23)

you should find that PRiNT LM will print out the value of I, less 12 if I
was greater than 11.

2) Type:

real = 0 [ENTER]
table ("Name') [ENTER]

you should see the word echoed back with an inverse space before and after
(this is also a sufficient test of SPACE).

3) Type:

start = I [ENTER]
í = 2[ENTER]
print:table2 (123)[ENTER]

and you should see `0123' printed near tl ı e centre of the current printing
line.

Module 4.3.4: Entering figures for income
This is a straightforward module which stores income under two headings,
main and additional, in the arrays INCOME_1 and INCOME_2.

Module 4.3.4: Lilies 20000 — 201 60
20000 RENark: ************************
20Ø1Ø DEFine PROCedure income
20020 RENark: ************************
200'0 CLS
20Ø4Ø	 AT 1,1. : PRINT "CHANGE INCOME"
20050	 F'RINT\" Input '\' to leave unchanged"\\
20060	 FOR i=CLurr_un TO year
20070	 INFUT\(moπ th гδ(i_m) &< ": Main (" &

income1(real,i_m) & "): ");q$
20000	 IF q$<:_: "\"
20Ø9Ø	 income _l(real,i_m)="Ø" &< q$
20100	 END IF
20110	 INPUT (month$(i m) &<	 Additional ("

& íncome_2(real,i_m) & "): ");q$
20120	 IF q$"\"
2Ø1'Ø	 income_2(real,i_m)="n" & q$
20140	 END IF
20150	 NEXT í
20160 END DEFine income

•
Chap(er 4 Money Mailers

Commentary
Line 20060: CURR_M is the variable which holds the number within the
calendar year of the current month. YEAR is simply CURR_M plus 11.

Lines 20070 — 20140: The module is later used when resetting the program
to start at a new month, so provision is made for the input of \ (a key
conveniently near ENTER) to leave a figure unchanged. Otherwise, the
user is prompted with the month name and asked to supply the two income
figures for that month. Note the use of I_M to translate the I loop, which
may run from 1 I to 22, into a value in the range 0— 11. Apart from I_M,
the position in which the data will be stored is determined by the value of
REAL, which dictates whether the real or hypothetical halves of the arrays
are to be accessed.

Testing
Run the program, answering N to the prompt to load from n ı icrodrive, and
you should be prompted for 24 income figures. When you have finished
entering them, the program will stop with a BAD NAME error as it tries to
call a procedure you have not entered yet. Type:

for í = 0 to 11 print income_1(0,í),ú ıcome_2(0,i): пeчt i

You should see the income figures you have entered displayed.

Module 4.3.5: Entering payment headings
Just as [lie prograin needs to know the income figures when it starts up, it is
hardly going to be much use without some information as to the payments
to be made. This procedure can be called at any time when the main pro-
gram has been entered but is always called first when the program is RUN
and data not loaded from tape.

Module 4.3.5: Lines 16000 — 16270
16ØØ0 RENark: ************************
16Ø1Ø DEFine PROCedure new_headings
16020 RENark: ************************
16ØTØ	 REPeat nh_loop
16040	 CLS
16Ø5Ø	 AT 1,6 : PRINT "INPUT OF NEW PAYMENTS"
16ØbØ	 PRINT\\" Precede name with a *' if

you do"'"not wish it to be budgeted."
1bØ7Ø	 PRINT\"Enter 'ZZZ' as name to quit."
1bØ8Ø	 INPUT\"Name for new payment: ';q$
1bØ9Ø	 IF q$="zzz" OR qE="ZZZ"
161ØØ	 update
16110	 EXIT nh_loop
16120	 END IF
16130	 IF items(real)=60

176
	

177

The Working Sinclair QL 	 Chapter 4 Money Mailers

1b14Ø	 PRINT\\"
	 No room for more data"

16150	 t$=INКEY$(-1)
16160	 RETurn
16170	 END IF
16180	 CLS
16190	 PRINT\" PAYMENTS FOR ";q$\\
162ØØ	 FOR i=curr_m TO year
1621Ø	 PRINT monthE(im);
16220	 INPUT payments(real,ítems(real),í_m)
1620	 NEXT i
16240	 payment$(real,items(real))=q$ R.

16250	 items(real)=items(real)!1
162bØ	 END REPeat oh loop
16270 END DEFine new_headings

Commentary
Line 16060: The meaning of this prompt will not be obvious until you have
some experience of the program. We have already noted that one of the
functions of the program is to provide an average figure per month to cover
all the bills which must be met during the course of a year. It is possible,
however, to exempt a bill from this budgeting process. Take, for example,
the situation where you i ıı tend to go on holiday at the end of the current
12-month period, at a cost of £500, knowing that in that month you will
receive a holiday bonus, also of £500. The bonus is duly entered under
additional income and (lie holiday as a payment. The result is that the
average budget figure for each of the next 12 months is increased by £42, so
that, by the end of the 12 months, the holiday will have been paid for. This
is clearly not what you want, since there is no need to budget in advance for
the holiday. In this case, the payment for the holiday is eiitered, but the
payment name is preceded by a `*', as a signal to later parts of the program
that the associated bill is not to be included when calculating the average
monthly budget.

Line 16100: The next module you will enter, which performs the calcula-
tions on the bare figures you provide.

Line 16220: The array PAYMENTS will hold the amounts entered for each
bill. There are three dimensions to the array:

1) The side of the array (real or hypothetical).
2) The ııııııı ber of the payment (0-59). The number of payments regis-

tered on each side of the array is held in the two element array ITEMS.
3) The mouth (0-11).

Line 16240: The name of [lie payment is held in PAYMENT$, which is
padded with spaces to ensure standardised length of payment names when
they are printed in later tables.

Test ing

If the program has been initialised, you should be able to type:

newheadi ııgs [ENTER]

and be prompted to input a heading. Respond with:

TEST1

followed by a series of monthly payment figures, corresponding to the
number of the month.

When you are prompted for the next payment name, enter `zzz and the

procedure will terminate. Now type:

print payment$(0,0) [ENTER}
for i = 0 to 11: print payments (0,0,i):next í
print itenıs(0)

You should see the payment name, the numbers from 1 to 12 and finally the
number 1, indicating that ITEMS(0) records a single item on the real side of
the arrays.

Module 4.3.6: Data files — store

A standard module, this is given at this early stage because, of all the pro-
grams in this book, Budget is probably the most tiresome to have to re-

enter data manually for. Note that not all of the arrays din ıensioned when
the program is initialised are saved. The reason for this is that most of them
are derived from the income and payments figures you have already

entered. Rather than saving them, it is more economical simply to save the
income and payments and recalculate the rest when the data is reloaded.

Module 4.3.6. Lines 26000-26260
26000 REMart:: ************************
26010 DEFine PROCedure store
26020 REMark ************************
26O.'Ø	 CLS
26Ø4Ø	 AT 1,14 : PRINT "SAVE DATA"
26050	 INPUT\\" Name of data file: ";filet
26060	 tfile$="mdvl " & file$
26070	 DELETE tfile$
26080	 OPEN_NEW #8,"mdvl " & filet
26090	 PRINT #8,curr_m : PRINT #8,year
26100	 FOR i=0 TO 1
26110	 PRINT #8,items(i)
26120	 IF items(í)<>0
261.70	 FOR j=Ø TO items(i)-1
26140	 PRINT #8,payment$(i,j)
26150	 FOR k=0 TO 11

178	
179

i
The Working Siпс la іr QL

26160	 PRINT # В ,pa уmente(í,j,k)
2b17Ø	 NEXT k
26180	 NEXT j

26l9Ø	 FOR j=0 TO 11
262ØØ	 PRINT #8,income 1(i,j)
26210	 PRINT #Ø,income_2(i,j)
26L2Ø	 NEXT j
262'11	 END IF
262411	 NEXT i
2625Ø CLOSE#8
26260 END DEFine store

Module 4.3.7: Data files — recall

A standard module. Note the call to (lie UPDATE module, which you have
not entered yet, but which will fí11 out the arrays with figures derived from
the income and payments stored on the microdrive.

ModuJe 4.3.7: Lines 27000-27260
* * **********************
PROCedure recall

27Ø4Ø	 AT 1,14 : PRINT "RECALL DATA"
27Ø5Ø	 DIR mdvl_
Q706Ø	 INPLIT \\" Name of data file:";file#
27070	 OPEN IN #B,"mdvl_._" °< filet
27080	 INPUT #8,curr_m,year
27Ø9Ø	 FOR í=Ø TO 1
271011	 INPUT #8,items(i)
27110	 IF items(i)_::>Ø
271211	 FOR j=0 TO iiems(i)-1
27130	 INPUT #8,payment$(i,i)
27140	 FOR k=0 TO 11
2 7 1 50	 INPUT #8,payments(í,j,k)
27160	 NEXT К
27170	 NEXT j
27180	 FOR j=0 TO 11
27190	 INPUT #8,income lli,j)
272110	 INPUT #8,í πcome_2(i,j)
27210	 NEXT j
27220	 END IF
27270	 NEXT í
27240	 CLOSE#8
27250 update
272611 END DEFine recall

Module 4.3.8: The calculations
All the important calculations for the program are carried out by this pro-

Clmpler4 Λ4oπevMa7lers

cedure. There ís nothing complex about what ís done, ít ís simply cumber-
some, since the payments nmust be scanned in totally separate ways — once
along the months from 0 to 11 and once in order of payments, from 0 to a
possible 59. Re warned that, when the program holds the maximum
number of payments, this procedure takes some considerable time to
complete.

Mпdlde 4.3. 8: Lines 14000— 14290
14000 REMar4 ************************
14010 DEFine F'ROCedure update
14020 REMark ***** и******************
1400	 FLASH 1 : PRINT "CALCULATING" : FLASH Ø
14040	 IF items(real)=0 THEN RETurn
14050	 y_bL ıdget(real)=0 : cum budget=0
140611	 cum=0
14070	 FOR i=0 TO items(real)-1
14080	 y_total=0
1411911	 IF payment#(real,i,l)':
141011	 FOR j=0 TO 11
1 411 0 	y_total=y_total+payments(real,í,j)
141211	 NEXT j

l41.7Ø	 moп thly(real,í)=y_total/12
14140	 y_budget (real)=y_budget (real)+

y_total/12
14150	 END IF
14160	 NEXT i
14170	 FOR i=curr m TO year
14180	 paytotals(real,i_m)=0
14190	 FOR j=Ø TO itemn(real)-1
142110	 paytota]s(real,i m)=paytotals(real,

i_m)+p аyments(real,j,i_m)
14210	 IF payment#(real,j,1)'"*"
14220	 cum_budget=cum_bLidget+paymeflts

(real , j,i_m)
14270	 END IF
14240	 NEXT j
14250	 Ь balance (real ,í_m)=y_budget(real)*

(í-curr m+1) -corn _budget
14 26 11	 cum=cum+income l(real,í_m)+i п come_2

(real,i_m)-paytotals(real,í_m)
14270	 balance(real,i_m)=cum
14280	 NEXT i
14290 END DEFine update

Connne ıitary
Line 14030: As a reassurance that the program is not locked up, the word
CALCULATING ís flashed on the screen while this procedure is being
carried out.

Lines 14070— 14160: For each payment (the I loop), the payments made in
each month (the J loop) are added together in the temporary variable

27000 REMark
27010 DEFine
27020 REMark:
27030	 CLS

180
181

The tí'orking Sinclair QL
	

Chapter 4 Money Matters

Y_TOTAL. One-twelfth of this total payment over the year is saved in the
corresponding line of the array MONTHLY, which records what the
monthly budget figure for each payment is. In addition, the same figure is
added to Y—BUDGET, which will, by the end of the I loop, hold the total
of the average monthly payments for all of the bills — ie the overall average
monthly payment. Note that line 14090 excludes any bills whose names
begin with '*' from this process.

Lines 141711-14280: These lines deal with figures which will apply to each
month separately. For each month of the year, the J loop adds together all
the payments to be made in that mouth and stores them in the array PAY-
TOTALS. Within the same loop, CUM_BUDGET keeps track of the
total of payments made 01) items which are included in the average budget.
Each time the J loop ends, CUM BUDGET will hold the total payments
on budgeted items since the year (as represented by the I loop) began.

Line 14250: The array B_BALANCE is used to record how much, in any
particular month, the actual payme τits on budgeted items are ahead or
behind the amount put aside in the average monthly budget. For instance,
if a large budgeted payment is to be made at the end of the year, one-twelfth
of it will be put aside ín each of the preceding months and a large surplus
will build up in B_BALANCE. The contents of B_BALANCE for each
month are calculated by taking the average monthly budget figure
(Y—BUDGET), multiplying it by the number of months since the year
started and then subtracting all the payments to date on budgeted items
(CUNT BUDGET).

Lines 14260 – 14270: The cumulative balance, ie how much has been saved
out of income since the beginning of the year, is stored in BALANCE. It is
calculated by adding the income figures each month to the temporary
variable CUM and subtracting the total payments.

Testi,ig
It is hot really practical to test this module until we have entered the next
series, which allows the figures to be dumped out in the form of a table.

Module 4.3.9: Formatting a number
We have already looked, in the preceding programs in this chapter, at the
problems of for ınatting a number. The current module is simpler than
those which have gone before, because Budget works only with integer
numbers up to 9999.

Module 4.3.9: Lines 24000 — 24130
24200 REMark ************************
24010 DEFine PROCedure form print (nn)
2402Ø REMark ************************

Testing
Type:

real = 0[ENTER]
form_print 1 [ENTER]

The result should be the printing of `0001' on a green background.

Module 4.3.10: Printing a beading for a table
In a moment, we shall be entering the main display module of the program,
or rather two main display modules. Since both parts of the display need a
heading for three-monthly columns, a separate module for this purpose is
included.

Module 4.3.10: Lines 23000-23110
23ØØØ REMark ************************
23010 DEFíne PROCedure tabletop
23Ø2Ø REMark ************************
23030	 LOCal í
23040 CLS
23Ø5ø	 PAPER 0 : INK. 7
23Ø6Ø PRINT "MONTHS
23Ø7Ø	 FOR í=start TO start+2
23Ø8Ø	 PRINT month$(i_m, 1 TO 3);"
23Ø9Ø	 NEXT í
231ØØ	 PAPER real+4 : INK:: 0
23110 END DEFíne table_top

Coniineiztaiy
Lines 23070-23090: The I_М function is used to print out the first three
letters of the names of three months, starting with the value held in
START.

Testing

Provided that the program has been initialised, thus loading the month
names into MONTH$, type:

24Ø'ø
	

LOCal í,n
24Ø4Ø	 п=INT(ADS(пn)+5E-2)
24050	 nt=""
2η060 	 FOR í=3 TO θ STEP —1
24070	 П$=п$ & INT(n110 ^i)
248Ø	 n=n-10í*INT(n/1Ø "i)
24090
	

NEXT i
241ØØ
	

IF nn<::Ø THEN PAPER 2
24110
	

PRINT nt;
24120	 PAPER real+4
24130 END DEFíne four

182 183

jEXIT

s
The Working Sinclair QL

table_top(0)

and you should see MONTHS, JAN, FEB and MAR spaced out across the
top of the screen in inverse lettering.

Module 4.3.11: Displaying the payments
We have now entered all that we need in order to be able to print out an
orderly table of the payments which the user has recorded.

Module 4.3.11: Lines 12000— 12380
12000 REMark: ************************
12010 DEFine PROCedure display
12020 REMark:
ı 20-0	 ELS
12040	 AT 1,13 : PRINT "BUDGET DISPLAY"

12050	 REPeat check
12060	 INPUT\\"Number of month to start:

start
12070	 IF startl AND start<::=12 THEN EXIT

check
12080	 END REPeat check
12070	 start=start--1
12100	 IF start-12*(st гΡrtï=curr_m):>=curr_m-3

THEN start=curr_m-3
12110	 start=start+12*(start<:0)

12120	 INPUT\"Analysis only (Y/N):":q$

1213Ø	 IF q$"y" OR qt = "Y " THEN analysis :

RE Turn
12140	 FOR í=0 TO 45 STEP 15

12150	 tabletop
12160	 PAPER Ø : INK 7
12170	 PRINT " B	 "
12180	 PAPER 4+real : INK 0

l219Ø	 AT 1,0
12200	 FOR j=0 TO 14
12210	 IF i+j=ítems(re гl) THEN
12220	 space
12230	 PRINT paymentt(real,i+j);

12240	 space
12250	 FOR k:=start TO start+2

12260	 form_print payments(real,í+j,k:-12
*(k:>11))

12270	 space
12280	 NEXT k
12290	 form_print (monthly(real,i+j))

12300	 space : PRINT
123lØ	 END FOR j
12.T_•2Ø	 PAPER 0 : PRINT FILL("

12330	 PAPER real+4
12340	 t$=INKEY і (-1)
12350	 IF i+j=items(real) THEN EXIT i

Chapter 4 Money Matters

12360	 END FOR i
12370	 analysis
12š8Ø END DEFine display

Conıınentary
Lines 12050 —12110: The start month number for the three-monthly dis-
play is received into START. Si ııce Budget works on a single 12-month
period, trying to start a table in the last month, or the month before, would
produce a nonsense, wrapping around to the beginning of the year. For this
reason, if the START given is not a full three months before the current
month, it is reduced — eg if the current month is July and the requested
start is May, this will be reduced to April, so that April, May and June will
be represented.

Lines 12120— 12130: The next module will provide for the printing of an
analysis of the figures displayed by the current table. These lines allow for
the user to dispense with the display of individual bills and go straight to the
analysis.

Lines 12140— 12360: This loop allows the full 60 bills to be screened in four
successive displays.

Lines 12150 —12180: The top of the table is printed, and an extra heading
on the right of the screen — B — under which will be placed the average
monthly budget for each item.

Lines 12200— 12310: These two embedded loops print the name of each
payment on the left of the screen, then the figures for the three months,
using SPACE to separate the items on each line.

Тestl ng
If you have entered some data, type:

goto 11000

and call up option 1 on the menu. Specify a month and you should see an
orderly presentation of any bills you have entered. The display will termi-
nate with an error when you press a key, since the next module is called at
the end of this one. Perform the test again, but this time use the menu to
change to the hypothetical half of the array to ensure that the figures in that
half are properly displayed. Now that you can display the results of
changes easily, it would be wise to check modules like NEW _HEAD-
INGS to make sure they work on both sides of the arrays.

Module 4.3.12: Displaying the analysis

As mentioned in the the commentary on the last module, once the figures
for payments have been displayed, the program then goes on to display the

*************** эи********

184	 185

1

•
The Working Sinclair QL

analysis which was carried out by the UPDATE module. The short func-
tions we have already defined make the printing of the new table a very
simple matter. A list of headings is printed using TABLE, then TABLE2
prints the columns of corresponding figures for the three months covered.

Module 4.3.12: Li ııes 13000— 13270
13ØØØ REMark *** эε эι ıиэиэь***** эи*u** эε ** эt**
13Ø1Ø DEFine PROCedure analysis
13Ø2Ø REMart; ************************
1030 tabletop
13040	 AT 1,0
13050	 tahle "MONTHLY TOTAL "
13060	 tahle "BUDGET
13070	 table "BUDGET BALANCE"
130Я0	 table "MAIN INCOME	 "
17090	 table "SUPR. INCOME "
13100	 table "TOTAL INCOME "
13110	 table "MONTH BALANCE "
13120	 table "CUM. BALANCE "
13130	 FOR i=start TO start+2
13140	 AT 1,0
17150	 table2 (paytotals(real,i_m))
13l6Ø	 table2 (y_budget(real))
13170	 tablet (b balance(real,i_m)>
13180	 tablet (íncome_1(real,i_m))
13190	 table2 (íncome_2(real,i_m))
13200	 table2 (income_1(real,í_m)+íncome_2

(real,i_m))
13210	 table2 (í пcome_1(real,í_m)+í пcome_2

(real,i_m)-paytotals(real,í_m))
13220	 table2 (balance(real,i_m))
13230	 NEXT i
13240	 PAPER 0 : PRINT FILL$(" ",37);
13250	 PAPER real +4
13260	 t$=INtE Y$(-1)
13270 END DEFine analysis

Testing
The test conducted on the previous module can now be continued through
to the display of the analysis of the figures you have entered. Remember
that this is your first real check of the working of the UPDATE module, so
do ensure that figures displayed make some sense.

Module 4.3.13: Reset_data
So far, we have not really experimented much with the hypothetical
capabilities of the program. When you do start to use those capabilities,
you will sometimes fiiid that you have built up such a body of changes that
getting hack te a semblance of the real situation will involve a lot of tire-

186

•
Chapter 4 Money Matters

some deletion. This module relieves you of that need by simply copying the
real half of he arrays over into (lie hypothetical half so that you can start
your experiments with a clean slate.

Modτι le 4.3.13: Liizes 15000- 15190
15000 REMark ************************
15010 DEFine PROCedure reset data
15020 REMart:: ************************
15030	 y_budget(1)=y_ budget (Ø)
1504Ø	 FOR i=0 TO items(0)-1
15050	 p гymeп t#(1,í)=payment#(Ø,i)
15060	 monthly(1,i)=monthly(Ø,i)
1507Ø	 FOR j=0 TO 11
15080	 payments(1,i,j)=payments(Ø,í,j)
15090	 NEX Г j
15100	 NEXT í
15110	 FOR i=0 TO 11

15120	 paytotals (I,í)=paytot гΡ ls(Ø,i)
1517Ø	 b balance(1,i)=b_b г l дπ ce(Ø,í)
15140	 income_1(1,i)=i πгоme_1(0,í)
15150	 income_2(1,i)=income_2(Ø,i)
15160	 balance(l,i)=balance(O,i)
l517Ø	 NEXT í
15180	 items(1)=ítems(Ø)
15190 END DEFine reset data

Testing

You will need to have made some entries on the hypothetical side of the
arrays and checked that they have been registered. Call up menu option 5
and then display the hypothetical figures. They should now be identical
with the real figures.

Module 4.3.14: Changing the month

The program will not be of much use if it is always going to be stuck on the
same 12-month period, so this module makes provision for the start month
to be altered as time passes. The array simply accepts payment and income
figures for the new months which have come in at the end of the period. If
the change were from May to July, figures for next May and next June
would be requested for each payment heading and also for main and
supplementary income.

Module 4.3.14.• Lines 17000— 1 7320
17000 REMark: ************************
17010 DEFine PROCedure reset_month
17Ø2Ø REMark ************************

187

•
The Working Sinclair QL

17Ø7Ø	 CLS
17Ø4Ø	 AT 1,13 : PRINT "UPDATE MONTH"
17050	 REPeat check
17Ø6Ø	 INPUT\\"Number of new month (1-12):

month2
17Ø7Ø	 IF month21 AND month:12 THEN EXIT

check
17080	 END REPeat check:
17090	 month2=month2-1
17100	 IF month2=curr_m
17110	 PRINT\\" Program already on that month"
17120	 t$=INEY$(-1)
17170	 RETurn
17140	 END IF
17150	 IF month2curr_m THEN month2=month2+12
17160	 FOR i=curr_m TO month2-1
l717Ø	 CLS
17180	 AT 1 , 13 : PRINT "UPDATE MONTH"
17190	 PRINT\\"Input amounts for next ";month$

(í_m) •\\
17200	 FOR j=0 TO itenis(real)-1
17210	 PRINT payment$(Ø,j);" (";payments

17220	 INFUT payments(Ø,j,í_m)
17270	 NEXT j
17240	 INFUT\"M г in Income: ";income_1(Ø,i.m)
17250	 INFUT\"Additional income: ";income_2

(Ø,í_m)
17260	 NEXT i
17270	 curr m=month2-12*(month211)
17280	 year=curr_m+11
17290	 re гΡ1=0
17300	 update
17710	 reset data
17320 END DEFíne reset month

Commentary
Lines 17160 —17260: These two loops shuttle through all the available
payments, displaying the figures they were set for in what is now the pre-
vious year and inviting new figures.

Testing
Call up option б from the menu and specify the next month to the current
month. You should be invited to give one complete set of payment income
figures for the new end of Budget's year. You will also find, in using the
display function, that the year start and end have been adjusted
accordingly.

•
Chapter 4 Money Mallers

Module 4.3.15: Making changes

The first of a series of four modules which, together, allow changes to be
made to existing income or payn ı e ıı t headings. The purpose of the current
module is merely to determine whether income or payments are to be
changed.

Module 4.3.15: Lines 18000— 18130

PROCedure changes

18Ø4Ø	 AT 1,15 : PRINT "CHANGES"
18Ø5Ø	 PRINT\\" Do you wish to change figures

for:"
18Ø6Ø	 PRINT\" 1) A payment"\" 2) Income"
18Ø7Ø	 INPUT\" Which do you require: ';z2
18Ø8Ø	 SELect ON z2
18Ø9Ø	 ON z2=1 , change_payment
18100	 ON z2-2 : income
18110	 END SELect
18120	 IF z2=1 OR z2=2 THEN update
18170 END DEFine changes

Testing
The module can be tested as far as income goes since it uses the income
entry module entered earlier. Call up changes and specify income. You
should be invited to give new main and additional figures for each of the
coming 12 months.

Module 4.3.16: Checking a payment name

Several previous programs, like Nnumber and Accountant, have needed
provision to check that items requested by the user are in fact present in the
file. Budget includes a separate module to make this check, returning the
results of the search to the next module in the form of the variable
FOUND.

Module 4.3.16: Liııes 22000-22150

22Ø1Ø DEFine FROCedure find (q$)
22Ø2Ø REMark: ************************
22030 found=0
22Ø4Ø	 q$=q$ Q< FILL$(" ",14-LEN(q$))
22Ø5Ø	 FOR place=0 TO ítems(real)-1
22Ø6Ø	 IF q$=payment$(real,place)
22Ø7Ø	 found=1
22080	 EXIT place
22Ø9Ø	 END IF

18000 REMark
18010 DEFine
18Ø20 REMark:
1803Ø CLS

22000 REMark

188
	 189

Tue 'Vorking Sinclair QL
	

Chapter 4 Money Matters

221ØØ	 NEXT place
22110	 PRINT\" Item not found, please check

with"\" monthly display."
22120	 t$=INVEY$(-1)
221'0	 RETurn
22140	 END FOR place
22150 END DEFine find

Module 4.3.17: Changing the figures for a payment

This module is similar to the one used to change income. Monthly figures
for the specified payment heading are displayed and the user is invited
either to confirm or change them.

Module 4.3.17: Lines 19000-19150
19ØØ0 REIlark ************************
19Ø1Ø DEFine PROCedure change_ı ayment
19020 REMark ************************
19Ø3Ø	 INPUT\\"Payment to be changed: ';q$
19Ø4Ø	 find (q$)
19Ø5Ø	 IF NOT found THEN RETurn
19Ø6Ø	 CLS
19070	 PRINT\" ";payment$(real,place)
19Ø8Ø	 PRINT\" Input new amount or \' to

leave."\\
19Ø9Ø	 FOR í=curr_m TO year
191ØØ	 INPUT (month$(im) & "(" & payments

(real,place,i_m) & "): ");q$
19110	 IF q$' :>"\"
19120	 payments(real,place,i_m)="Ø" &< q$
19l3Ø	 END IF
19140	 NEXT i
l915Ø END DEFíne change_payment

Testing
Just as you were able to change income figures, you should now be able to
call up menu option 2, specify a payment heading aiid re-enter the figures
for that payment.

Module 4.3.15: Deleting items

The final module of the main program allows an entire payment heading,
its name and the 12-monthly figures associated with it, to be removed from
the file.

Module 4.3.18: Lines 21000 — 21160
21000 REMark ************************
21010 DEFine PROCedure remove
21020 REMark ************************
210'0	 CLS
21040	 AT 1,14 : P.INT "DELETIONS"

21050	 INPUT\\" Name of payment to be deleted: "
;q$

21060	 find (q$)
21Ø7Ø	 IF NOT found THEN RETurn
21080	 ítems(real)=items(real)-1
21090	 FOR j=place TO items(real)-1
211ØØ	 payment$(real,j)=payment$(real,j+1)
21110	 FOR k =0 TO 11
21120	 payments(real,j,k)=payments(real,

j+1,k)
21130
	

NEXT k
21140
	

NEXT j
21150	 update
21160 END DEFíne remove

Testing

You should now be able to delete payment headings by calling up menu
option 4. If this facility works correctly, the program is ready for use.

190
	

191

APPENDIX

Instrııctions for Use of Checksum
Generator Tables

The following short program is designed to act as a check that the program
you have entered is the same in every important respect as those from
which the programs in this book were listed out. It does this by reading the
program file from microdrive and successively adding and subtracting the
values of the characters which make up each line of the program, excluding
spaces. The values produced are known as `checksums and, if a program
line is copied correctly from one program to another and examined by the
same checksum generator, it should produce the same checksum — if there
is an error it should be indicated by a difference in the checksums. It is
possible to make changes in a line which will result in the same checksum
being calculated for it, but it is unlikely that this will happen often.

If you wish to check your program against the tables, you will have to
load the Checksum Generator into memory and then place a cartridge
bearing the program to be checked in drive 1. Run the Checksum Genera-
tor and supply the program name. You will also be asked to supply the start
and finish lines for the table. This will allo'v you to select either a specific
module(s) or to enter 1 and 99999 (an impossibly high line number) to
generate a table for the whole program.

The tables are laid out in modules, with the start line of each module
marked. Line numbers are not included for the tables sí ııce this would
make them impossibly large. To read the table, find the module you want,
then read each line of the table from left to right. Since the tables in the
book and the tables you will generate will be of the same format, you
should have no difficulty in comparing them.

If the tables are exactly alike, it is highly probable that the program is
entered correctly in every respect. If you come across lines where the
checksums differ between your table and that contained in the book, go to
the offending line and compare it very carefully with what is contained in
the listing in the book — you will probably find that there is an error. Note
that differences in spacing will not result in differences in checksums —
spaces are ignored. If you cannot find any difference, there is always a
small possibility that last-minute changes during the production of the
book have somehow not been recorded in the checksum table, so that the

193

	

1440 	
ί 	 -91	 -3	 5	 49	 -9

	

-127	 1 08	 126	 65	 -61	 -3

	

56	 55

2000
2 -154	 -4	 101	 584 -116
1	 14	 49	 47

s
T'he Working Sńtclair QL

checksum in the book refers to a line which has been subsequently
changed. We make every effort to ensure that this does not happen but it is
wise to bear in mind this possibility if you cannot find a difference and the
program runs correctly.

Checksum Generator
1000 REMark *************************
1010 REMark control
1020 REMark ************4************
1Ø3Ø	 INt 7 : PAPER 3 : CLS
1040	 count=0
1Ø5Ø	 INPUT "Name of program: ';program$
1060	 INPUT\"Start Line: ";start
lØ70	 INFUT\"Finish line: ";finish
1080	 program$="mdvl_" I' program$
1090	 INPUT\"Printer output (Y/N): ";hard$
11ØØ	 hard=hard$="Y" OR hard$="y"
1110	 IF hard
1120	 OPEN #7,ser1
1130	 ELSE
114Ø	 OPEN #7,sc г
1)50	 IN4#7,7 : PAPER#7,3
1160	 CLS#7
1170	 END IF
1180	 PRINT#7,"CHEC К SUM TAFLE FOR ":program$
119Ø	 PRINT#7,\"Start line is ";start
1200	 PRINT#7,\"Finish line is ";finish\\
1210	 OPEN #8,program$
1220
1230
1240	 REPeat lines
1250	 INPUT #8,line$
1260	 line numЬег = І i ne$
1270	 IF line nuеЬег f і ni ѕh THEN EXIT lines
12BØ	 IF line_number*=start
1290	 analyse
1300	 check_print
1310	 END IF
1320	 IF EOF(#8) THEN EXIT lines
1330	 END REFeat lines
1340
1350
1360	 PRINT#7 : CLOSE #7
1370	 CLOSE #8
2000 REMark *************************
2010 DEFine PROCedure check_ırint
21)21) REMark *************************
21)31)	 IF line number/i 1)= ІНТ (Іј n е nu пiЬег /l1)1)0)
21)41)	 PRINT#7,\\line_number;

" ************************"	 \\
2050	 count=0
2060	 END IF

Appendix

2070	 number$="	 " & checksum
21)81)	 number$=number$(LEN(number$)-4 TO)
2090	 PRINT#7,!number$;
2100	 count=count+l
2110	 IF hard AND count=6
2120	 count=0
2130	 PRINT#7
2140	 END IF
2150 END DEFine check_print
301)1) REMark *************************
3010 DEFíne PROCedure analyse
3020 REMark *************************
3030	 checksum=0
3040	 FOR í=1 TO LEN<line$)
3050	 IF line$(i)" "
3060	 IF i/2=INT(í/2)
3070	 checksum=checksum+CODE(líne$(i))
?080	 ELSE
31)91)	 checksum=checkšum-CODE(line$(í))
3100	 END IF
3110	 END IF
3120	 NEXT i
3130 END DEFine analyse

CHECKSUM TABLES

A oarlock

	

-з -200	 -5	 ь8	 15	 -31

	

1Øθ0 	 	 -315	 128	 25	 -51 -292 -106

	

-1	 -91	 -3	 335	 214	 3	 1 Ь	 36	 51	 109	 1 1 7	 65

	

47	 202	 9 -130	 116	 134	 - з2	 47	 57

	

246	 241	 1 8 1	 179	 -67	 -66

	

-10	 49	 59	 4404 	

	

-4 -144	 -6	 158	 -94	 -69

	

2040 	 	 -102	 161 -101 	61	 -95	 τ1

	

-2 -154	 -4	 44	 -65	 214	 5τ 	 52

	

-1	 14	 4 9	 47
5444 	

300θ . 	 п	 +	 -5 -264	 -7	 з8	 -81	 122
-3

--
200

-- --
5 	 16----38 -114	 7	 -55	 27	 -78 -164 	-1B

	

129	 26	 -54 -302 -105	 17	 -90	 51	 50

	

з7	 52	 110	 11 8 	-30	 49

	

49	 6440 	

	

- -6 -143	 -B -112	 -60	 107

	

-64	 -44	 -65	 -6 7 	 115	 -37
4 -165	 -6	 10	 -45	 120 	 -5Θ 	 1 13	 -61	 41	 -62	 107

	

210	 230	 20?	 223	 4	 -96	 -65 -1 τ4	 -55	 119	 -58 -45

	

9	 52	 51	 -59 -24

	

5600 	
5 -264	 -7 -12 в 	 12з	 Ø

	

22	 116 -125	 -75	 58	 -57

	

77	 110	 -91	 5θ 	 49

	

6440 	
6 -399	 -B	 -1	 -44	 -44

	

234	 212	 2з 1	 209	 230 	216

	

51	 -60 	 -2	 -61 -25τ	 139

	

151 -243	 -Θ7

Clock

	

3940 	

	

- Λ5	 -147	 -47	 -з2	 ь 7	 ь4

	

-3Λ4 	 199	 212	 72	 Θ6 	 -61

	

152	 92	 62	 99 	101 -104

	

Θ7 	 1	 -62	 6θ 	 -9 1 -155
66	 56	 -6	 -39	 169	 207

	

134	 34	 29	 30	 27	 53
52

Timer

- Λ3 	 -91	 -Λ5 	 5	 49	 -5
6 7 	-10	 49	 4θ

44 -154	 -46	 611	 24	 121
99 	14	 48	 47

194
195

4000 	
-46 -156	 -4θ	 159	 133	 84	 21000 	
-46	 9 -11 0 	 1θ 	 55	 54	 -49	 93	 -47 -161	 -50 -160

	

194	 51	 -97	 52	 -8τ -1 07
-106

1

-49	 142	 -47	 -60 -106	 -65	 27000 	
27 -190	 -99	 -48	 192	 -46 -119 -213 -128

	

-206	 24 -144	 26 -107 -106

	

11600 	

	

-4 θ	 149	 -46 -213 -1 05	 -91

	

1	 -61	 58	 -17 -1 07 -106	 23000 	
-47	 111	 -45 -118 -232 -292

-126 -126	 -5Ь	 20	 1 6

The Working S іncla јr QL	 Appendix

4000 w .^.^,.+... д rt д ..,w.... л +
-46 -256	 - 4 Ø	 -4 9 	 169 -475
-95	 -55	 50	 27	 -26	 128
82	 44 -1 05	 10	 -86	 48
47

5Ø00 м + п x и a ииx, ε aa^w л+aιaιιaw

47 -217	 -49	 66	 66	 31
96	 153	 Θ3 	 -15	 140	 -11

-207 -- 1 4 5	 -27	 135 -120 	 -31
172 -131	 -17	 93 -145	 63
-86	 168	 -3	 94	 -67	 47
46

606*********************** **
-4Ø	 19Ø5

θ
3θ	 124	 Ø

46	 45

660*************************
-5Ø	 31934	 -67
-72	 -91 -231	 -6 1	 -6	 57
-ØØ	 71' -37	 26	 -6	 9 1

32	 46	 -1 8 	 14	 -6б 	 -19
113 -631	 -11 - -299	 92	 61
57 -142	 51	 5θ

900*********************** **
51 -236	 - -	 -24	 Ь 1	 θ3

-43	 26 	 92	 78 -65	 30
62	 47	 46

1ØØøø + ..xι w л w лwwrtл + +rta.+w ι ы ιι
-49	 1Λ8 	 -47	 -36 -119	 -66
-13	 150	 -57	 -69	 73	 149

-287	 17	 105	 156 -307	 49
19 -201 -189	 - 96	 -10 -261
29 	 -66	 -65	 96 -92	 10

-186	 90 -184 -123	 -2Ь -105
104

1100************ *************
-6	 225	 -4 -119	 -24 -102
34 -217 -225	 -17 -267	 50

-144 -114 -141 -153	 55

Event

1000

	

-1	 -91	 -3	 5	 49	 69

	

-127	 3 -228	 2	 -61	 204

	

-4	 55	 54

2000
-	 -154	 -4	 611	 19	 102
15	 49	 40

300*************************
-3 20Ø767 -223

-675	 -93	 63	 1 0	-З2 -195
12	 24 -129 -205	 231	 -73
161 -214	 262	 -94	 -26	 236
133	 30 	-4Ь 	 205	 -Ø4	 10
40 -141	 47	 -55	 130 -154
128	 -29	 50	 49

4000
-4 -156	 -6	 121 -144	 76

-65	 105 -111	 149 -122	 57
57 -744	 191	 -1 -146	 52
51	 -89	 19	 55	 54

500************************ *
-47 -264	 -49	 68	 16	 79
-11	 68 -52	 -98	 54	 53

6Ø00 * +wκ ы , м .wwwм rt artaw в , л
40 -L61	 -50	 79 -117	 -78
54	 65	 95	 5	 5τ 	 52

Designer

	

1600 	

	

-43 -150	 -45	 199	 -74	 55

	

243 -356	 6	 52 -147	 95

	

113	 -9 1 	39	 53	 52

	

2000 	 -

	

-44	 -154	 -46	 170	 153	 -55

	

119	 -15	 121	 12	 57	 56

	

3000 	
	-45 	 -242	 -47	 -22	 2	 157
	- 56	 1 76	 154	 -59	 134	 6 4

Θ2 	 63	 -74	 -71	 5θ 	 49

50801
47 -291	 -49	 -24	 θ	 ØØ

36 1 	-80	 5	 1	 58 	 4
74 -118	 50 	 49

8002 	

	

-9 0 -296	 -50 	 -25	 93	 93

	

117	 -25	 94	 Θ5 	 95 -356

	

-75	 9	 6	 52	 89 -90

	

-1 29	 4Λ	 54

7000
49 -257	 -51	 -26	 92	 92
95	 -39	 51	 50	 -31	 -32

	

-126 -127	 -35	 -36	 -37	 77
764	 -83	 11	 9	 55	 -33
-77	 51	 -86	 46	 45

-1 τ 	 12	 105	 5	 54	 -22
1 θ 	 45	 42	 42	 З9	 39
47	 47	 44	 54	 56 	 7

47	 46

100Ø0
-49	 198	 -47	 BØ	 -52 -106

	

96 -106 -103 	 92	 -19 -Ill
40 -105 -104

	

1 1000 	

	

-40	 123	 -46 -119 -136	 -38

	

-54	 -18	 -31	 -23 -152 -152

	

-143	 -84 -296 -160	 -96	 52

	

52 -105	 -36 -111	 36	 21

	

-297 -146	 49	 -27 -104	 61
39 -112	 -99	 -74	 21 -150

	

-200 -106	 -50	 -78	 -56 -109
-108

120ØØ * ιεa+aaa+a г+л x*п rtw л .+
47	 199	 -45 -740	 129	 132

	

-1 0 7	 37	 50	 36	 13	 -24

	

13200 	
	-46 	 194	 -44 -117 -211 -126

	

-204	 16	 23	 -72 -240 -161

	

30 	 49	 49 -119	 -1 Θ 	 25
97 -96

-43	 91	 -45	 429	 78 -164
197	 39	 -63 -102	 88 -241
-4	 -22	 -B	 -11	 8 4	 1 96

1 00	 66	 79	 12	 -92 -128
262	 144	 -97	 з	 -9	 5θ
6θ

2000
44 -139	 -46 -196	 85 -13

-59	 -22	 -16	 -66	 -14	 9
4 -59 -56	 32	 51	 50

7600
-45 -169	 -47	 -91	 29	 20
49	 48

-46 -141	 -48	 11θ 	 174	 -6
3	 -θ -104	 275	 136	 157

90	 -98 	 89 	111	 -4з	 34
-103	 -9	 36	 55	 54

208******************
-44	 1Λ1 	 114	 43 -1 63
20	 49	 49

	

1 2000 	

	

-47	 116	 -45 -660 -212 -222

	

51	 -51	 -48	 93	 -80	 366

	

26 -132	 -90	 -49	 238	 280

	

-75	 51

Characters

	

10000 	

	

-49	 ØØ	 -47 -265	 23	 13

	

-54	 -36	 -39	 -93 -108 -107

13000 	
-46	 91	 -44	 13 -208 -134
^0	 -15	 -45	 -90	 21 -330
164 -150 -144 -143 -200 -176

	

-228 -177 -191	 -07	 -60	 -94

	

--164 -119 -136	 206 -127
-46 -67 -61	 -00	 -03	 66
140	 439 -103	 77 -148	 436
110 -145 -183	 -44	 -39	 -69
-26	 -86	 -49 -151	 -40
13 -186	 -3	 -75 -203	 -62

-100 -109 -108

	

14006 	
45	 97	 -43	 -19 -205	 1Θ5

	-174 	 1θ7 -172	 -92 -154	 14
-Θ0 -146 -75 -99	 -98

	15002 	

	

-44	 76	 -42 -156 --156	 147

	

-199	 332 -1 Θ1	 50 	 47 -204
-96 -100	 -99

19000 	
-40	 140	 -38 -136 -151 -151
162	 63	 -94	 62	 51	 -45
16 -33 -95	 -94

	

24000 	

	

-46	 96	 -44	 -66 -162	 -17

	

-47 -219 --24	 55	 -90

Sound Demo

	

1000 	
1 -141	 -3	 -60	 45	 -64

	

-65	 47	 281	 339 -159	 155

	

72	 86	 -14 -116 -117	 97

	

109	 14	 19	 -25	 206	 -62

	

82	 48	 -25	 73 -305	 42

	14200 	 	 11000 	
	-45 	 113	 -43 -116 --230 -290	 -9 8 	 104	 -46 -223 -256	 -32

	

-124 -179	 -69 -229 -161	 41	 -65	 -99	 -9θ
	49 	 49 -119	 - 1 8	 -57	 -97

96	 12000 	

	

-47	 9θ 	 -45	 3	 -13 -3τ4
-200 -155	 300	 54 -158 -162

	

3-D Graph	 ь -183 -2ь9	 50	 5e - 16
376 -103 -192 -14 3	 -4 0 	 -37

	

51	 -39 -55 -80	 -99	 -9θ

701'Ø ,	 4Ø00 	+,.д ..влд rtaιε aы ιa.ιιι aι
-49 -236 	 -51 -150	 168	 204	 -46 -262	 -4θ -127 -109 -139
94	 -37	 -31	 9	 32	 -67	 -12Φ -149 -119 -146 -1θ5 -123
54	 5Б	 26	 -5θ 	 -26	 12	 149	 149	 55 -111	 - 40	 -43
θ9 	 5	 29	 -54	 51	 50	 51 -482 -459 -417 -343 -449

	

-432 -'05	 53	 -92	 48	 47

SстeeΛ

8000 	 	 1000Ø w*
-Θ -16Ь 	 -1 0 	 -50	 113	 71	 '	 1000 	 	 -41	 16з

aнκ39 л
wa137.ra152rt -152

3θ 	 47	 -31	 3	 77	 76	 -43 -193	 -45	 26 	 124 -124	 181	 62	 -95	 61	 50 	 -46
19	 -22	 51	 -26	 7	 -10 	 -35	 55	 1 7 	 123	 -26	 59	 -17	 -70 	 -96	 -95

60

	

5000 	

	

-47	 -29 	 -49	 50 	 -46	 11

	

47 -106	 -43	 44 -269	 -6θ	 16000 	
	-62 	 -64	 -66	 49	 85	 21	 -47	 105	 -41 -155 -155 -380
	46 -1 87	 -3θ	 54	 27	 15	 56	 56 -62 -92 -102

	

51	 73	 -23	 49	 -5 -42

	

56	 2 -37	 53	 -2 -68	 17000 	

	

50	 -6	 -71	 -42	 111	 -40 -154 -154	 100
255 -42 -254 -95	 50	 50

	-1 8	-62	 -97	 -96

9000
30ØØ45	 ^	 2Ø4100 	aw , м + л+ι.4 	

287
a+ в

+a+a и]1	 -93	 -50	 237	 -4Θ -146 -161 -161
-70	 4 8 	 47	 -24	 6 -104	 52	 4 1	 -55

-26	 64 -105 -1 0 4

-9 -129	 -11	 -4	 61	 179
89 -108	 45	 -1	 5θ 	 49

196
197

The Working Sinclair QL Appendix

129	 8 3 -101	 -17	 -6 -105	 14004 	 	 1,000 	 	 1111(30 	
-63	 -65 	-55	 -56	 56 -101	 -45	 127	 -4З 	 26 -153	 106 	 -46	 207	 -44	 -16 -116	 35	 -48	 -46	 -46	 112 -379 -262
27 -1 0 4	 23 -107	 89 -110	 -159	 -45 -171	 -90	 -53 -252	 -145	 -25	 -27 -1 Э4 -131	 -16	 -182	 -73	 133	 Θ0 -186 -170

100 -102	 126 -1 05	 190 --1 08 	-106 -211 -147	 -б6	 -98 	 -97	 -107	 -49 -220	 -80	 -11 -1Ø2	 -234 -20 1 -136 -101 -126 -106
44 -(11	 -18	 26	 6	 39	 -141	 148 -256 -131	 -16 -1 07	 -63 -117 -112 -110	 198	 210
61	 60	 -106	 -37 -112	 83	 246	 -62	 θ3 	 202	 209	 194	 41 -115

15(3431 	 	 '	 -398	 1 -114 -108	 -77	 34	 -50	 -4 Θ	 -00	 50 -105 -104
200Ø w	 •	 -44	 191	 -42 -119 -114	 113	 i 	

-101 -100
4Λ -199

	
-46	 66	 33 	 -17	 -163 -121	 -20	 -97	 33 -108

-109	 270	 4531	 40 -23	 56	 -595	 36	 -26 -179	 -84 -135	 i 	 14000 	 	 12000 	
55	 -169 -163	 -36 -107	 93	 7	 -45	 232	 -1	 -25 -115 - 3 63	 -47	 217	 -45	 -23 -117 -137

-127 -386 -118	 10	 -64 	98 	 -207	 -89 -276 -193	 -80 -129	 -86	 -70 -111	 54	 25	 -91
-109	 46	 -29 -281 -105	 -5	 -325	 49 -177	 102 -124 -101	 -98 	 -29 -106 -212	 196	 97

Music	 -132	 109 -113	 -1 -134 -231	 64	 -95 -105	 -171 -256	 -85	 41 -105 -104
-94 -38з	 57 -381	 -85	 51

-З65 -399 -259 -161 -134	 -32	 1(00θ + wa в ••• w в	 a ии	 -4 η 	 210	 -42	 1ØØ -114	 39
43 -133 	 -45

	 a•
5 www 106	 -74	 288	 262 -11 θ	 -2 -103	 262	 '	 13000 	

36	 5Φ	 49	 -129 -174 -1I0	 -5	 -68	 33	 96	 14	 -Θ -1 ί 9 -129	 -2Θ 	 -46	 206	 -44	 -20 -116	 -64

	

16 -101 -100	 -1 315	 Θ1 -120	 -95	 -96 -110	 -46 -109	 -93	 -2l -109 -(05

20114 	 	 ,	 -179 -110 -202	 112	 20 -145	 -190 -111 -20З -1 8 6	 5	 -7θ
-2 -154	 -4	 195	 77	 119	 16000 	 	 -54 -108	 42	 40	 -96	 -95	 -111	 54	 -66 -112	 97	 -23

163	 -5 -103 -10з	 22	 56	 -43	 179	 -9 ί 	 -27 -125 -222	 1	 -68	 243 -109	 -7	 -35	 -46
55	 -111	 1	 -09 -372	 57 -381	 -111	 -84	 32 -104 -103

-26	 -31 -266	 197	 165 -146	 16000 	
3000 	 	 -108 256	 2θ6	 29	 -73 -20 7	 -43	 2Φ2 	 -41	 --41	 -52	 -22	 1ηφ00 	

-46 	 65 -101	 -81 -187	 56	 -99	 Θ -14 З -187	 -2 -122	 -45	 93	 -43	 -43	 -54	 -24-3 -257	 -5	 7Ø	 91	 2Ø	 -74 -180 	-1 8 -17θ	 5	 -99	 '	 -41 -103	 4 -116	 -19	 -99	 -101	 6 -145 -169	 28 -12451	 71	 -75	 -50	 106	 55
-276-76-1661-1461-54	 -98	 56	 71	 25 -192 -101	 -93 -105	 34 -1 ί 9	 -21 -101

• 	 θ3í-B43-23101B154111	 51	 13θ 	 -84	 138	 5θ 	 170ØØ 	 	 17Ø0θ 	154 -11 1	 75	 54	 -35	 -(Ь
62	 -27	 -1	 59 -356	 1	 -42	 129	 -9θ 	 6Э -299	 260	 -42	 117	 -90	 99 -141	 -86	 15000 	
56	 - З3	 -3	 53 	-25	 4	 -40 	 -93	 -92	 ,	 -83	 -92	 5Θ 	 -95	 -89	 -9Ø	 -44	 106	 -42	 97 -14$	 -88
61	 -28	 Ø	 58	 -31	 -4	 -102	 -60	 -97	 -96	 -85	 55	 -98 -113 -125 -1116
55	 -З 4	 -24	 63 -344	 -13	 18040 	 	 DØØØ	 -66	 -67	 -99 -98
09	 59	 54	 53	 -97	 1Øθ 	 -41 -21 Λ 	 -39	 -96 -179	 111	 ,

79	 -92	 -91	 -41	 237	 -З9	 -51	 81 -110	 16000 	1 д4	 -7θ 	 168	 8 1 	61	 56	 -15 -119 -205	 Ь3 -271	 196	 -43	 123	 -41	 -51 -152 `	 33υ5 -220	 -87	 -11	 -75	 61	 (90θ0 	 	 -51	 -1 -1 40	 -74 -116 -199	 -48	 56	 -44	 -92 -10260	
-40	 -69	 -З8	 -68 -194	 61	 -233	 103	 49	 -8θ	 -67	 -41
36	 -91	 -90	 82 -108	 -92	 -98	 -76	 87	 17440 	

4ØP0 	 	 -106	 56 -144 -103	 56 -216	 -42	 210	 -40 -113 -144	 -18
4 -144	 -6	 98	 -44	 -75	 26000 	 	 -37	 -1 9 	-94 	 24	 58 -102	 -295	 231 -155	 31	 θ	 -Ø

52	 191 -130	 -27	 51	 -60	 -50	 190	 -4θ - 1 21 -215 -130	 - 101	 -1 8 	-63 -113 -416	 -41 -154
97	 46	 51	 50	 -208	 12	 19	 19	 6θ -122	 '	 '-94	 5Ø	 87 -233	 Λ5 	 31

-42	 44 -109	 13	 65 -117	 1900д 	 	 -103 -113	 93	 -61 -156	 -84
50Ø0 	 	 -з7	 50 -I14	 -12	 -23 -159 	' -9 θ	 129	 -38 -1 34	 -83	 -80	 -97	 297 -2з6	 - 4 9	 147	 -14

-5 -22	 -7	 -34	 -33 -26 47	 405 -154	 -89	 59 -97	 -37	 -99	 -98	 -176 -30 7 -17$ 	-90 -255	 -37-232 -117 -195	 - 47	 46	 39 -129	 14 -108 -107 	 1 1 6	 5θ 	 -78 	36	 -9Θ 	 -97
20604 	

6004 	 	 21 400 	 	 -50	 11Θ 	 -46 = 1 45 	 - 19	 -62	 18000 	
6	 8 4	 -Θ	 36	 23	 32	 -49	 109	 -47 - 129 -372 -2З3	 -11 8 	 37 -146 -169	 -55 -215	 -41	 125	 -39 -270	 -6	 -3

20 .	 47	 47	 17	 40	 -293 -127 -1 8 1	 -44	 -6 -188-149	 -3 -171 -151 -222	 -64	 -25	 -7Ь	 -50	 -67 -127 -130
147 - - 194	 46 -107	 -49 	 1	

.
	 2л5	 -12 -114	 -37	 -4 -178	 -102 -1 01 -154	 92 --154	 -65

-181	 -9θ -198	 42 -111	 -6	 -110	 197 -277	 -28	 -25	 -98	 2	 -95	 -6	 224	 47 -102UП 1^1^ρ 	
-17 -153	 52 -22Θ -203	 50	 з9 -117	 -68 -112	 48	 -47	 253	 55	 -99	 65	 -58	 72
413 -91	 42 -126	 -65 -105	 '	 -79	 -53 - 103 -102	 - 1 06 	49	 -51	 -99	 -98

10090 	 	 -1 θ4
49	 -З9	 -47 -384 -264 -151	 '	 21 000 	 	 19000 	

204	 308 	 -56	 -47 -176 -183	 -49	 191	 -47 -120 -214 -129	 - η0 	 217	 -38 -111 -137	 6 1
-54 -1 07 -219 -229	 208	 -60	 Nniirniyer	 '	 -207	 13	 20	 151 -144	 -92	 -230	 -85	 -16	 -93 -164	 -89

-167	 51 -260	 -66 -16 11 -162	 -	 -23З	 -2 -168 -146	 49	 49	 -317 -360	 249 -155 -146	 -96
6 -184 -1θ7 -102 -101	 -25 -209	 -38 -172 -182	 45	 49	 -90 -100

10000 	 	 45 -108 -122	 21 -101 -100
11009 	 	 -49	 --39	 -47 -126 -30θ -1 θ3	 20000 	

-4 Θ 	 -46	 -4б	 112 -57θ -262	 -3	 245	 -61	 -47 -198 -112	 -50	 85	 -9 6 	 -60	 72 -119
-290	 -73	 133 -175 -201 -138	 -107	 22000 	 	 -24 -126 -214 -390 -309 -322
104 -256 -109 -128 -120 -104	 -4θ 	 110	 -46 -119 -233 -293	 -60	 -10	 -84 -126 -209 -243

-102	 206	 179	 187	 30 -123	 11000 	 	 -	 -127 -1 8 1 -14 8 - 1 30	 -89 -233	 61	 -14	 -9θ	 -77	 -51	 72
116	 -45	 -77	 53 -102 -101	 -48	 -46	 -46	 -22 -118 -1 З9	 1 -168 -143	 49	 49	 -25	 -110	 -7θ -1 08	 -83	 77 - 105

96 -323	 -52 -415 -229 -161	 -209	 -24 -172 -113	 45	 45	 11 -197	 -50	 -31 -111	 11
-50	 -25	 -97	 -98	 -10 -116	 •	 -105 -122	 -61 -101 -100	 56 -104 -103

12.000 	-95	 148 --134	 -43 -130	 -17
-47	 207	 -45	 -21	 'Ø0w - 8 9	 -228 -204 -107 -119 -205 -229	 '	 210310 	

-115	 -62 -104 -222 -135 -242	 -202	 -47	 -23	 -79	 -83 -120	 M11II1Q	 -49	 120	 -47 -111 -142	 -91
72	 -48	 -44	 336 -198 -102	 19 -214	 -39	 -22	 -5θ -10Э 	 -80 	54 -1 06	 -63	 -5Ь -107
89 -377 --372 -386 -476 	 46	 -108	 -1 φ6
109	 177	 21 -122	 -70	 -76	 10И00 	
29 -107 -106	 12000 	 	 -49	 -39	 -47	 -29 -160 -392	 22000 	

47	 109	 -45 -1 82 -236	 -61	 -262	 89	245	 -55	 -57	 82	 -4θ 	 192	 -46 -11 э -21 З -128
1300 0 	 	 -60	 -98 	 -97	 -122 -196	 40 -210 -160	 1θ6 Ø3-46	 177	 -44 -211 -150 -194 	 30	 -22 -175	 -64	 -65 -169	

-286	 14	 21	 -82 -170 -1
-161 -211	 48 -TØ	 -96	 5 119 -11 6 -259	 -99	 10 -123	 -109 -104 -103	 51 - 1 53	 -66	 93 -125	 1 8-26 -106	 4э	 -47	 29	 -98	 '	 -104 -103-97

198	 199

5Ø
2000.........................θ44

Ø

Appendix

121734 	 15
-127 -6 1 6 - 76 -113 -165

-1 -82 -109 46 -96 -102
-101

2100.........................
-49 1224712θ126 47

-12 θ 155 -182 -163 -1115 -221
-103 47 47 -69 -48 -101
-1 θ0

77ØØØ .	 a
-48

w1B0ww a 46www
13θx

a м . ØØ w
-106

-6 1 -127 93 -101 41 3 Ь
-1 τ1 -3θ -280 -69 -1 д 1 -104

2300.........................
-47 228 -45 -224 -117 -381

-176 -155 -185 54 27 53
-104 -1Ø3

2500.........................4
80442Ø9190 -1] Ь

- 1 73 -2/1 -51 55 117 -256
-146 - Θ2 -101 -1!θ

25000 и wa и+ииa. ιдwaaax л wвгмм
-45 203 -43 -190 -235 -243

96 49 -95 249 -112 -122
-76 -101 173 2 6 -2211 29

-193 -114 -19 -104 199 -200
-129 -143 29 -90 -97

26011.........................

-44 196 -42 -115 -207 -124
-202 16 25 -322 -166 -24

120 -97 -129 -212 -269 56
56 -207 -195 -195 49 -105
50 -I16 25 -97 -96

2740.........................

-41 115 -41 -114 -228 -298
-122 -176 -123 -155 -21 120
-97 -126 -212 -266 56 56

-207 -181 -192 49 -105 50
-118 -63 -56 -98 -95

Checksum

	1000 	

	

-43	 -95	 -45	 470	 93	 119

	

-16θ 	 85	 119 -212	 53	 -19

	

41	 4	 92	 209	 99	 55

	

304 263	 83	 63	 57	 56
157	 45	 99	 9θ 	 -21	 75

	

1 20	 63 -197	 -96	 56	 55

	

107	 30	 52	 51

7000 	
-44 -263	 -46 -293	 172	 91
54	 -78	 -79	 107	 166	 139
95	 93	 57	 -92	 51	 50

3000 	
-45 -229	 -47	 4	 112 -143
159	 94	 -4	 90	 69	 59
-96	 -56

	10000 	

	

-49	 -39	 -47 -514 -248 -171
-226 -239 -246 -242 -153 -151
192 -140 -182	 --60 -122 -213

	

-16 -159	 41	 57	 3911	 -63
54	 85 205 -291	 29	 46

105	 -42	 -66 -111	 -37 -105
-104

11411..............

	

-4Ø	 -46	 -46	 -27 -140 -117
195	 37 -288 -126 -129 	 -90

	

-139	 3	 -Λ9 -246	 -31 -202

	

-48 -174 -112 -216 -175	 -96

	

-139	 252	 224	 144	 14θ 	 193

	

270	 226	 199	 66 -124	 192

	

-253	 -45	 -77	 -91 -102 -101

	

12θ00 	

	

-47	 226	 -45 -11θ -291	 99

	

-165 -297	 33 -177	 50 -185

	

-155	 232 -207 -175 -391 -252

	

17	 3З -223	 294 -149 -401
147 -161	 220 -144	 53	 71

	

-297 -297 -335 -1 Λ8 -130	 296

	

-291	 -15	 56	 -99 -109

	

13000 	
46	 69	 -44 -175	 30	 26

	

-187 -278 -132 -112	 -66	 Ø

	-234 -159	 29	 -69	 -Θ8 	 -74

	

-209 -207	 -71	 -72	 -77	 47
330 -144 -126 -101 	 -99 	 -97

	

14000 	

	

-45	 121	 -43 -429	 61	 -9

	

-117 -105 -182	 146 -217 -396

	

49 -147 -170 -103	 52 -122

	

-72 -105 -190	 137 -216 -106

	

50	 -1 -165 -122	 53	 -47
106 -1Ø5

	

15000 	

	

-44	 169	 -42	 -23 -151 -117

	

-100 -209	 168	 58	 47 -214
105 -104	 -	 6 -101	 54

	

-99	 2 -104 -103

1
-43	 116	 -41	 92 -113	 275
105	 -1θ -319	 319	 -6 7 	 92

-104	 0	 -61 -123	 -22	 -99
110	 52 -128	 -64 -263	 50

-213 -193	 34	 -54	 -95	 -94

17Ø00 .
-42

wwwww4ww
a245	 -40 - 113 -192	 94

325	 20	 3Θ -99 	 93 205
-125	 -24 -101	 Θ3 -159 -110
-199 -422 -112 -347	 -31	 52
-69 -112	 54	 -43	 -99	 -50
-6Θ -114	 69 -100	 -99

18Ø00 w κ.э+..axκ+axa. м x εн эΡввa

-41	 201	 -39 -112 -153	 -61
-225	 -9 -76	 44	 -9 -72

197	 20	 -96	 -95

17011.........................
-40 	 44	 -39 -161 -121	 162
-109 -181 -149 -114	 57	 θ
-115 -100	 55 -123	 -93	 -92

12000 	
--294 -47 111
-153 -126 -190

22 -155 47

Budget

-45 -118 -232 -292
-178	 -91 -220 -222
-48 -120	 -59

The Working Sinclair QL

2з000 ^	 •	 18Я00 	

	

-47	 111	 -45 -119 -232 -272	 =49	 109	 -47 -120 -234
126 -180	 -79 -157 =180 -161	 -128 -182 -1 θ7 -196 -175

	

-208	 40 -230 -141	 51	 51	 -138	 -2θ 	 15	 47 -121

	

-153	 -52	 43 -125	 -64	 -100	 -99

Ba п ke г	 Accou п (aut

	

14914 	 	 1000 	

	

-1	 -11	 -3	 337	 214	 111	 -1	 -11	 -3	 332	 214	 98

	

27	 99	 Ь9	 84]]0 -49	 -139 -306	 49	 49

	

-94	 -2 -302	 -16	 52	 51

	

2000 	

	

-2	 -4	 -4 -33 3 З0	 67

	

791914 	 	 -3θ 	 128	 Ь 1	 125	 -24 -162

	

-2	 -4	 -4	 -28	 335	 67	 77	 12	 149	 95	 -32 -179

	

-20	 77	 90	 197	 11	 145	 36	 67	 52	 61	 59	 12

	

5θ 	93	 124	 25	 59	 44	 -99	 -95 -236 -94	 70	 -71

	

68	 52	 61 -281 -130 -219	 65	 166	 -1 4 	 33 	32	 58

	

-239 -118	 25	 29	 66	 -77	 57

	

67	 -6 229	 - Δ	 55	 54
3000

	

3	 152	 51Z754	 -51
3000 • 	 	 101	 -82	 54	 -1 θ	 21	 2З

	-3 -291	 -5 -44	 67 -29	 54	 5З

	

-24	 -12	 56	 5Λ 	 -15	 54

	

70	 -26	 -21	 59	 -17	 50	 90ØØ

	

-3 -Θ3 	 61	 -51	 24	 -24	 -4 -245	 -6	 -З9	 66	 13

	

146	 164	 -22	 -62	 -35	 109	 29 -128	 -59	 99	 -62	 3θ
	7	 118	 60	 --1Ø	 100	 -97	 102	 -2θ 	 -11	 49	 49	 25

	

-21	 -35	 64	 -3θ 	 16	 62	 20	 15	 -6Θ	 55	 54

	

-93 -114	 -60 -252 -101	 46

	

14	 57	 -21	 1	 17	 69	 5000 	

	

-147	 -5	 -3θ	 57	 63	 2θ 	 -5 -172	 -7 -43	 -33	 249

	

-19θ -193	 166 -125	 35	 65	 51	 151	 -77 -11 θ	 49	 -21

	

-116	 54	 53	 56	 -31	 114	 -2	 107	 -14

	

51	 101	 1Л 	 64	 4	 5 з
40θθ . .н ^ • s a. дΡ.ι 	 52

-4 ι в
139aa ^ в6 л

и •92
wwa

165	 65

	

146	 75	 6	 147	 54	 166	 6θBθ a

	

54	 9	 55 -100	 З 7	 14д 	 -Ь
wa

150	 -Θ -140	 1611	 48
27	 42	 34	 153	 273	 175	 78 -126	 -5 -171	 47	 -22
6 -27ь -133	 -2з	 -56	 96	 129	 61	 146 -134 -16θ 	 -84

	

61 - 1 25	 -4 -102	 з5	 52	 11θ 	 106	 53	 з2	 -99	 75

	

51	 153	 59	 21	 47	 46

5000 	 	 7000 	

	

-5 -176	 -7	 210	 72	 29	 -7 -142	 89 -169	 62
-102 -185 -105	 51	 θ 	 5З 	326	 7θ	109	 -89 -13θ 	 -49

	

52	 33	 80	 52	 3 324 -93

	

108	 5Λ 	 153	 121	 192	 199
600φ 	 	 3 -279 -136 -26	 -59	 93

	

-6 -228	 -8	 461	 III	 -37	 50 -10Ø	 -7 -249	 251	 139

	

31	 2θ 	 -7	 -16	 29	 56	 -362	 -49	 5θ	49	 141 -102

	

-139	 9 1 	56	 31	 -83	 62	 35	 52	 51

	

-56	 90	 -1 3 	 137	 150	 15

	

50	 53 -102 -72	 50 -53	 Ø00ø 	
122	 55	 -66 -169	 4 Ь -216	 -Θ -177	 -1θ -198	 -9 1	 -41

	

-118	 68	 -73	 156	 -32	 29	 -37	 120	 -9 -4Θ	 55	 23

	

3б	 163	 -67	 51 -127	 86	 53	 Ь7	 -26	 -3 -107	 97

	

-7l	 -91	 61	 -94	 35	 -12	 41	 62	 -2	 51	 50
116	 46	 -54	 50	 49

9000 	
7009' 	 	 -9 -151	 -11	 62	 -71	 139

	

-7 -127	 -9	 -41	 -45	 -τ6	 150 -250 -312	 224 -250 -166

	

-6 -29	 47	 46	 -36 -41	 59	 75 -259	 107 -242	 47

	

86	 -2	 129	 51	 50	 31	 -296	 105	 79	 63	 4	 52

	

44	 43	 41 -104	 87	 3θ 	 76	 63

	

159 -160	 65	 53 -102	 -22
0000 	 	 -64	 6	 -99	 47	 -6 -139

	

-8	 76	 -1 θ 	 235	 129	 122	 -116	 -20 -214	 42	 -89	 46

	

122	 217	 -.	 -109	 112	 10t	 45

	

48 227	 -59	 66	 61	 5

	

43	 42	 '01100 	

	

-49	 -99	 -47 -292 -196 -179
9000 	 	 -179 -274	 -54	 52 -169 -158

	

-9 -249	 -11	 62	 156	 71	 -1 Φ5 -204 -119	 45	 -63 -101

	

149	 -71	 -79 	 51	 148	 119	 -100

	

97	 79	 -36	 --74 -106	 62

	

-91	 41	 51	 11000 	

	

-4 6 	 192	 -46 -119 -213 -128

	

-206	 14	 21 -179 -105 -220

	

-225 -159	 47	 -48 -120	 23

	

-99	 -98

• •

200
	

201

INDEX

Designer 41

&& б9, '76 Directory 56

A E
Accountant 158 ENTER 24
ADATE б Event 33
Anaclock

ß

EXIT

F

13

Ranker 145 Field	 99, 1(б
BEEP 32,87,95 FILL	 11, 18

Binary 69, 72, 84 Formatting a number 151

Binary search 106, 112, 126
Budget 171 G

GOTO	 12, 13
C

Channel 154
Character memory 72, 73 Indicator characters 162
Characters 71 Initialisation	 3, 42
Checksum Generator 194 INKEY$ 23
Circle defining 7 INPUT 24
CIRCLE command 47 inserting into arrays	 109, 147, 161
Clock 14 1NSTR	 94, 113
CLOSE 55 Internal clock 6

Command lines 12 Inverting characters 81
Control module 12
CSIZE 80 L

LBYTES 85
D Loading data from microdrive 55
DATA 61, 91, 92
DATE 6 M

DATE$ 5,6,9,21 Menu 24
Deleting items from arrays 115, 167 MERGE 39

203

• •

S

Saving the program
SBYTES
SCALE
Scientific notation
Screen
Screen memory
Screen protection
SCR_
SDATE
SER 1
Setting the time

Shiftingacharacterleft
Sound Demo
Storing data on microdrive
String array
String comparison

T

TAB
	

176
3D Graph
	

56
Timer	 19
Transferring the character set

	
74

Turning a character	 83
Turtle graphics	 56

U

UNDER
	

155
Unifile	 98
User defined cursor
	 43,77

W

WINDOW
	

80

2
85
53

150,151
б 3

64
32

154
21

38, 154
5,21, з 4

83
87
54
2Π

100

£6.95ısвN 0 946408 19 X

•	 •
The Working SίπclпίrQL

Microdrive	 3
Mirroring a character	 82
Mode	 12, 13, 15, 71
Modular programming	 12
Multiq	 129
Music	 90

N

Negative numbers
Nnumher
Note values

o
OPENIN
OPENNEW
OVER

P

PEEKL
Pixel
Pixel colours
Pixels

spacing of
Pointer array
Printer
Procedures

passing parameters to
Program format

R

8,47
RAM 73
RECOL 71
Record 99
REPEAT 5, 13
RESPR 75, 86
RESTORE 61
RETRY 6
ROM 73
Rotation of ashape 47
Rounding errors 151
RS232C 38

Other titles from Sunshine

S)έ*Ë,^TRUM 8U)K5

Artificial Intelligence on the Spectrum Computer
Keith & Steven Brain
Spectrum Adventures
Tony Bridge & Roy Carnell
Machine Code Sprites and Graphics for the ZX. Spectrum
John Durst	 ı sВN 0 946408 513	 £6.95

ZX Spectrum Astronomy
Maurice Gavin	 ı sвN 0 946408 24 6	 £6.95

Spectrum Machine Code Applications
David Laine	 ISВN 0 946408 17 3	 £6.95
The Working Spectrum
David Lawrence	 ISВN 0 946408 00 9	 £5.95

Inside Your Spectrum
Jeff Naylor & Diane Rogers	 ISВN 0 946408 35 1	 £6.95
Master your ZX Microdrive
Andrew Pennell

Graphic Art for the Commodore 64
Boris Allan	 ISВN 0 946408 15 7	 £5.95
DIY Robotics and Se ıіsors ou the Commodore Computer
John Billingsley	 ISВN 0 946408 30 0	 £6.95
Artificial Intelligence on the Commodore 64
Keith & Steven Brain	 І SВN 0 946408 29 7	 £6.95
Simulation Techniques on the Commodore 64
John Cochrane	 ISBN 0 946408 58 0	 £6.95
Machine Code Graphics and Sound for the Commodore 64
Mark England & David Lawrence 	 ISВN 0 946408 28 9	 £6.95
Commodore 64 Adventures
Mike Grace	 ısВN 0 946408 11 4	 £5.95
Business Applications for the Commodore 64
James Hall	 ı S ВN 0 946408 12 2	 £5.95
Mathematics on the Commodore 64
Czes Kosiiiowski	 ı s ВN 0 946408 14 9

	
£5.95

Advanced Programming Techniques on the Commodore 64
David Lawrence	 І sВN 0 946408 23 8	 £5.95

152
117

91

56
55

43,46,176

75
71
65

16
103

35,63,66,67,154
4

11
x

tSВN 0 946408 37 8 £6.95

І sВN 0 946408 07 6 £5.95

204	 205

£6.95ı sвN 0 946408 40 8

• •
Commodore 64 Disk Companion
David Lawrence & Mark England 	 ı SВN 0 946408 49 1	 £7.95
The Working Commodore 64
David Lawrence	 ı SвN 0 946408 02 5	 £5.95

Commodore 64 Machine Code Master
David Lawrence & Mark England	 IS ВN 0 946408 05 X	 £695

Machine Code Games Routines for the Commodore 64
Paul Roper	 І SВN 0 946408 47 5	 £6.95

Programming for Education on the Commodore 64
John Scríven & Patrick Hall 	 ІsВN 0 946408 27 0	 £5.95

Writing Strategy Games on your Commodore 64
John White	 ISВN 0 946408 54 8	 £6.95

E[,°L*+CtІ 	 нOоIČ^:

Graphic Art for the Electron Computer
Boris Allan	 ІSВN 0 946408 20 3
The Working Electron
John Scriven

Programming for Education on the Electron Computer
John Scríven &Patrick Hall	 ISВN 0 946408 21 1	 £5.95

д ' tЈТЈ :II $Orn

Functional Forth for the BBC Computer
Boris Allan	 ISВN 0 946408 04 1

	
£5.95

Graphic Art for the ВВС Computer
oris Allan	 ı SВN 0 946408 08 4

	
£5.95

DIY Robotics and Sensors for the BBC Computer
John Billingsley	 ISBN 0 946408 13 0

	
£6.95

Artificial Intellige ııce on the BBC and Electron
eith & Steven Brain	 І SВN 0 946408 36 X

	
£6.95

Essential Maths on the BBC and Electron Computer
Czes Kosniowski 	 І sВN 0 946408 34 3

	
£5.95

Programming for Education on the BBC Computer
John Scriven & Patrick Hall 	 ı sВN 0 946408 10 6

	
£5.95

Making Music on the BBC Computer
Ian Waugh	 [SВN 0 946408 26 2

	
£5.95

Advanced Sound & Graphics for the Dragon
Keith & Steven Brain	 І SВN 0 946408 06 8

Artificial Intelligence on the Dragon Computer
Keith & Steven Brain	 ISBN 0 946408 33 5

Dragon 32 Games Master
Keith & Steven Brain
The Working Dragon
David Lawrence

The Dragon Trainer
Brian Lloyd

Ai"А ,йІ : вÚί'31{S

Atari Adventures
Tony Bridge	 ISBN 0 946408 18 1

Writing Strategy Games on your Atari Computer
John White	 ısВN 0 946408 22 X

SτNCt*Ø1R QL вaьОІ(š^- ;.

Artificial Intelligence on the Sinclair QL
Keith & Steven Brain	 І sВN 0 946408 41 6	 £6.95

Introduction to Simulation Techniques on the Sinclair QI.
John Cochrane	 ISВN 0 946408 45 9	 £6.95

Developing Applications for the Sinclair QL
Mike Grace	 ISВN 0 946408 63 7	 £6.95

Mathematics on the Sinclair QL
Czes Kosníowskí	 ISВN 0 946408 43 2	 £6.95

Quill, Easel, Archive and Abacus on the Sinclair QL
Alison McCallu n-Varey	 іsВN 0 946408 55 6	 £6.95

Inside the Sinclair QL
Jeff Naylor & Diane Rogers

(ENEfIAL BUO,

Home Applications on your Micro
Mike Grace	 І SВN 0 946408 50 5

	
£6.95

ı SвN Π 946408 52 1

£5.95

£5.95

ı sвN 0 946408 033

τsвN 0 946408 01 7

ısвN 0 946408 09 2

£5.95

£(ı .95

£5.95

£5.95

£5.95

£5.95

£5.95

206 207

• •
Sunshine also publishes

POPULAR COMPUTING WEEKLY

The first weekly magazine for home computer users. Each copy contains
Top 10 charts of the best-selling software and books and up-to-the-
minute details of the latest games. Other features in the magazine include
regular hardware and software reviews, programming hints, computer
swap, adventure corner and pages of listings for the Spectrum, Dragon,
BBC, VIC 20 and 64, ZX 81 and other popular micros. Only 40p a week,
a year's subscription costs £19.95 (£9.98 for six months) in the UK and
£37.40 (£18.70 for six months) overseas.

DRAGON USER

The monthly magazine for all users of Dragon microcomputers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news related to the Dragon. A year's
subscription (12 issues) costs £10 in the UK and £16 overseas.

MICRO ADVENTURER

The monthly magazine for everyone interested in Adventure games, war
gaming and simulation/role-playing games. Includes reviews of all the
latest software, lists of all the software available and programming
advice. A year's subscription (12 issues) costs £10 in the UK and £16
overseas.

COMMODORE HORIZONS

The monthly magazine for all users of Commodore computers. Each
issue contains reviews of software and peripherals, programming advice
for beginners and advanced users, program listings, a technical advisory
service and all the latest news. A year's subscription costs £10 in the UK
and £16 overseas.

For further information contact:
Sunshine
12-13 Little Newport Street
London WC2R 3LD
01-437 4343

Telex: 296275

Printed in England by Commercial Colour Press, London E7.

209

!
NOTLS

NOTES
• •

NOTES

NOTES

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115

