
•

QL • Assembler

•

•
A1

Contents

•
Page

1 Introduction A3
1.1 Back-up Copy A4
1.2 Notation used in this manual A5

2 How to run the assembler A7

• 3 Assembler inputs and
outputs A14
3.1 Control inputs A14
3.2 Source inputs A14
3.3 Library input A16
3A Screen output A18
3.5 Source listing A20
3.6 Symbol table listing A21
3.7 Object code output A21 .4 listing outputs A22
4.1 Source listing A24
4.2 Symbol table listing A28

Appendix A Bibliography A30

Appendix 8 Source language A33 •
8.1 Lexical analysis A33
8.2 Source language line format A37
8.3 Expressions A40
8.4 Addressi ng modes A44
8.5 Instructions A 51
8.6 Assembler directives A65

Appendix C Error and warning
messages A77 • C.1 Error messages A77

C.2 W arning messages A84
C.2 Operating system errors A86

The QL• Assembler manual is Copyright© 1984,
GST Computer Systems Limited. The document is
not to be reproduced in whole or in part without •
prior permission from GST Computer Systems Ltd .,
91 High Street, Longstanton, Cambridge CB4 5BS.

•

•

•

1 Introduction
This manual tells you how to use QL Assembler
produced by GST Computer Systems for the Sin clair
QL.

lttells you:
(a) how to load and run the assembler
(b) what inputs the assembler takes and what

outputs it produces
(c) how the assembler language instructions

should be coded
(d) what assembler directives are available, what

they do, and how to code them .

lt does not:
(a) include a detailed description of the instruction

set of the Motorola MC68000 processor family
(which includes the 68008 as used in the QL)
for which you will need additional
documentation

(b) tell you how to talk to QDOS, the QL's
operating system, for which you will have to
consult the QDOS Software Developers Guide

(c) teach programming in general
(d) teach assembler programming or 68000

programming in particu lar.

Appendix A contains a list of some other publications
which you may find helpful.

A3

1.1 Back-up Copy

You are advised to make a back-up copy with the •
spare cartridge using the clone program provided
with the Assembler. Place the blank cartridge into
drive 1 and the master cartridge into drive 2, then
LRUN MDV2-CLONE
and fo llow the instructions on the screen.

•

•
A4

•

•

•

1.2 Notation used in this
manual

This section describes the notation used throughout
the manual to describe syntax of assembler source,
as well as other items.

< >

[]

{ }

means that the expression o n the right
defines the meaning of the item on the left,
and can be read as "is"
angle brackets containing a lower-case name·
represent a named item which is itse lf made
up from simpler items, such as
<decimal number>
a vertical bar indicates a choice and can be
read as "oris"
square brackets indicate an optional piece of
syntax that may appear 0 or 1 times
cu rly brackets indicate a repeated piece of
syntax that may appear 0 or more times
is used informally to denote an obvious range
of choices, as in :
<digit>= Dl1! ... !8l9

A5

Other symbols stand fo r themselves.

Example

<binary numb e r> =
%<binar y digit >
{ < b i n ary digit > }

<binar y d i g i t > = 0 11

means that a binary number is a '%'sign followed by
a binary digit, fo llowed by any number of further
binary digits, where a binary digit is the cha racter ' 0 '
or the character ' 1 '.Some examples of bi nary
numbers are %0 ,% 1010101100,
%0000000000000 .

•

Some of the special symbols used in the syntax •
notation also occur in the assembler source input and
the common sense of the ·reader is rel ied on to
distinguish these, as in for example:

<o per a tor > = •.• 1<< 1 • ••

•
A6

2 How to run the
e assembler

•

•

The assembler or editor may be run using the QL's
EX E C orE X E C_ W from Super Basic or by booting
from microdrive directly. lt may be run from any
microdrive (or other storage medium) and the files it
uses may be on any combination of storage media.

Use contro l-(to change to the assembler input line.

Typica l command lines
EX E C MD V 2_ A S M- start assembler from drive 2.
EX E C MD V 1_ E D -start editor from drive 1 .

The first th ing the assembler does is to ask you for a
window speci fication. Normally you can just press
ENTER in which case the assembler will use the
device C 0 N_ (with default position and size) tor its
screen output and keyboard input If however you
have something else on the screen already which
you do not wish to destroy you may type in a
complete C 0 N_ specification (see the Q L manual)
and the assembler will use the window you specify
in stead.

lt will say hello and ask you to type a command line .
This command line identifies all the files and devices
that the assembler will use and can also be used to
specify various options.

A7

See section 3 of this manual for a description of all
the various files and devices that the assembler can
use.

The format of the command line is:

<source> [<Listing>
[<binary>]] {<option>}

where:

<option>
-NO LIST
-ERRORS [<listing>]
-LIST [<listing>]

-NOBIN I
-BIN [<binary>]

-NOSYM I -SYM I

-LIBRARY <library>
-LIB <Library>

(the options may be in upper or lower case and case
is not significant)

<source> = <fiLe name>
file name of assembler source

<Listing>= <file name>
file name for listing output

AS

•

•

•

•

•

•

<binary> = <fiLe name >
file name for binary output

<Library>= <file name>
file name for library input

rhe options have the following meanings :

-NO LIST
-ERRORS

-LIST

-NOB IN
-BIN

do not generate any listing output
generate a listing of error messages
and erroneous lines only; if the
option is followed by a < f i L e
name> then this is the name of
the < L i s t i n g > output and
the positional <Listing>
parameter, if coded, is not used;
the -ERR 0 R S option also sets the
-NOSYM option

generate a full listing; if the option
is followed by a < f i L e
name> then this is the name of
the < L i s t i n g > output and
the positional < L i s t i n g >
parameter, if coded, is not used
do not generate any binary output
generate binary output; if the
option is followed by a < f i Le
name> then this is the name of
the < b i nary> output file and
the positional < b i n a r y >
parameter, if coded, is not used

A9

- N 0 S Y M do not generate a symbol table
listing; th is is the default if

- S Y M ;e~~r~~eRa Ss~~~~let~ble listing; this •
is the default if -LIST is coded or
if no listing options are coded; if
both - S Y M and - N 0 LI S T are
both coded then the - S Y M does
nothing

-LIBRARY 0r-LIB)~e-LIBRARY

option must be followed by a
< f i L e name> and specifies a
file containing a precompiled library
to be included in the assembly

Where conflicting options are given the last one
coded takes effect. For example, if :

-LIST mdv1 _ fred -NOLIST
-ERRORS

is coded then an errors-on ly listing will be sent to
MD V 1_ F R E D, and if:

-SYM -ERRORS

is coded then no symbol table output will be
generated.

A10

•

•

•

•

•

The minimum command line just consists of the
name of the input source file. In this case a full listing
with symbol table is generated (i.e the default is
- L I S T - S Y M) to the file whose name is
constructed from the <sou r c e > < f i L e
name> as described below. Also by default a
binary output file is generated (i .e. the default is
-BIN) to the file whose name is constructed from
the < s o u r c e > < f i L e n a m e > as
described below.

The <sou r c e > < f i Le name> is
examined: if its last four characters (after converting
to upper cas 'C) are not "_AS M" then "_ AS M" is
appended to the given name to make the name of
the actual source file used .

The name of the < L i s t i n 9 > file may be given
position ally as the second parameter, or may be
specified explicitly after a -ERR 0 R S or -LIST
option, or may be allowed to default. If no
< L i s t i n 9 > < f i Le name> is given in a
- ERR 0 R S or - L I S T option and no - N 0 L I S T
option has been coded then the assembler constructs
the<Listin9> <file name>bytaking
the <sou r c e > < f i Le name>, as
adjusted, and replacing the "_AS M" with
"_Ll s T" .

A11

The name of the < b i n a r y > file may be given
position ally as the third parameter, or may be
specified explicitly after a -BIN option, or may be . •
allowed to default.lf no < b i nar y> < f i Le -
name > is given in a -BIN option and no
- N 0 BIN option has been coded then the assembler
constructs the <binar y> < fiLe . name>
by taking the <sou r c e > < f i Le name> ,
as adjusted, and replacing the "_ AS M" with
"_BIN" .

Examples:

MDV L FRED
assemble MD V L F RE O_ A S M, put a full listing
with symbol table listing in MD V 1_ F RE O_ L IS T, •
and put the binary in MD V 1_ F RE O_B IN ·

MDVLFRED SER1 -nobin
assemble MD V 1_ F RE O_ A S M, print the listing as
it is produced, and don 't generate any binary

MDV1 _ FRED -ERRORS -BIN
Mdv 2_ f red_b i n

assemble MD V 1_F RE O_ A S M, send an error
list ing only w ith no symbol table to
M DV LF RE O_Ll S T, and put the binary in
MD V 2_ F RE D_B I N (note that coding
m d v 2_ f red would not have achieved this)

A12

•

•

•

•

MDV1_FRED ser1 mdv2_fred_bin
-errors -SYM -Library
MDV Lqdos_ lib

assemble M I;> V 1_ F RE D_A S M, print an error
listing plus symbol table directly, put the binary in
MD V 2_ F RE D_ B IN and include the precompiled
file MD V LQDOS_Ll Bin the output binary.

When the assembly has finished, and if there have
been no operating system errors, the assembler will
not go away but will repeat the prompt asking for a
command line. You can now do another assembly
without having to reload the assembler. When you
have done all the assemblies that you want you may
reply to this prompt with an empty command line
and the assembler will terminate .

A13

3 Assembler inputs and
outputs e

This chapter describes all the input and output files
and devices that the assembler can use.

3.1 Control inputs
Control information for the assembler is supplied by
the user typing a command line on the keyboard.
The command line is described in section 2 above
and specifies where all the other input and output
files and devices are.

3.2 Source inputs
The assembler assembles one main source file. This
may direct the assembler, using IN C L U DE
directives, to read other source files .

When assembling large and complicated programs it
is normal to put no real code at all in the main sourc<
file which will just contain INCLUDE directives
naming the other source files. For example:

A14

•

•

•

•

•

TIT LE A large complicated assembly

Start with the QDOS parameter file, then the
parameter file for my program

INCLUDE mdv1_qdos_ in
INCLUDE mdv1 _myparms_in

Now the main code to be assembled: this is
rather large so it is split into two separate files

INCLUDE MDV2_PROG1_IN
INCLUDE MDV2_PROG2_ IN

Finally, the -LIBRARY facility is being used
to include a library ofuseful subroutines; the
declaration file for the library must be
INCLUDEd last

INCLUDE MDV1 _ LIBRARY_ IN

END

The file name of the main source file must end in
_A S M, or the assembler will not be able to find it.

lt is recommended that filenames of INCLUDEd
files end in _IN, but this is not a requirement and
you can call them anything you like .

A15

3.3 Library input
The assembler's library mechanism allows you to •
include in your program a previously assembled
binary file containing useful subroutines or other
code. The program being assembled may refer to
labels within the library, but the library must be self
contained and cannot refer to labels elsewhere in the
program.

To use a library you must make reference to two
files.

The first file is a set of symbol definitions, in normal
assembler source format, which you must
INCLUDE at the end of your source program. This •
file causes your references to library symbols to be ~
resolved so that your code can be assembled.

The second file is a binary file containing the code of
the library routines. You must present this to the
assembler by giving its name in the -LIBRARY
option on the command line.

A16

•

•

•

•

If you manage to leave out one of these two files, or
use a definition file that is not compatible with the
binary file, then undefined chaos will result.

You can build your own libraries as follows:
(a) write the code
(b) assemble it: the output from the assembler is

now the library binary fi le
(c) build a definitions file from the symbol table

listing resulting from the assembly: for each
symbol in the library which you wish to be able
to access from programs, write a lin e:

symbo l EQU *+offset

where of f set is the value printed for the
symbol on the listing .

You can extend libraries in the obvious way as the
assembly in step (b) above can itself use a library .

A17

3.4 Screen output

The assembler writes a certain amount of •
information to the screen to let the user know what =

is happening. This includes a "hello" message, a
"finished" message and the request to type the
command line.

A summary of the number of errors and warnings
generated is written to the screen together with a
summary of the amount of memory used. This
memory size excludes the memory occupied by the
code of the assembler itself (about 17k) and the
assembler's initial data space (about 6k).

You can get a good ·idea of how complicated your
assemblies are and whether you are likely to run out •
of memory by watching the memory use figure. On
a standard 128k QL it is possible to assemble a
source file which occupies more or less a whole
microdrive tape as long as nothing much else is using
memory at the same time.

If you do several assemblies in one go (without
reloading the assembler) then the assembler will
reuse any memory it has obtained from the
operating system but will not release any memory
until it terminates completely. This means, for
example, that if you do a very large asssembly
followed by a very small assembly there will be no •
more free memory in the QL during the small
assembly than there was during the large assembly.

A18

•

•

•

The assembler also tells you when it is starting to
read the source input for the first time and when it is
starting to read the source input for the second time.
The second pass can be expected to take a lot longer
than the first pass if listings and/or binary output are
wanted. The symbol table listing is produced after
the summary messages are displayed, so if you are
assembling a large program it will be an appreciable
time after the summary messages are displayed
before the assembler finishes completely .

A19

3.5 Source listing
An optional souce listing will be generated , showing •
the source input and the code that has been
generated.

The listings provided are contro lled both by options
on the command line (see section 2 above) and by
directi ves coded in the source program (see
appendix B below).

If the - N 0 L I S T option is given then there will be
no listi ng output from the assembler. Under all other
circumstances a file or device will be used to produce
a listing.

If the filename for the listing output is generated
automatically by the assembler it will end in
_ L I ST . lt is recommended that listing files, when
stored on microdrive , always have fi lenames ending
in _ LIST, but this is not a requirement and you
can call them anything you like.

Li stings can be printed directly as they are generated
(using SE R 1 or SE R 2 or some add-on printer
device) or can be sent to the screen (using C 0 N_)
as an alternative to sending them to microdrive.

A20

•

•

3.6 Symbol table listing
• A symbol table listing will be produced if both the

-LIST and - S Y M options are in effect.

•

•

The symbol table listing will be added to the end of
the source listing, starting on a new page.

3.7 Object code output
The assembler produces a binary file that may be
executed using the QL's EX E C or EX E C_ W
command, as desired.

See the QDOS Software Developers Guide for
further details .

The size of the data space that is allocated to a
program may be specified by the user in a DATA
directive (see appendix B); if noD AT A directive is
given then the size of the data space will be 4096
bytes .

A21

4 Listing outputs
There are two listings produced by the assembler: •
the source listing and the symbol table listing.

Each line of listing produced can be up to 132
characters long (excluding the terminating newline);
in particular each title line is 132 characters long.
Some printers cannot be made to print 132
characters to a line so the PAGE W ID directive (q.v.)
is provided to specify the actual width ofthe printer.
Any line longer than PAGE W ID characters will be
overflowed onto the following line, and these
overflows will be taken account of when
determining whether a page is full.

The listing output is paginated with the total page
length defined by the user in a PAGE LE N directive
(q. v.) or allowed to default. To obtain essentially
unpaginated output the user may set PAGE LENto
a very large number, in which case only one title will
be printed at the beginning of the listing, and form
feeds will be included at the start and end of the
listing and between the source and symbol tab le
listings only.

A22

•

•

•
The format of each printed page is :
<heading>
<blank>
<title>
<blank>
<blank>
<listing>
<form feed>
where:
<blank>

<heading>

is a blank line (i.e. a line feed
character)

• <title>

is a line containing the name
and version of the assembler,
the name of the source file
being assembled, the page
number, and the time and
date
is the < t i t l e

<listing>

<form feed>

•

s t r i n g > given on the
relevant TITLE directi·Je; if
no relevant T IT LE directive
has been coded then this line
is < b lank>
consists of (PAGE LE N -
1 4) lines of listing of
whatever format is
appropriate (source listing or
symbol tab le listing)
is the ASCII form feed
character and appears
immediately after the line
feed which terminates the last
line (if any) of
<listing>

A23

4.1 Source listing

Note that if the - ERR 0 R S option has been •
requested then not all source lines are listed: only
lines containing errors are listed, together with the
error messages.

Each line of listed source code has the following
format:

Columns Field contents Format
1-4 line number 4-digit decimal
5 (blank)
6 section number 1-digit hex
8-15 location counter 8-digit hex
16 (blank)
17-28 generated code up to 12 digits hex
29 (blank)
3o-132 source line as coded,

truncated to fit

Source line numbers start at 1 for the first line in the
(main) source file and are incremented by 1 for each
source line processed regardless of the file from
which it came and regardless of whether the line is
listed or not.

The section number is zero for instructions and data
assembled into section zero. Jt is left blank when

•

absolute addresses (such as those generated under •
the influence of an 0 F F SET directive) are being
displayed.

A24

•

•

•

For instructions and data definition directives the
location counter field contains the address which
would be assigned to a label defined on that source
line; note that this is not necessarily the same as the
value of the location counter after the previous line
has been processed. For other directives containing
expressions whose value is likely to be of interest to
the user (e .g. 0 F F SET, E QU) the value of the
expression is printed in the location counter field or
the code field, as appropriate. If there is nothing
useful that can be printed in this field then it is left
blank.

The generated code field contains up to 6 bytes of
code generated by an instruction or a data definition
directive (DC or DC B). If an instruction generates
more than 6 bytes of code then a second listing line
is used to display the rest of it; this second listing line
is blank apart from the generated code field (and
possibly some error flags). Code in excess of 6 bytes
generated by DC or DC B directives is not printed; if
you want to see it you should code several separate
DC or DC B directives.

The length of the listing line is in all cases limited to
132 characters, any excess (probably comment)
being truncated .

A25

Error and warning messages are interspersed with
the source listing; each message fol lows the listing of
the line totwhfich

11
it refdebrs. If

1
a line hats errors or rt·

1
•

warnmgs 1 1s o owe y a me con a1mng a ve 1ca
bar character Cl> below the part of the source line
giving offence. The format of the messages is:

****** ERROR XX - line nnnn
mmmm - <message>

**** WARNING xx- line nnnn
mmmm - <message >

wher,~ x x is the error number, n n n n is the line
number of the line containing the error, mm mm is
the line number of the line containing the previous
error (0 if none) to allow the user to chain through all •
the error messages to make su re none have been _
missed, and <message> is a helpful message
saying what is wrong. There are separate chains for
error and warning messages.

The line giving rise to an error or warning is always
listed, regardless of the state of any LIST or
N 0 LIST directive~. Thus the listing generated by
-ERR 0 R S is more' or less the same as the listing
generated by -LIST if N 0 LIST directives are in
force throughout.

A26

•

•

•

•

If there is no END directive a special warning
message is printed relating to this at the end of the
assembly; the line number in this warning message is
one greater than the number of the last line in the
input file.

At the end of the assembly a summary of the
number of errors and warnings generated is output
both to the listing, if there is one, and to the scr2en .

A27

4.2 Symbol table listing
The symbol table listing is a sorted list of each user- •
defined symbol with its type, value and line number of
the line on which it was first defined.

The listing is sorted alphabetically on symbol name,
with ASCII collating sequence for non-alphabetic
characters. lt is printed in a single column.

The symbol table listing for each symbol contains the
following fields:

Columns Field contents Format
1-8 symbol up to 8 characters
9 (blank)
10-13 symbol type see below
14 (blank)
15 section number 0 or X or R,

see below
16 (blank)
17-24 value 8-digit hex
25 (blank)
26-29 line number 4-digit decimal

A28

•

•

The type field contains :

• MULT if the symbol is multiply defined; the
assembler wil l use the first definition
and print error messages for
subsequent ones

•

•

blank ordinary labels

The section number field contains:

blank
0

X
R

symbol is absolute
symbol is simple relocatable and lives
in section 0
symbol is complex re locatable
symbol is a register list defined by a
RE G directive

If the symbol is undefined then the section number
and value fields will contain the word
'undefined'.

The line number field contains the line number of the
first line in which the symbol was defined: for an
undefined symbol it is left blank .

A29

Appendix A- Bilbiography
QDOS Software Developers Guide. •
This manual describes the facilities of QDOS that are
available to the assembler programmer and tells you
how to call them.

You wi ll need this book to write programs for the QL.
lt does not attempt to teach 68000 programming.

Available from Sinclair Research Limited.

A30

•

•

•

•

•

Programming the MC68000 by Tim King and Brian
Knight, Addison-Wesley
This is an excellent book which teaches assembler
programming on the 68000 and also contains a
complete description of the 68000's instruction set. lt
is suitable for the first-time assembler programmer
although you should do some programming in another
language, such as SuperBasic, before using assembler.
This book is also very valuable to the experienced
assembler programmer who has not used a 68000
before as it points out many of the common errors and
pitfalls which usually cause trouble for the newcomer
to the 68000.

Available by post from GST Computer Systems
Limited, 91 High Street, Longstanton, Cambridge at
£8.95 including postage and packing .

A31

M68000 16/32 Bit Microprocessor Programmer's
Reference Manual
This is the Motorola handbook for the 68000 •
(reference number M68000UM). it contains """
definitions of the 68000 instruction set (as does the
King and Knight book) and in a€ldition contains more
low-level information, such as details of the binary
code for each instruction and some hardware
information.

Available by post from GST Computer Systems
Limited, 91 High Street, Longstanton, Cambridge at
£8.95 including postage and packing.

A32

•

•

Appendix B- Source
• language

•

•

This appendix defines the source language accepted
by the assembler. lt does not specify the details of the
Motorola 68000 instruction set and a manual for the
68000 itself must be consulted for this information.

8.1 Lexical analysis
This section defines the way in wbich characters are
combined to make tokens. The notation used is
described in section 1 above .

Generally a line of assembler source is divided into the
traditional four fields of label, operation, operand and
comment, the fields being separated by spaces.

Thus spaces are significant in this language, apart from
just terminating symbols.

As a special case a line containing an asterisk in column
one consists entirely of comment and is treated as a
blank line.

Any syntactic token is terminated either by the first
character which cannot form part of that token or by
end of line .

A33

<syntactic token>
= <white space>
<symboL> I
<number>
<string>
<newline> I
«1»1
! [#[&[< I) 1*1+1 ,[- [/ [:
(where <new L i ne> is a line feed character)

<white space>
= <space> {<space> }

(where <space> is the ASCII space character)
<symbol>

= <start symbol>
{<rest symbol>}

<start symbol>
= <Letter>[.

<rest symbol>
= < let t e r >I < d i g i t > I$[.[

<Letter>
= afb f. • .fyfz

[A [Bf ••• [Y[Z

note that (outside strings) whether a letter is upper
or lower case is not significant

note that a symbol can be any length but only the
first eight characters are significant

A34

•

•

•

•

•

•

<number>
= <binary number> !

<octal number> !
<decimal number>
<hex number>

<binary number>
= %< binary digit>
{<binary digit>}

<octal number>
= @<octal digit>
{<octal digit>}

<decimal number>
= <digit> {digit>}

<hex number >
= $<hex digit>

{<hex digit>}
<binary digit>
= 011

<octal digit>
= 0111 ••• f617

<digit>
= 0111 •• -1819

<hex digit>
= ~digit>
la f.· . ff iAI .. -IF

<string>
= '<stringchar>
{<stringchar>}'
where a< s t r i n g char > is any ASCII
character except a line feed, a control character, or
a single quote ' ; in addition a < s t r i n g c ha r >
may be two adjacent single quotes which allows a
single quote to be coded inside a string

A35

There are two types of < s y m b o L > used by the
assembler. < s y m b o L > s appearing in the operation
field are "operation type symbols" and those •
appearing in the operand field are "operand type
symbols". These two sets of < s y m b o L > s are quite
separate and there is no confusion (except in the mind
of the programmer) between the same name used in
both places. Thus you can have user-defined labels
with the same names as instructions and directives, if
you really want to.

There are special forms ofstrings used by the
HI C L U DE and TITLE directives which allow the
user to omit the enclosing quotes:

<fiLe name>
= <string> l {<non space

character>}
i.e. a < f i Le name> is either enclosed in
quotes or is terminated by a space or end of line

<title string>
={<character>}

i.e. a < t i t Le s t r i n g > is terminated by
end of line

A36

•

•

8.2 Source language line format
• This section defines the various forms which a source

line can take.

•

•

A source line consists of between 0 and 132 characters
(excluding the line feed character).

Basically a source line consists of the following four
fields:

label
operation
operand
comment

(optional, but depends on operation)
(optional)
(depends on operation)
(optional)

A source line can be blank (including consisting entirely
of comment as defined above) in which case it is
ignored for all purposes other than those connected
with output listings: a blank line is assigned a line
number, is printed on the listing, and its position may
affect the operation of the title directive .

A37

8.2.1 The label field

A line contains a label field if it starts with one of the •
following sequences of tokens:

<symbol><white space>
<symbol>:
<white space><symbol>:

i.e. a label starting in column 1 may be followed by
< w h i t e spa c e > or a colon, but a label starting
further along the line must be terminated by a colon .

Such a sequence at the start of a line is referred to
elsewhere in this appendix as a < Lab e L >.

If a line contains a label and contains nothing after the
label then the label is defined with the current value of
the current location counter: otherwise the meaning of
the label depends on the operation field.

A38

•

•

•

•

•

8.2.2 The operation field

The operation fie ld follows the (optional) label field
and its syntax is:

[<white space>J<symbol>

The symbol is one of:
an assembler directive
a 68000 instruction

8.2.3 The operand field

The syntax of the operand field depends on the
operation. < w h i t e s p a c e > terminates the
operand.

The syntax of each format of the operand field is
described below when the operation is defined.

8.2.4 The comment field

When enough of the rest of the line has been
processed to satisfy the operation (for the majority of
operations this is up to the first < w h i t e spa c e >
beyond the start of the operand field) anything left on
the line is deemed to be comment and ignored .

A39

8.3 Expressions
Expressions are constructed from:

unary operators:
binary operators:

parentheses:
operands:

+, -
+, -,I, *, >>, <<,
& , !
(,)

<symbol>, <number>,
*, <string>

< s t r i n g >s used in expressions must be four
characters long or shorter. The value of a
< s t r i n g > consists of the ASCII values of the
characters right-justified in the normal32-bit value.

•

Thus, for example, the two expressions •

I a I* 2 56+ I b I and I ab I

have the same value. (Note that the DC directive can
use longer strings with different evaluation rules.)

The character * used as an expression operand has the
same value as a < lab e l > defined on the line in
which the • is used would have.

A40

•

•

•

•

The syntax of an expression is then:

<expr>
= <symbol>

<number> * I
<string>
C<expr>)
+ <expr> <expr>
<expr> <binaryop>
<expr>

<binaryop>
= +1-~*1«
I » I & I !

The operators have the following meanings:

unary+ the value of the operand is unchanged
unary- the value of the operand is negated

Note that all operands are regarded as 32 bit values;
these values are obtained by extending the original
operand on the left with zeroes (all operands are
originally positive except that symbols can be defined
to have negative values, in which case they will already
be 32 bit negative numbers). Likewise all intermediate
and final results from expressions are calculated as 32
bit values and are truncated as necessary according to
context just before being used .

A41

binary+
binary-

addition
subtraction
multiplication *
division: the result is truncated towards
zero

< < shift left: the left operand is shifted to the
left by the number of bits specified by the
right operand, which should be an
absolute value between 0 and 32 inclusive
otherwise the result is undefined; vacated
bits at the right hand end are filled with
zeroes

>>

&

shift right: as for shift left but the operand
is shifted right
bitwise logical AN D
bitwise logical 0 R

rhe order of evaluation of expressions is as follows :

:a) parenthesised expressions are evaluated first (in
the natural way)

:b) operators are evaluated according to priority; the
order of priority is (highest first):
unary+, -
<<, >>
&, !
*· I
binary +, -

•

•

c) operators of the same precedence at the same
nesting level of parentheses are evaluated from •
left to right.

'\42

•

•

•

Symbols may be absolute or relocatable. Numbers and
strings are absolute; the current location counter (*) is
relocatable. The only operators which may act on
relocatable symbols or relocatable subexpressions are
unary + and - and binary + and -.

When an expression has been fully evaluated it is one
of:

(a) absolute: the final value is independent of the
start of section 0

(b) simple relocatable: the final value is an offset
from the start of section 0

(c) complex relocatable: the final value involves
some other multiple of the start of section 0

A43

8.4 Addressing modes
This settion defines all addressing modes that can be
coded as instruction operands. For a definition of what •
these addressing modes actually do consult a manual
for the Motorola 68000.

8.4.1 Addressing mode syntax

A number of symbols are reserved and have special
meaning when used in operands: these are names of
various registers.

D 0 t o D 7 data registers
also the symbols D 0 • W, D 0 • L etc.

A 0 to A 7 address registers
also the symbols A 0 • W, A 0 • L etc. •

S P synonym for A7 -
also the symbols S P • W , S P • L

US P user stack pointer
CC R condition code register (low 8 bits of

SR)
S R status register
PC program counter

A44
•

•

•

•

The syntax of instruction operands is developed below,
preceeded by a few general definitions .

<areg> =
AO I ••• I A? I SP

<dreg> =
DOl ••• I D?

<ireg> =
<areg> l <dreg>l
AO.W I ••• I A?.W SP.W DO.W
I ••• I D7. w I
AO.L I ••• I A?.L SP.L DO.L
I ••• I D?. L

<multireg>
= <range> V<range>}

<range>
= <areg> I <dreg> I <areg>
<areg> I
<dreg>-<dreg>

(where the registers in an individual range must be in
increasing register order, e.g. D 0- D 3 is valid and
A4-A2 is not valid)

A45

The addressing modes which are called (by
Motorola) "effective address" and which can be • coded (or at least a subset of them) in any instruction
which has a general effective address as an operand
are:

<ea>
<dreg> I D register direct
<areg> A register direct
(<areg>) I register indirect
(<areg>)+ postincrement
- (<areg>) predecrement
<expr>

(<areg>) indirect with
displacement

<expr> • (<areg>,
<ireg>) I indirect with index

<expr> absolute short
<expr> absolute long

<expr> PC relative
<expr>

(pC) I PC relative

<expr>
(PC,
< i reg>) PC with index

#<expr> immediate •
A46

•

•

•

Note that the syntax <ex p r > means e1ther PC
with displacement addressing or e1ther form of
absolute addressing, and this ambiguity is resolved
according to the semantics of the <ex p r > See
below for details.

Also the operand < d re g > (e .g.) cou ld be e1ther a
register direct addressing mode or a
<mu L t i re g > and hence a multiple register
specification: the assembler is capable of deciding
what is meant depending on the instruction being
assembled .

A47

8.4.2 Interpretation of addressing modes

Basically all references which involve re locatable
destinations must be PC-relative for the code to be •
position independent which is a requirement for
running under QDOS. This means that references to
labels more than 32k bytes away will fail, and the
programmer must find some other means of
reaching the destination.

All forms of the effective address are coded exactly
as meant apart from

<expr>

which can mean an absolute short address, an
absolute long address or a PC-relative address. •

If the value of the <ex p r > is absolute the
assembler will generate an absolute short address if
possible, otherwise it will generate an absolute long
address.

A48

•

•

•

•

If the value of the <ex p r > is re locatable the
assembler will try to generate a PC-relative address.
This will fail if the destination is too far away or if the
effective address is required to be 'alterable'; in
either case an error message will be produced and
the programmer must find some other way of
writing the program.

Forward references which are undefined at the time
of meeting the symbol are assumed to be simple
relocatable. If the programmer wishes to r~ference
an absolute address this can only be done by coding
a number or by coding a symbol which has
previously been equated to a number. For example:

MOVE.B #$80,SCREEN

SCREEN EQU $18063

is not legal and will generate an error, whereas:

JMP FRED

FRED

is legal and will generate a PC-relative addressing
mode .

A49

An immediate operand #<ex p r > where the
<ex p r > is not absolute will probably generate
wrong code as the assembler does not know where
the code will be loaded and executed and is unable •
to add the necessary relocation base(s). Therefore
the assembler will generate warning messages if a
relocatable <ex p r > is used as an immediate
operand.

8.4.3 Branch instructions

The branch instructions (B cc, B S R) can use either
an 8-bit PC-relative displacement or a 16-bit
displacement; the assembler will correctly choose the
most efficient option for a backwards reference but
needs some help with forward references. The
default option is to generate a long (16-bit) •

·displacement. -

These branch instructions can have an explicit extent
coded of • S (short) meaning that an 8 bit
displacement is to be used or • L (long) meaning
that a 16 bit displacement is to be used, for example:

BNE.S FRED FRED is nearby

A 50

•

•

•

•

8.5 Instructions
This section lists all the 68000 instruction
mnemonics, describes how the various modifiers are
coded, and defines the operand syntax of each
instruction. Note however that for precise details of
the actual addressing modes etc. legal for each
instruction a manual for the Motorola 68000 should
be consulted.

An instruction may optionally have a < Lab e L >.
Before any code for an instruction is generated the
current location counter is advanced to an even
address if not already even and it is this adjusted
address that is assigned to the <symboL> in the
<LabeL> .

8.5.1 Instruction mnemonic
format

The operation field of a source line containing a
machine instruction is simply a < s y m b o L >.
However there is some flexibility allowed in the
coding of mnemonics as there are some generic
mnemonics that relate to a group of instructions, the
actual instruction wanted being chosen by the
assembler depending on the operands coded .

A51

Instructions which may operate on operands of
different lengths must have the length of the
operand coded as part of the < s y m b o L >: this
takes the form of " • B ", " • W" or " • L" as the last •
two characters of the < s y m b o L >depending on
whether the operand length is byte, word or long. If
a length is required and no length is coded the
assembler will assume • Wand will print a warning
message.

Instructions which may only take a single operand
length may optionally have the length coded as
above.

The branch instructions may optionally have " • S"
or " • L" coded as the last two characters of the
< s y m b o L > to indicate the displacement size as •
described at B.4.3 above.

Examples:

M 0 V E • L an instruction with an operand

BEQ.S
JSR
MOVE.L

length coded
an instruction with an extent coded
an instruction with no extra bits
D 0, A 0 automatically generates

MOVEA.L
M 0 V E • L # 2, D 3 automatically generates

MOVEQ.L

A52

•

•

•

•

8.5.2 Data movement instructions

The various forms of the M 0 V E instruction are used to
move data between registers and/or memory. These
are:

MOVE< length> <ea>,<ea>

which is the generic instruction, and will generate one
of the following if necessary:

MOVEA<length> <ea>,<areg>

MOVEQ[.LJ #<expr>,<dreg>

Note that both M 0 V EA and M 0 V E Q can be coded
explicitly if desired. Note also that the assembler will
only convert a M 0 V E to a M 0 V E Q if the length is
specified as " • L".

Various other special forms of the M 0 V E instruction
are always coded as M 0 V E (they have no specific
mnemonic) but they all operate on a single length of
operand and the operand length is optional. These are:

MOVE[.WJ <ea>,CCR
MOVE[.WJ <ea>,SR
MOVE[.WJ SR,<ea>
MOVE[.LJ <areg>,USP
MOVE[.LJ USP,<areg>

A53

The M 0 V EM and M 0 V E P instructions are also
involved with data movement but are not generated
automatically by the assembler from the M 0 V E
mnemonic. Their syntax is: •

MOVEM<length> <multireg>,
<ea>

MOVEM<length> <ea>,
<multireg>

MOVEP<length> <dreg>,<expr>(<areg>)
MOVEP<length> <expr>(<areg>),

<dreg>

The other data movement instructions are:

EXG[.LJ

LEA[.LJ
PEA[.LJ
SWAP LW]

A 54

<reg>,<reg>
where
<reg> =
<areg>J<dreg>
<ea>,<areg>
<ea>
<dreg>

•

•

8.5.3 Arithmetic instructions

• In a similar way to the M 0 V E instruction, the ADD,
CM P and SUB mnemonics are generic and will
generate AD DA, ADD I, AD DQ, C MPA, CMP I,
CMPM, SUBA, SUB!, SUBQ if necessary; again, the
explicit forms can be coded if desired.

ADD< length> <ea>,<ea>
CMP<length> <ea>,<ea>
SUB< length> <ea>,<ea>

ADDA<length> <ea>,<areg>
ADD!< length> #<expr>,<ea>
ADDQ<length> #<expr>,<ea>

• CMPA<length> <ea>,<areg>
CMPI<length> #<expr>,<ea>
CMPM<length> (<areg>)+,

(<areg>)+

SUBA<length> <ea>,<areg>
SUBI<length> #<expr>,<ea>
SUBQ<length> #<expr>,<ea>

Additional (binary) arithmetic instructions are:

ADDX<length> <dreg>,<dreg>
ADDX<length> -(<areg>),

• -(<areg>)

CLR<length> <ea>

A 55

DIVS[.WJ <ea>,<dreg>
DIVU[.WJ <ea>,<dreg>

EXT<length> <dreg>

MULS[.WJ <ea>,<dreg>
MULU[.WJ <ea>,<dreg>

NEG<length> <ea>
NEGX<length> <ea>

SUBX<length> <dreg>,<dreg>
SUBX<Length> -(<areg>)

-(<areg>)

TST<length> <ea>

The binary coded decimal instructions are written as
follows:

ABCD[.BJ
ABCD[.BJ

NBCD[. BJ

SBCD[.BJ
SBCD[.BJ

A 56

<dreg>,<dreg>
-(<areg>),
-(<areg>)

<ea>

<dreg>,<dreg>
-(<areg>),
-(<areg>)

•

•

•

8.5.4 Logical operations

• AN D, E 0 R, 0 R are generic mnemonics that will
generate AND I , E 0 RI , 0 RI as necessary:

AND< length> <ea>,<dreg>
AND < length > <dreg>,<ea>
AND < length> #<expr>,<ea>
ANDI < length> #<exp r >,< ea>

EOR<length> <dreg>,<ea>
EOR<length> #<expr>, <ea>
EORI < length> # <ex pr>,<ea>

NOT< length> <ea>

• OR < length> <e a >,<dreg >
OR< length> <dr eg>, <e a>
OR< length > #<expr>,<ea>
ORI<length> #<expr>,<ea>

•
A57

rh ere are special forms of the AN D I , E 0 R I and
0 RI instructions which operate on the status register .

AND.B #<expr>,SR • AND.W #<expr>,SR
AND[. BJ #<expr>,CCR

ANDI.B #<expr>,SR
AND I. W #<expr>,SR
ANDH.BJ #<expr> , CCR

EOR . B #<expr> , SR
EOR.W #<expr>,SR
EOR[. BJ #<expr> , CCR

EORI.B #<expr>,SR
EORI.W #<expr>,SR • EORH.BJ #<expr>,CCR

OR.B #<expr>,SR
OR . W #<expr>,SR
OR[. BJ #<expr>,CCR

ORI.B #<expr>,SR
OR I. W #<expr>,SR
ORH.BJ #<expr>,CCR

•
A58

8.5.5 Shift operations

• ASL<length> <dreg>,<dreg>
ASL<length> #<expr>,<dreg>
ASL[.WJ <ea>

ASR<length> <dreg>,<dreg>
ASR<length> #<expr>,<dreg>
ASR[.WJ <ea>

LSL<length> <dreg>,<dreg>
LSL<length> #<expr>,<dreg>
LSL[.WJ <ea>

LSR<length> <dreg>,<dreg>
LSR<length> #<expr>,<dreg>

• LSR[.WJ <ea>

ROL<length> <dreg>,<dreg>
ROL<length> #<expr>,<dreg>
ROL[.WJ <ea>

ROR<length> <dreg>,<dreg>
ROR<length> #<expr>,<dreg>
ROR[.WJ <ea>

ROXL<length> <dreg>,<dreg>
ROXL<length> #<expr>,<dreg>
ROXL[.WJ <ea>

• ROXR<length> <dreg>,<dreg>
ROXR<length> #<expr>,<dreg>
ROXR[.WJ <ea>

A 59

8.5.6 Bit operations

The length specification is optional on these •
instructions as the length must be long if the <ea> is =
a < d re g > and must be byte if the <ea> is
anything else.

BCHG[<Length>J
BCHG[<Length>J

BCLR[<Length>J
BCLR[<Length>J

BSEH<Length>J
BSET[< Length>]

BTST[< Length>J
BTSH<Length>J

A60

<dreg>,<ea>
#<expr>,<ea>

<dreg>,<ea>
#<expr>,<ea>

<dreg>,<ea>
#<expr>,<ea>

<dreg>,<ea>
#<expr>,<ea> •

•

•

•

•

8.5.7 Branch instructions

The branch instructions may optionally have an extent
(. S or • L) coded as described at 8.4.3. above.

B<cc>[<extent>J <expr>

where:

<cc>= CC I CS I EQ I GE I GT HI
I LE I LS I LT I MI I
NE I PL I VC I vs I HS LO

<extent> =.S .L

The unconditional branch instruction is:

BRA[<extent>J <expr>

and is in fact a version of the conditional branch
instruction that means "branch regardless of the
condition codes".

The branch to subroutine instruction is:

BSR[<extent>J <expr>

A61

8.5.8 Trap instructions

Grouped here are those instructions whose main
purposde is to g

11
enerate traps, either conditionally or •

uncon itiona y.

CHK[. WJ

TRAP

TRAPV

<ea>,<dreg>

#<expr>

8.5.9 The D 8 c c instruction

This instruction is a looping primitive; it tests the
condition codes as does the B cc instruction but also
allows the conditions "always true" and "always false" •
to be tested. ._

DB<dbcc>[.WJ <dreg>,<expr>

where:

<dbcc> = <cc> I T I F I RA

RA is a synonym for F, meaning branch regardless of
the condition codes; thus the instruction DB RA loops
without testing conditions other than the value of the
loop counter.

A62
•

•
8.5.10 Jump instructions

The jump instructions are an unconditional jump and a
subroutine call:

JMP <ea>
JSR <ea>

See section 8.4.2 for a definition of how the assembler
interprets <ex p r > as an <ea>, as that
paragraph is particularly relevant to these two
instructions.

8.5.11 Stack frame management

LINK
• UNLK

<areg>,#<expr>
<areg>

•
A63

8.5.12 Odds and ends

NOP
RESET
RTE
RTR
RTS
TAS[.BJ <ea>
STOP #<expr>

The S c c instruction has the same set of conditions as
DB c c but not the RA synonym:

S<scc>[.BJ <ea>

where:

<sec> <cc> I T I F

A64

•

•

•

•
8.6 Assembler directives
Assembler directives are instructions to the assembler
and, with the exception of DC and DC B, do not
directly generate any code. The directives provided are
summarised below.

The following directives must not have labels:

INCLUDE
SECTION
OFFSET
DATA
END

read another sauce file
relocatable program section
define offset symbols
specify data space
end of program

• The following directives require labels:

E Q U assign value to symbol
RE G define a register list

The following directives may optionally have labels:

DC define constants
D S reserve storage
DC B define constant block

•
A65

The following are listing control directives and must
not have labels:

PAGE
PAGEWID
PAGELEN
LIST
NO LIST
TIT LE

start new listing page
define width of page
define length of page
switch listing on
switch listing off
define title for listing

8.6.1 INCLUDE- read another source file

This directive causes the named file to be read as if it
were present in the original souce file in place of the
INCLUDE directive. INCLUDE directives may be
nested to three levels.

The syntax of an IN C L U DE directive is:

INCLUDE <file name>

where < f i Le name> (with optional surrounding
quotes) is the normal syntax of a file name for QDOS .

A66

•

•

•

•

•

•

8.6.2 SECT I 0 N -start relocatable section

This directive defines the relocation base to be used for
subsequent code generation. The only section
implemented is section 0 .

No SECT I 0 N directive need be coded unless
0 F F SET is used, in which case a SECT I 0 N
directive must separate sequences of 0 F F SET
definitions from following code.

Any number of SECT I 0 N directives may be present

The syntax of the SECT I 0 N directive is:

SECTION <expr>

where the expression must be absolute, contain no
forward references, and have the value zero .

A67

8.6.3 0 F F S E T -define offset symbols

The 0 F F SET directive provides a means for symbols
to be defined as offsets from a given point: this is •
particularly useful for defining field names for data
structures .

The < e x p r > given in an 0 F F SET directive must be
absolute and must not contain forward references or
external references. The value of the <ex p r > is the
initial value of a dummy location counter which can
then be used to define labels on following D S
directives.

The syntax of the 0 F F SET directive is :

OFFSET <expr>

Between an 0 F F SET directive and a following
0 F F SET or SECT I 0 N (or END) directive the
following are not allowed :

D C, D C B, instructions.

8.6.4 END -end of program

The END directive defines the end of the source input;
if there is anything else in the fi le on subsequent lines
then this will be ignored by the assembler.

The syntax of the end statement is:

END

A68

•

•

•
8.6.5 E Q U -assign value to symbol

Syntax:

<label> EQU <expr>

The <ex p r > is evaluated and the value is assigned to
the < s y m b o l > given in the < label >

The <ex p r > may not include references to any
symbol which has not yet been defined.

The value of the defined symbol is absolute, simple
re locatable or complex re locatable depending on the
type of the < e x p r > .

e 8.6.6 RE G -define register list

Syntax :

•

<label> REG <multireg>

The < s y m b o l > given in the < lab e l > is defined
to refer to the register list given in <mu l t i re g >
and may be used in M 0 V EM instructions only.

The purpose of this directive is to allow a symbol to be
defined which represents a register list pushed at the
start of a subroutine so that the same list of registers
can be popped at the end of the subroutine without
the risks involved in writing the list out twice.

A69

8.6.7 DC- define constants

This directive defines constants in memory. Memory is •
reserved and the values of the constants given are ~
stored in this memory. This facility is intended to allow
constants and tables to be created.

Syntax:

[<label>] DC<length>
<constant> {,<constant>}

where:

<constant>
<expr> I <string>

If a <constant> consists of a single string and no
other operators or operands then it is left justified in as
many bytes, words or long words (depending on
whether< length> is • B, • W or • L) as necessary,
with the last word or long word padded with zero
bytes as necessary. In this case the < s t r i n g > can

. be of any (non-zero) length; there is no restriction as
there is with < s t r i n g >s that form part of
<expr>s.

A70

•

•

•

•

•

This leads to a rather strange feature that:

DC. L 'a'

causes the character to be left-justified whereas

DC.L 'a' + 0

is an <ex p r > and so causes the character to be
right-justified. (Note that other 68000 assemblers have
even stranger features in this area.)

In the case of DC • W and DC • L the current location
counter is advanced to a word boundary if necessary,
and the optional < L a be L > is defined with this
adjusted value. This the code fragments:

FRED DC.W ••••

and

FRED
DC. W •••

do not necessarily have the s.tme elfed .ts the second
could result in F RED having .m odd v.tlue depending
on earlier use of D C • B, D S • B or D C B • B .

Expressions given as oper.1nds of DC directives must
be absolute.

No more than six bytes of code gener,tted by a DC are
printed on the listing; if .tll gener.tted bytes are
required then the constdnts must be coded on more
separate DC directives.

A71

8.6.8 D S - reserve storage

This directive reserves memory locations. The memory
contents are undefined. The directive is used to define •
offsets in conjunction with the 0 F F SET directive and
to leave "holes" in data generated by DC and DC B; it
is also of use in ensuring that the current location
counter has an even value.

Syntax:

[<Label>] DS<Length> <expr>

If the length is • W or • L the current location counter
(which can be a dummy location counter initiated by
0 F F SET) is advanced to a word boundary if
necessary. The (optional) < Lab e L > is assigned the •
value of the adjusted location counter.

The <ex p r > must be absolute and contain no
forward references.

D S • B reserves <ex p r > bytes, D S • W reserves
<ex p r > words and D S • L reserves < e x p r > long
words .

<ex p r > may have the value zero in which case
D S • W and D S • L ensure that the location counter is
on an even boundary, and the optional < Lab e L > is
defined.

A72

•

•

•

•

8.6.9 DC B- define constant block

The directive:

[<Label>] DCB <len gth >
< e xpr> ,<e xp r >

causes the assembler to generate a block of bytes,
words or longs depending on whether < L en g t h > is
• B, . Wor. L.

If the length is • W or • L the current location counter
is advanced to a word boundary if necessary. The
(optional) < Lab e L > is assigned the value of the
adjusted location counter.

The first <ex p r > must be absolute and contain no
forward references and is the number of storage units
(bytes, words or longs) to be initialised, and the second
< e x p r > is the value to be stored in each of these
storage units.

The second <ex p r >should be absolute.

8.6.10 PAGE- start new listing page

The directive

PAGE

causes the next line of the listing to appear at the top
of the next page. The PAGE directive itself is not
listed.

A73

8.6.11 P A G E W I D - define width of page

The directive

PAGEWID <expr>

defines the width of the printed output to be
< ex p r > characters. The <ex p r > must be absolute
and contain no forward references and must be
between 72 and 132 inclusive. If no PAGE W I D
directive is present the default is 132 characters.

8.6.12 P A G E LE N - define length of page

The directive

PAGELEN <expr>

defines the length of each listing page to be <ex p r >
lines. The <ex p r > must be absolute and must
contain no forward references. The value given is the
physical length of the paper; rather fewer lines of
assembler source are actually listed on each page. If no
PAGELEN directive is present the default is 66lines.

A74

•

•

•

•
8.6.13 L I S T -switch listing on

The directive

LIST

restarts listing that was suppressed by a previous
NOLI S T directive. The LIST directive itself is not
listed.

8.6.14 N 0 LIST- switch listing off

The directive

NO LIST

• suppresses listing unt il a LIST directive is
encountered. The N 0 LIST directive itself is not
listed.

•

8.6.15 T IT LE -define title for listing

The directive

TITLE < title string>

causes the< titLe string > to be printed at the
top of each subsequent page of listing. If a title is
wanted on the first page of the listing then the
TITLE directive should appear before any source line
which would get listed. The TITLE directive itself is
not listed.

A75

8.6.16 DATA - define size of data space

The directive

DATA <expr>

defines the size of the data space th,1t will be .1lloc~ted
to the program when it is executed by QDOS. The
<ex p r > gives the number of bytes to be reserved .

The expression must be absolu te ,md cont.1inno
forward references.

If several DATA directives are coded the I. 1st one takes
effect.

•

If no D A TA directives are coded then 4096 bytes of •
data space will be allocated to the program.

•
A76

Appendix C- Error and
• warning messages

•

•

This appendix lists the error and warning messages
which can be produced by the assembler in
numerical order.

C.1 Error messages

DD- unknown instruction/directive
An unknown symbol has been used where an
instruction or directive is expected in the operation
field .

D 1 -illegal line after OFFSET
Instructions and directives which generate code (D C,
DC B) are not allowed in the dummy section defined
by the 0 F F SET directive. Return to SECT I 0 N D
before instructions or data.

D 2- syntax error in instruction field
The operation field does not contain a < s y m b o L >.

D 3 - redefined symbol
The symbol has already been defined earlier in the
assembly. The first definition of the symbol will be
used; further definitions wJII just produce this error
message.

A77

0 4- phasing error
This is an assembler internal error- it should only
happen if the source file has changed between pass
1 of the assembler and pass 2. •

0 5- missing operand
The instruction requires two operands, and only one
has been coded.

0 6 - syntax error
The line contains a syntax error which has left the
assembler with very little idea of what was meant.

0 7- syntax error in expression or operand
The assembler is expecting an expression or other
instruction operand but does not understand what it
has found.

08- multireg, cannot mix Dreg & Areg
Data registers and address registers may not be
combined in a range: eg D 3-A 4 is il legal.

09- multireg, bad sequence
The registers in a range must be in increasing order
eg D 5-D 2 is illegal.

0 A- unmatched open bracket
There are too many open brackets in the expression:
unmatched open brackets are "closed" at the end of
the expression.

A78

•

•

•

•

0 B- unmatched close brackets
There are too many close brackets in the expression:
unmatched close brackets are ignored .

0 C -expression too complicated
An expression is limited to fi ve levels of nested
brackets. Certain combinations of operators can
cause this error with fewer brackets- eg when low
priority operators are followed by high priority
operators.

0 D- expression : string too long
When a string is used as a term in an expression it
may be up to four characters long.

0 E -value stack underflow
This is an internal assembler error which should
neve r occur.

0 F- invalid character
Some characters such as " ? \ " = have no
meaning to the assembler. They may only be used
within strings. The character is ignored .

1 0- invalid shift operator
The characters "<" and " >" are only legal as pairs in
shift operators: "> >" and "< <".

11 -no digits in number
A number is expected (eg after"$" or "%")but no

• digits are present.

A79

1 2 - number overflow
The number is too large and will not fit in 32 bits.

1 3- string terminator missing •
A string must be terminated by a quote character.

1 4- relocatable value not allowed here
Some add ressing modes and directives requ ire
absolute values.

1 5 -multiply overflow in expression
A multip ly overflow error occurred whi le evaluating
an expression.

1 6 -divide by 0 or divide underflow
A divide error occurred during evaluation of an
expression.

1 8- - ve value illegal
Some di rectives (eg 0 S) can accept a zero or posit ive
number, but a negative value is illega l.

1 9- value must be +ve non zero
Some instructions or directives require a positive,
nonzero, value (eg the number of elements for
0 CB).

1 A- value out of range
This is a general purpose message for any value out

•

of range in instructions or directives. The actual value
range depends on context- reread the description of •
the instruction or directive involved.

ABO

•
1 D- size not allowed on directive
Most directives do no accept a size extension: the
only ones that do allow a size are DC , DC B & D S .

1 E -invalid size
The size specified on the instruction or directive is
not legal.

1 F- size .8 illegal for Areg
Byte operations on address registers are not allowed.

2 0 -label illegal on this directive
M any directives (eg I N C L U DE , S E C T I 0 N,
LIST , PAGE) do not accept a label.

21 -too many errors
• If a line has more than ten e rro r~ or warning~. only

the first ten are ;:>rinted, followed by thi ~ mc~~age .

2 2- invalid operand(s) for this instruction
The operand(s) specified are not valid for the
instruction . Check the rules for the instruc_tion you
are using in a 68000 manual. If one of the operand~
to the instruction is an "effective address" thi~ error
can mean that the actual addressing mode specified
is not legal.

The assembler will try to point the error flag (the
vertical bar character) at the invalid operand, but as
the assembler may not even know (in the case of a

• generic mnemonic) which instruction you meant it
will get this wrong sometimes.

A81

2 3- undefined symbol
The symbol hls not been defined in the assembly.

2 4 -forward reference not allowed here •
Many directives do not allow a forward reference.

2 5 -short branch out of range
BR A • S (or some other Bran c h • S) has been
coded but the destination is more than 128 bytes
away.

2 6 -long branch out of range
The destination of a long branch must be within 32k.

2 7- value must be simple relocatable
The expression should be simple relocatable:
absolute or complex values are illegal (e.g. in the •
destination of a branch instruction). ~·

2 8- value must not be complex
Absolute and simple re locatable expressions can
generally be used as addresses but a complex
relocatable value is illegal.

2 9- this directive must have a label
E QU and RE G require a label.

A82

•

2 A- unable to generate position independent
code here '

•
Normally if a label or expression is used to specify an
address in an instruction , a PC-relative addressing
mode ·is generated to produce position independent

•

•

code. This is not an alterable addressing mode, so
this error message is generated when an alterable
addressing mode is required .

2 B- short branch to next instruction- NOP
generated

A short branch to the next instruction is not a legal
68000 opcode. The assembler generates a N 0 P
instruction in t his case .

A83

C.2 Warning messages
4 0- size missing, W assumed
No size was specified on an index register.

41 -size missing, W assumed .
The instruction or directive can have more than one
size, but no size was specified.

4 2- multiply defined register
A register has been multiply defined in a
multi register sequence (eg A 0/D 1/D 0- D 3 has
D 1 multip ly defined).

4 3- decimal number goes negative
'A decimal number has a value between
$8 0 0 0 0 0 0 0 and $ F F F F F F F F. This is a
perfectly valid number with which to do unsigned
arithmetic, but it is an overflow if the programmer
was intending to use it for signed arithmetic. As the
assembler does not know what the programmer
wants to do with the number it produces this
warning.

4 4- nonzero SECTION not implemented
Implementation restriction: only one relocatable
section is supported.

4 5 -value will be sign extended to 32 bits

•

•

in M 0 V E Q the expression is between $8 0 and $ F F •
so it will be sign-extended to a 32-bit negative value.

A84

4 6- nonstandard use of this instruction
This warning is printed when an instruction is used in

• a nonstandard manner wh ich may be a bug (eg
LINK with a positive displacement) .

•

•

4 7- branch could be short
A forwards branch or a branch with an explicit • L is
within 128 bytes range and could be a short branch.

48- END directive missing
An END directive is expected at the end of the
assembly, but end-of-file was found instead .

A85

C.3 Operating system errors
When the assembler gets an error code from QDOS •
it usually gives up completely, first displaying a -
message relating to the error on the screen.

Most QDOS errors relate to particular input or
output files or devices and the file or device name
involved is displayed as part of the message
wherever possible .

In the case of a serious error (such as bad microdrive
tape) affecting an input source file the assembler
does not however tell you which of the various
source (e.g. INCLUDE d) files is involved.

If the assembler is run with EX E C_ W the error code •
is passed back to the EX E c_w command which will
display another error message .

A86

•

	Scan0001
	Scan0002a
	Scan0002b
	Scan0003
	Scan0004
	Scan0005
	Scan0006
	Scan0007
	Scan0008
	Scan0009
	Scan0010
	Scan0011
	Scan0012
	Scan0013
	Scan0014
	Scan0015
	Scan0016
	Scan0017
	Scan0018
	Scan0019
	Scan0020
	Scan0021
	Scan0022
	Scan0023
	Scan0024
	Scan0025
	Scan0026
	Scan0027
	Scan0028
	Scan0029
	Scan0030
	Scan0031
	Scan0032
	Scan0033
	Scan0034
	Scan0035
	Scan0036
	Scan0037
	Scan0038
	Scan0039
	Scan0040
	Scan0041
	Scan0042
	Scan0043
	Scan0044
	Scan0045
	Scan0046
	Scan0047
	Scan0048
	Scan0049
	Scan0050
	Scan0051
	Scan0052
	Scan0053
	Scan0054
	Scan0055
	Scan0056
	Scan0057
	Scan0058
	Scan0059
	Scan0060
	Scan0061
	Scan0062
	Scan0063
	Scan0064
	Scan0065
	Scan0066
	Scan0067
	Scan0068
	Scan0069
	Scan0070
	Scan0071
	Scan0072
	Scan0073
	Scan0074
	Scan0075
	Scan0076
	Scan0077
	Scan0078
	Scan0079
	Scan0080
	Scan0081
	Scan0082
	Scan0083
	Scan0084
	Scan0085
	Scan0086

