

QLMacro Assembler
incorporating
QL-Linker and

QL-Screen Editor

First published in 1985
Sinclair Research Ltd
25 Willis Road
CB1 2AQ England

ISBN 1 85016 047 3

 and Sinclair QL are Registered Trade Marks of Sinclair
Research Ltd. QL Microdrive and SuperBASIC are Trade Marks of
Sinclair Research Ltd.

Copyright Notice
This product is copyright material and may not be copied in whole or
in part for any purpose whatsoever without the permission of the
copyright owner.

Macro Assembler and Linker Program and Documentation © GST
Computer Systems Ltd 1985
Screen Editor Program and Documentation © Metacomco Ltd 1984
Packaging and Design © Sinclair Research 1985
Illustration © Jenny Tylden-Wright 1984.

Important Notes for New Users
The instruction manual for QL Macro Assembler is in three parts,
describing in detail how to use each of the three programs which
make up the package:

§ Macro Assembler
§ Linker
§ Screen Editor

Each program's documentation is self-contained, but we
recommend that you read the introductions to each section to
familiarise yourself with their contents before you start.

Back-up copies

You are advised to make a back-up copy of each master cartridge
using the clone program provided. Place the blank cartridge in
Microdrive 1 and the master cartridge in Microdrive 2. Then type:

Lrun mdv2_clone

and follow the instructions on the screen.

QL-Macro Assembler

Contents

1. Introduction
 1 .1 Notation used in this manual

2. How to run the assembler
 2.1 The command line

3. Assembler inputs and outputs
 3.1 Control inputs
 3.2 Source inputs
 3.3 Screen output
 3.4 Source listing
 3.5 Symbol table listing
 3.6 Object code output

4. Listing outputs
 4.1 Source listing
 4.2 Symbol table listing

Appendix A Bibliography

Appendix B Source language
B.1 Lexical analysis
B.2 Source language line format
B.3 Expressions
B.4 Addressing modes
B.5 Instructions
B.6 Assembler directives
B.7 Macro facilities
B.8 The macro library

Appendix C Error and warning messages
C.1 Error messages
C.2 Warning messages
C.3 Operating system error messages

1

1. Introduction
This manual tells you how to use the QL Macro Assembler
produced by GST Computer Systems Limited.

it tells you:

n how to load and run the assembler

n what inputs the assembler takes and what outputs it produces

n how the assembler language instructions should be coded

n what assembler directives are available, what they do, and how
 to code them.

It does not:

n include a detailed description of the instruction set of the
 Motorola MC68000 processor family (which includes the 68008
 as used in the QL) for which you will need additional

documentation

n tell you how to talk to Qdos, the QL's operating system, for
 which you will have to consult the QL Technical Guide

n teach programming in general

n teach assembler programming or 68000 programming in
particular.

Appendix A contains a list of some other publications which you
may find helpful.

2

1.1 Notation used in this manual
This section describes the notation used throughout the manual to
describe syntax of assembler source, as well as other items.

= means that the expression on the right defines the
 meaning of the item on the left, and can be read as 'is'

< > angle brackets containing a lower-case name represent a
 named item which is itself made up from simpler items,
 such as <decimal number>

| a vertical bar indicates a choice and can be read as
 'or is'

[] square brackets indicate an optional piece of syntax that
 may appear 0 or 1 times

{ } curly brackets indicate a repeated piece of syntax that
 may appear 0 or more times

... is used informally to denote an obvious range of choices,
 as in:

 <digit> = 0|1|...|8|9

Other symbols stand for themselves.

Example

<binary number> = %<binary digit>{<binary digit>}

<binary digit> = 0|1

means that a binary number is a'%' sign followed by a binary digit,
followed by any number of further binary digits, where a binary digit
is the character '0' or the character '1 '. Some examples of binary
numbers are %0, %1010101100, %0000000000000.

3

Some of the_ special symbols used in the syntax notation also
occur in the assembler source input and the common sense of the
reader is relied on to distinguish these, as in for example:

<operator> = ...|<<|...

At some points in the description of the macro facilities the
characters [,], {, }must actually be coded as part of the assembler
source program. Where it is not obvious whether these characters
must be coded (in which case they are 'literal') or whether they are
used as defined above to describe syntax (in which case they are
'metasymbols') their actual meaning is stated explicitly in each case.

4

2. How to run the assembler
You can Load and run QL Macro Assembler in one of two ways:

 Interactive mode

 In this mode the assembler will identify itself and prompt you for
 a command line. Upon completion of an assembly the assembler
 will prompt you for a further command line, so that you may
 perform several assemblies without reloading the program.

 When you have done all the assemblies you want you can
 terminate the assembler by replying to its prompt with a blank
 command line.

 You may run the macro assembler in interactive mode by any of
 the following commands where DEV is the device from which it
 is to be loaded (which may be any storage medium).

 – To run in parallel with the SuperBASIC interpreter:

EXEC DEV_MAC
 or: EX DEV_MAC

 – To wait for completion of the assembler:

EXEC_W DEV_MAC
 or: EW DEV_MAC

 Non-interactive mode

 In this mode the assembler receives its command line directly
 from the SuperBASIC interpreter and does not interact with you.
 On completion of the assembly the assembler will exit and will
 need to be reloaded if you wish to perform another assembly.

 You may run the macro assembler in non-interactive mode by
 one of the following commands:

5

 – To run in parallel with the SuperBASIC interpreter:

EX DEV_MAC; "<command line>"

 – To wait for completion of the assembler:

EW DEV_MAC; "<command line>"

 where <command line> is described below. The quotes round
 the command line are required by the SuperBASIC interpreter.

Notes

The EX and EW commands are only available in the QL Toolkit and
are not part of standard SuperBASIC.

The EX and EW commands allow you to pass data files to the
program by specifying them after the program name. If any files are
specified in this way they will be ignored by the assembler. See the
QL Toolkit documentation for information on the full use of the EX
and EW commands.

If you wish to change the screen window used by the macro
assembler you may do so by running the program WINDOW_MGR
and answering the questions it asks.

2.1 The command line
See section 3 of this manual for a description of all the various files
and devices that the assembler can use.

The format of the command line is:

<source>[<listing>[<binary>]] {<option>}

6

where:

<option> = –NOLIST| –ERRORS [<listing>]| –LIST [<listing>]|

 –NOBIN| –BIN [<binary>]|

 –NOSYM| –SYM|

 –NOLINK

(the options may be in upper or lower case and case is not
significant)

<source> = <file name> file name of assembler source
<listing> = <file name> file name for listing output
<binary> = <file name> file name for binary output

The options have the following meanings:

 –NOLIST do not generate any listing output

 –ERRORS generate a listing of error messages and erroneous
 lines only; if the option is followed by a <file name>
 then this is the name of the <listing> output and the
 positional <listing> parameter, if coded, is not used;
 the –ERRORS option also sets the –NOSYM option

 –LIST generate a full listing; if the option is followed by a
 <file name> then this is the name of the <listing>
 output and the positional <listing> parameter, if
 coded, is not used

 –NOBIN do not generate any binary output

 –BIN generate binary output; if the option is followed by a
 <file name> then this is the name of the <binary>
 output file and the positional <binary> parameter, if
 coded, is not used

 –NOSYM do not generate a symbol table listing; this is the
 default if –ERRORS is coded

7

 –SYM generate a symbol table listing; this is the default if
 –LIST is coded or if no listing options are coded; if both
 –SYM and –NOLIST are both coded then the –SYM
 does nothing

 –NOLINK normally the QL Macro Assembler generates output in
 S–ROFF format which must then be linked by the QL
 Linker; the –NOLINK option instructs the assembler to
 generate an output program file which can be run
 directly

Where conflicting options are given the last one coded takes effect.
For example if:

 –LIST MDV1_FRED –NOLIST –ERRORS

is coded then an errors-only listing will be sent to MDV1_FRED
and if:

 –SYM –ERRORS

is coded then no symbol table output will be generated.

The minimum command line just consists of the name of the input
source file. In this case a full listing with symbol table is generated
(i.e. the default is –LIST–SYM) to the file whose name is
constructed from the <source> <file name> as described below.
Also by default a binary output file is generated (i.e. the default is
 –BIN) to the file whose name is constructed from the <source>
<file name> as described below.

The <source> <file name> is examined; if its last four characters
(after converting to upper case) are not _ASM then _ASM is
appended to the given name to make the name of the actual source
file used.

The name of the <listing> file may be given positionally as the
second parameter, or may be specified explicitly after an –ERRORS
or –LIST option, or may be allowed to default. If no <listing>
<file name> is given in an –ERRORS or –LIST option and no
 –NOLIST option has been coded then the assembler constructs the
<listing> <file name> by taking the <source> <file name>, as
adjusted, and replacing the _ASM with _LIST.

8

The name of the <binary> file may be given positionally as the third
parameter, or may be specified explicitly after a –BIN option, or
may be allowed to default. If no<binary> <file name> is given in a
 –BIN option and no –NOBIN option has been coded then the
assembler constructs the <binary> <file name> by taking the
<source> <file name>, as adjusted, and replacing the _ASM with
_REL in the normal case or _BIN if –NOLINK has been coded.

Examples

MDV1_FRED

assemble MDV1_FRED_ASM, put a full listing with symbol table
listing in MDV1_FRED_LIST, and put the binary in
MDV1_FRED_REL

MDV1_FRED SER1 –NOBIN

assemble MDV1_FRED_ASM, print the listing as it is produced,
and don't generate any binary

MDV1_FRED –ERRORS –BIN MDV2_FRED_REL

Assemble MDV1_FRED_ASM, send an error listing only with no
symbol table to MDV1_FRED_LIST, and put the binary in
MDV2_FRED_REL (note that coding MDV2_FRED would not have
achieved this)

MDV1_FRED SER1 MDV2_FRED_REL –ERRORS –SYM

assemble MDV1_FRED_ASM, print an error listing plus symbol
table directly and put the binary in MDV2_FRED_REL

9

3 Assembler inputs and outputs
This chapter describes all the input and output files and devices that
the assembler can use.

3.1 Control inputs

Control information for the assembler is supplied by the user typing
a command line on the keyboard. The command line is described in
section 2 above and specifies where all the other input and output
files and devices are.

3.2 Source inputs

The assembler assembles one main source file. This may direct the
assembler, using INCLUDE directives, to read other source files.

When assembling large and complicated programs it is normal to
put no real code at all in the main source file which will just contain
INCLUDE directives naming the other source files. For example:

TITLE A large complicated assembly
*
* Start with the Qdos parameter file,
* then the parameter file for my program
*
 INCLUDE MDV1_QDOS_IN
 INCLUDE MDV1_MYPARMS_IN
*
* Now the main code to to be assembled:
* this is rather
* large so it is split into two separate
* files

INCLUDE MDV2_PROG1_IN
INCLUDE MDV2_PROG2_IN

END

10

The file name of the main source file must end in _.ASM, or the
assembler will not be able to find it.

It is recommended that file names of INCLUDEd files end in _IN,
but this is not essential, and you can call them anything you like.

3.3 Screen output

The assembler writes a certain amount of information to the screen
to let the user know what is happening. This includes a 'start'
message, a 'finished' message and the request to type the
command line.

A summary of the number of errors and warnings generated is
written to the screen together with a summary of the amount of
memory used. This memory size excludes the memory occupied by
the code of the assembler itself (about 30k) and the assembler's
initial data space (about 4k).

You can get a good idea of how complicated your assemblies are
and whether you are likely to run out of memory by watching the
memory use figure. On an unexpanded QL it is possible to
assemble a source file which occupies virtually the whole of a
Microdrive cartridge as long as no other major task is running at the
same time.

If you do several assemblies in one go (without reloading the
assembler) then the assembler will return any memory it has
obtained to the operating system at the end of each assembly.

The assembler also tells you when it is starting to read the source
input for the first time and when it is starting to read the source
input for the second time. The second pass can be expected to
take a lot longer than the first pass if listings and/or binary output
are wanted. The symbol table listing is produced after the summary
messages are displayed, so if you are assembling a large program
it will be an appreciable time after the summary messages are
displayed before the assembler is finished completely.

11

3.4 Source listing
An optional source listing will be generated, showing the source
input and the code that has been generated.

The listings provided are controlled both by options on the
command line (see section 2 above) and by directives coded in the
source program (see appendix B below).

If the –NOLIST option is given then there will be no listing output
from the assembler. Under all other circumstances a file or device
will be used to produce a listing.

If the file name for the listing output is generated automatically by
the assembler it will end in _LIST. It is recommended that listing
files, when stored on Microdrive, always have file names ending in
_LIST, but this is not a requirement and you can call them anything
you like.

Listings can be printed directly as they are generated (using SER1
or SER2 or some add-on printer device) or can be sent to the
screen (using CON_) as an alternative to sending them to
Microdrive.

3.5 Symbol table listing
A symbol table listing will be produced if both the –LIST and –SYM
options are in effect.

The symbol table listing will be added to the end of the source
listing, starting on a new page.

12

3.6 Object code output
3.6.1 Relocatable (S–ROFF) output
Normally the assembler will produce a relocatable binary output file
in S–ROFF format (the standard Sinclair relocatable output file
format). This output file may be linked using the Sinclair QL Linker
with other files in the same format generated by the QL Macro
Assembler and/or files in the same format generated by compilers
for other languages.

Each assembly generates a single module (see the QL Linker
section for more information about the details of the S–ROFF
format and how to link together S–ROFF object files).

If you code a MODULE directive somewhere in your source
program then that directive will specify the name of the module. If
you do not code a MODULE directive then the assembler will
construct one from the name of the primary source file by stripping
the _ASM off the end of the file and stripping the first component
(assumed to be a device name such as MDV2_) off the beginning.

For example, if the primary input file is called:

FLP2_SYSTEMX_PART3_ASM

then the default module name will be:

SYSTEMX_PART3

Other information is included as part of the module directive in the
S–ROFF file, including the name of the assembler and the time and
date of the assembly:

3.6.2 Directly executable output
Alternatively the QL Macro Assembler may generate a directly
executable output file which may be run as a program using the
EXEC or EXEC_W command without any need for linking. To make
use of this option you must code –NOLINK In the command line
(see section 2 above) and you must not use most of the assembler
directives which relate to linker functions. See the description of
each directive for full details.

13

4. Listing outputs
There are two listings produced by the assembler: the source listing
and the symbol table listing:

Each line of listing produced can be up to 132 characters long
(excluding the terminating newline); in particular each title line is
132 characters long. Some printers cannot be made to print 132
characters to a line so the PAGEWID directive (q.v.) is provided to
specify the actual width of the printer. Any line longer than
PAGEWID characters will be allowed to overflow onto the following
line, and these overflows will be taken into account when
determining whether a page is full.

The listing output is paginated with the total page length defined by
the user in a PAGELEN directive (q.v.) or allowed to default. To
obtain essentially unpaginated output you may set PAGELEN to a
very large number, in which case only one title will be printed at the
beginning of the listing, and form feeds will be included at the start
and end of the listing and between the source and symbol table
listings only.

The format of each printed page is:

 <heading>
 <blank>
 <title>
 <blank>
 <blank>
 <listing>
 <form feed>

where:

 <heading> is a line containing the name and version of
 the assembler, the name of the source file
 being assembled, the page number, and the
 time and date

14

 <blank> is a blank line (i.e. a line feed character)

 <title> is the <title string> given on the relevant
 TITLE directive; if no relevant TITLE directive
 has been coded then this line is <blank>

 <listing> consists of (PAGELEN–14) lines of listing of
 whatever format is appropriate (source listing
 or symbol table listing)

 <form feed> is the ASCII form feed character and appears
 immediately after the line feed which
 terminates the last line (if any) of <listing>

4.1 Source listing
Note that if the –ERRORS option has been requested then not all
source lines are listed; only lines containing errors are listed,
together with the error messages.

Each line of listed source code has the following format:

Columns Field contents Format

1 – 4 line number 4-digit decimal

5 macro flag blank or +

6 – 7 section number 2-digit hex

8 (blank)

9 – 16 location counter 8-digit hex

17 (blank)

18 – 29 generated code up to 12 digits hex

15

30 (blank)

31 – 132 source line as coded, truncated to fit

Source line numbers start at 1 for the first line in the (main) source
file and are incremented by 1 for each source line processed
regardless of the file or macro from which it came and regardless of
whether the line is listed or not.

The macro flag is blank if the line being listed came directly from an
input file or contains the character ‘+’ if the line was generated by a
macro.

The section number is an internal number used to indicate which
SECTION is being assembled; this number ties up with the section
number given in the list of sections in the symbol table listing. It is
left blank when absolute addresses (such as those generated
under the influence of an OFFSET or ORG directive) are being
displayed.

For instructions and data definition directives the location counter
field contains the address which would be assigned to a label
defined on that source line; note that this is not necessarily the
same as the value of the location counter after the previous line has
been processed. For other directives containing expressions whose
value is likely to be of interest to the user (e.g. OFFSET, EQU) the
value of the expression is printed in the location counter field or the
code field, as appropriate. If there is nothing useful that can be
printed in this field then it is left blank.

The generated code field contains up to 6 bytes of code generated
by an instruction to a data definition directive (DC or DCB). If an
instruction generates more than 6 bytes of code then a second
listing line is used to display the rest of it; this second listing line is
blank apart from the generated code field (and possibly some error
flags). Code in excess of 6 bytes generated by DC or DCB
directives is not printed; if you want to see it you should code
several separate DC or DCB directives.

The length of the listing line is in all cases limited to 132 characters,
any excess (probably comment) being truncated.

16

The source line printed on the listing is normally the fully expanded
version of the line after values have been substituted for all macro
parameters, functions and variables. However in the case of an
error occurring during substitution, a partially expanded form of the
line may be listed with an error message giving the reason for the
problem.

Error and warning messages are interspersed with the source
listing; each message follows the listing of the line to which it refers.
If a line has errors or warnings it is followed by a line containing a
vertical bar character (|) below the part of the source line giving
offence. The format of the messages is:

* * * * * * ERROR xx – line nnnn – mmmm – <message>

* * * * WARNING xx –line nnnn – mmmm – <message>

where xx is the error number, nnnn is the line number of the line
containing the error, mmmm is the line number of the line
containing the previous error (0 if none) to allow the user to chain
through all the error messages to make sure none have been
missed, and <message> is a helpful message saying what is wrong.
There are separate chains for error and warning messages.

The line giving rise to an error or warning is always listed,
regardless of the state of any LIST, NOLIST, EXPAND or
NOEXPAND directives. Thus the listing generated by –ERRORS is
more or less the same as the listing generated by –LIST if NOLIST
directives are in force throughout.

If there is no END directive a special warning message is printed
relating to this at the end of the assembly; the line number in this
warning message is one greater than the number of the last line in
the input file.

At the end of the assembly a summary of the number of errors and
warnings generated is output both to the listing, if there is one, and
to the screen

17

4.2 Symbol table listing
The symbol table listing consists of three separate listings: a list of
all the sections used in the assembly, the main cross-reference
listing of normal user symbols, and a cross-reference listing of
macros.

4.2.1 The section report
The section report precedes the main symbol table listing. It has
one line for each section name or common block name used in the
assembly, each line having the following form:

Columns Field contents Format

1 – 8 symbol up to 8 characters

9 (blank)

10 – 13 symbol type SECT or COMM

14 (blank)

15 – 16 section number 2-digit hex

17 (blank)

18 – 25 size 8-digit hex

The size field contains the size of the section or common block.

As all sections are the same if the –NOLINK option has been
selected and no common blocks can exist at all, this report does
not appear when –NOLINK has been selected.

18

4.2.2 User symbol cross-reference.
This report lists all user defined operand-type symbols and gives
the line number for each occasion on which the symbol was used.

Columns Field contents Format

1 – 8 symbol up to 8 characters

9 (blank)

10 – 13 symbol type see below

14 (blank)

15 – 16 section number see below

17 (blank)

18 – 25 value 8-digit hex

26 (blank)

27 -PAGEWID
 cross-references see below

The symbol type field contains one of:

 MULT the symbol is multiply defined; the assembler
 will use the first definition and print error messages
 for subsequent ones

 XREF the symbol is defined by an XREF directive

 XDEF the symbol is used in an XDEF directive

 REG the symbol is a register list defined by a REG
 directive

 blank anything else

19

The section number field only contains useful information if the
symbol type field is blank (or XDEF) in which case it is one of:

blank symbol depends on no section or common block
 base addresses

number symbol depends (with a count of +1) on one
 common block or section base address, and this is
 the relevant section number

XX symbol depends on more than one section or
 common block base address or depends on one
 but with a count other than +1

In the –NOLINK case absolute symbols will have this field blank
and relocatable symbols will have the number 00 printed.

If the symbol is undefined then the section number and value fields
will contain the word 'undefined'.

The rest of the line (up to the defined PAGEWID) will be filled with
cross-reference information. If there is more than enough of this to
fill the line it will continue on subsequent lines starting at column 27.

Each cross-reference consists of six characters as follows:

1 – 4 line number 4-digit decimal
5 definition flag blank or '*'
6 (blank)

and gives the number of a line on which the symbol was used. If the
use of the symbol is a defining occurrence then the line number is
followed by an asterisk.

Cross-references for a particular symbol are printed in ascending
order of line numbers.

4.2.3 Macro cross-reference
This is a cross-reference listing of all macros involved in the
assembly. It is in the same format as the symbol cross-reference
listing but the symbol type, section number and value fields are all
blank.

20

A. Bibliography
QL Technical Guide
This manual describes the facilities of Qdos that are available to the
assembler programmer and tells you how to call them.

You will need this book to write machine code programs for the QL.
It does not attempt to teach 68000 programming.

Available from Sinclair Research Limited, Stanhope Road,
Camberley, for £14.95 mail-order.

M68000 16/32 Bit Microprocessor Programmer's Reference
Manual
This is the Motorola handbook for the 68000 (reference number
M68000UM). It contains definitions of the 68000 instruction set (as
does the King and Knight book) and in addition contains more low-
level information, such as details of the binary code for each
instruction and some hardware information.

Available from GST Computer Systems Limited, 91 High Street,
Longstanton, Cambridge, for £8.95 mail-order.

Programming the MC68000
by Tim King and Brian Knight, Addison-Wesley

This is an excellent book which teaches assembler programming on
the 68000 and also contains a complete description of the 68000's
instruction set. It is suitable for the first-time assembler programmer
although you should do some programming in another language,
such as SuperBASIC, before using assembler. This book is also
very valuable to the experienced assembler programmer who has
not used a 68000 before as it points out many of the common
errors and pitfalls which usually cause trouble for the newcomer to
the 68000.

Available from GST Computer Systems Limited, 91 High Street,
Longstanton, Cambridge, for £8.95 mail-order.

21

B. Source language
This appendix defines the source language accepted by the
assembler. It does not specify the details of the Motorola 68000
instruction set and a manual for the 68000 itself must be consulted
for this information.

B.1 Lexical analysis
This section defines the way in which characters are combined to
make tokens. The notation used is described in section 1.

Generally a line of assembler source is divided into the traditional
four fields of label, operation, operand and comment, the fields
being separated by spaces. There are some exceptions to this
which are concerned with the macro facilities of the assembler.

Thus spaces are significant in this language, apart from just
terminating symbols.

As a special case a line containing an asterisk (*) in column one
consists entirely of comment and is treated as a blank line.

A semicolon (;) at any position in a line (as long as it is not inside a
<string> or an <arbitrary string>) introduces a comment; the
semicolon and the rest of the line are ignored.

Any syntactic token is terminated either by the first character which
cannot form part of that token or by end of line.

<syntactic token> = <white space> |
 <symbol> |
 <number> |
 <string> |
 <newline> |
 <<|>>|
 ! | # | & | (|) | * | + | , | - | / | :

 (where <newline> is a line feed character)

22

<white space> = <space>{<space>}

 (where <space> is the ASCII space
 character)

<symbol> = <start symbol> { <rest symbol> }

<start symbol> = <letter> |.

<rest symbol> = <letter> | <digit> | $ | . | __

<letter> = a | b | ... | y | z | A | B | ... | Y | Z

 note that (outside strings) whether a letter
 is upper or lower case is not significant

 note that a symbol can be any length but
 only the first eight characters are
 significant

<number> = <binary number> |
 <octal number> |
 <decimal number> |
 <hex number>

<binary number> = % <binary digit> {<binary digit>}

<octal number> = @<octal digit>{<octal digit>}

<decimal number> = <digit>{<digit>}

<hex number> = $<hex digit>{<hex digit>}

<binary digit> = 0 | 1

<octal digit> = 0 | 1 | ... | 6 | 7

23

<digit> = 0 | 1 | ... | 8 | 9

<hex digit> = <digit> | a | ... | f | A | ... | F

<string> = ‘<stringchar>{<stringchar>}’

 where a <stringchar> is any ASCII
 character except a line feed, a control
 character, or a single quote ‘; in addition a
 <stringchar> may be two adjacent single
 quotes which allows a single quote to be
 coded inside a string

There are three types of <symbol> used by the assembler.
<symbol>s appearing in the operation field are 'operation type
symbols', those appearing in most operand fields are 'operand type
symbols' and those appearing in the operand of a SECTION or
COMMON directive are 'section names'. These sets of <symbol>s
are quite separate and there is no confusion (except in the mind of
the programmer) between the same name used in various places.
Thus you can have user-defined labels with the same names as
instructions and directives, if you really want to.

There are special forms of strings used by the INCLUDE and TITLE
directives which allow the user to omit the enclosing quotes:

<file name> = <string> | {<non space character>}

 i.e. a <file name> is either enclosed in
 quotes or is terminated by a space or end
 of line

<title string> = {<character>}

 i.e. a <title string> is terminated by end of
 line

24

There is a special form of string used in some macro and
conditional assembly directives:

<arbitrary string> = any sequence of characters not
 including space or comma ',' or
 backslash ' \' or semicolon ';' |

 {any sequence of characters)

 where the { } are literal (i.e. they must be
 coded and are not part of the syntax
 description).

There is a special set of operators used in the conditional assembly
directives:

<compop> = < | <= | >= | > | ~= | <>

 where ~= and <> are alternate ways of
 coding "not equals"

Note that in macro calls and some conditional assembly directives
the backslash character '\' is used to indicate that the statement is
continued on the following line of input.

Note that the open square bracket character '[' is used to indicate
variable substitution and may not appear in any other context (e.g.
it may not appear with any other meaning in a <string> or <arbitrary
string> or comment).

B.2 Source language line format
This section defines the various forms which a source line can take.

A source line consists of between 0 and 132 characters (excluding
the line feed character).

Basically a source line consists of the following four fields:

25

label (optional, but depends on operation)
operation (optional)
operand (depends on operation)
comment (optional)

A source line can be blank (including consisting entirely of comment
as defined above) in which case it is ignored for all purposes other
than those connected with output listings; a blank line is assigned a
line number, is printed on the listing, and its position may affect the
operation of the title directive.

Some macro and conditional assembly directives may be coded
over more than one source line; any such line which is to be
continued on the next line ends with a backslash '\' (optionally
followed by comment). Full details are given when the directives
concerned are described.

B.2.1 The label field
A line contains a label field if it starts with one of the following
sequences of tokens:

<symbol><white space>
<symbol>:
<white space><symbol>:

i.e. a label starting in column 1 may be followed by <white space>
or a colon, but a label starting further along the line must be
terminated by a colon.

Such a sequence at the start of a line is referred to elsewhere in
this appendix as a <label>.

If a line contains a label and contains nothing after the label then
the label is defined with the current value of the current location
counter; otherwise the meaning of the label depends on the
operation field.

26

B.2.2 The operation field
The operation field follows the (optional) label field and its syntax is:

[<white space>]<symbol>

The symbol is one of:

 – an assembler directive
 – a 68000 instruction
 – a macro name

B.2.3 The operand field

The syntax of the operand field depends on the operation.
<white space> terminates the operand except in the case of a
macro call or a conditional assembly directive.

The syntax of each format of the operand field is described below
when the operation is defined.

B.2.4 The comment field
When enough of the rest of the line has been processed to satisfy
the operation (for the majority of operations this is up to the first
<white space> beyond the start of the operand field) anything left
on the line is deemed to be comment and ignored.

It is, however, good practice to use the semicolon (;) to introduce
comments on macro calls and conditional assembly directives as
this will avoid confusing both the assembler and the human reader.

B.3 Expressions
Expressions are constructed from:

 – unary operators: + , -
 – binary operators: + , - , / , * , >> , << , & , !
 –parentheses: (,)
 –operands: <symbol>, <number>, * , <string>

27

<string>s used in expressions must be four characters long or
shorter. The value of a <string> consists of the ASCII values of the
characters right-justified in the normal 32-bit value. Thus, for
example, the two expressions

'a'*256+'b' and 'ab'

have the same value. (Note, that the DC directive can use longer
strings with different evaluation rules)

The character * used as an expression operand has the same value
as a <label> defined on the line in which the * is used would have.

The syntax of an expression is then:

<expr> = <symbol> | <number> | * |
 <string> |
 (<expr>) |
 + <expr> | - <expr> |
 <expr> <binaryop> <expr>

<binaryop> = + | - | / | * | << | >>| & | !

The operators have the following meanings:

unary + the value of the operand is unchanged
unary - the value of the operand is negated

Note that all operands are regarded as 32 bit values; these values
are obtained by extending the original operand on the left with
zeroes (all operands are originally positive except that symbols can
be defined to have negative values, in which case they will already
be 32 bit negative numbers). Likewise all intermediate and final
results from expressions are calculated as 32 bit values, and are
truncated as necessary according to context just before being used.

binary + addition

binary - subtraction

* multiplication

28

/ division: the result is truncated towards zero

<< shift left: the left operand is shifted to the left by
 the number of bits specified by the right operand,
 which should be an absolute value between 0
 and 32 inclusive otherwise the result is
 undefined; vacated bits at the right hand end are
 filled with zeroes

>> shift right; as for shift left but the operand is
 shifted right

& bitwise logical AND

! bitwise logical OR

The order of evaluation of expressions is as follows:

1 parenthesised expressions are evaluated first (in the natural way)
2 operators are evaluated according to priority; the order of priority
is (highest first):

 unary + , –
 << , >>
 &, I
 * , /
 binary + , –

3 operators of the same precedence at the same nesting level of
parentheses are evaluated from left to right.

B.3.1 Values
 A value (of a symbol or of an <expr> or of a partially evaluated
sub-expression etc.) consists of a numeric term (4 bytes) and a list
of relocation bases to be added or subtracted.

See B.3.2. below for details of which symbols have which values.

29

Values can be classified into various types by the following
properties:

 Addressing mode
 This is an indication of the requested addressing mode required
 and is one of:
 normal no specific request; interpret it as absolute or
 relocatable depending on the relocation factor

 XREF.S the value consists of a single symbol which was
 declared in an XREF.S directive

 XREF.L the value is either a more complicated
 construction involving XREF.S symbols or
 contains a reference to a symbol declared in an
 XREF.L directive

 Relocation factor
 This is the number of times the value is expected to be relocated
 finally by both assembler and linker with respect to the start
 address of the whole program. Each XREF (but not XREF.S or
 XREF.L) and label defined within a SECTION added into the
 value contributes +1 to this count and each such symbol
 subtracted from the value contributes -1 to this count.

 If the relocation factor is 0 the value is regarded by the
 assembler as absolute.

 If the relocation factor is 1 the value is regarded by the
 assembler as simple relocatable.

 If the relocation factor is anything else the value is regarded by
 the assembler as complex relocatable.

 Number of relocation bases
 This is the number of different XREF[<xlen>] symbols and base
 addresses of SECTIONs involved in the value (after any
 cancelling out has been done).

30

 COMMON dependency
 This is an indication of whether any symbol forming the value
 was the name of a COMMON section.

B.3.2 Values of various operand types
This section lists the various operands and describes the type of
value they possess.

 Numbers and strings
 Numbers and strings have a value whose numeric term is the
 value of the number or string.

 Addressing mode: normal
 Relocation factor: 0
 Relocation bases: none
 COMMON dependency: no

 The current location counter
 The value of the current location counter (*) is equal to the value
 a label coded on the same line would have, and the value is of
 identical form.

 Labels
 Symbols which are defined as labels in range of OFFSET, ORG
 or COMMON directives have values whose numeric term is the
 numeric value of the symbol.

 Addressing mode: normal
 Relocation factor: 0
 Relocation bases: none
 COMMON dependency: no

 Symbols which are defined as labels in range of SECTION
 directives have values whose numeric term is the offset of the
 label from the start of the section (within the module).

 Addressing mode: normal
 Relocation factor: +1
 Relocation bases: 1: start address of section
 COMMON dependency: no

31

 Symbols defined in XREF directives
 Symbols which are defined in (any type of) XREF directives have
 a numeric term of zero and a single relocation base which is the
 external reference to the symbol.

 For symbols defined by XREF:

 Addressing mode: normal
 Relocation factor: + 1
 Relocation bases: 1: the symbol
 COMMON dependency: no

 For symbols defined by XREF.S or XREF.L:

 Addressing mode: XREF.S or XREF.L
 Relocation factor: 0 (but irrelevant to the user)
 Relocation bases: 1: the symbol
 COMMON dependency: no

 Section names
 Section names as used in SECTION directives are not operand
 type symbols, cannot be referred to anywhere other than in
 SECTION directives, and have no value

 Common block names
 Common block names have values whose numeric term is zero.

 Addressing mode: XREF.L
 Relocation factor: 0 (but irrelevant to the user)
 Relocation bases: 1: start address of the common block
 COMMON dependency: yes

 Symbols defined by EQU
 The value of a symbol defined by an EQU directive is the value
 of the <expr> coded on the EQU directive. For a definition of how
 values of expressions are derived, see below.

 Undefined symbols
Symbols which are undefined at the point of reference (usually
because they are forward references but sometimes because they
are errors) are treated as labels defined in range of a SECTION
directive.

32

B.3.3 Rules for operator processing
This section describes how the various operators combine values to
make new values. See above for details of the actual arithmetic
operations performed.

Unary +
 This operator is ignored.

Unary -
 The sub-expression:

 –<subexpr>

 is treated in identical fashion to:

 (0–<subexpr>)

 (taking due account of operator priorities), see the description of
 binary subtraction below.

 Binary addition
 Addition of two normal operands will result in a normal value.

 The relocation factor of the result will be the sum of the
 relocation factors of the operands.

 The relocation bases involved in both operands are added
 together. If a particular relocation base occurs with a positive
 sign in one operand and a negative sign in the other it is
 cancelled out.

 Addition of two operands at least one of which is of type XREF.S
 or XREF.L will result in a value of type XREF.L. The relocation
 factor and relocation bases are kept track of in the same way as
 for the normal case.

 Binary subtraction
 Subtraction of two normal operands will result in a normal value.

 The relocation factor of the result will be the difference of the
 relocation factors of the operands.

33

 The relocation bases involved in both operands are subtracted in
 the appropriate direction. If a particular relocation base occurs
 with the same sign in both operands it is cancelled out.

 Subtraction of two operands at least one of which is of type
 XREF.S or XREF.L will result in a value of type XREF.L. The
 relocation factor and relocation bases are kept track of in the
 same way as for the normal case.

 All other operators
 These operators are only valid if both operands are of the
 following form:

 Addressing mode: normal
 Relocation factor: 0
 Relocation bases: none
 COMMON dependency: no

 and will produce error messages otherwise.

B.4 Addressing modes
This section defines all addressing modes that can be coded as
instruction operands. For a definition of what these addressing
modes actually do consult a manual for the Motorola 68000.

B.4.1 Addressing mode syntax
A number of symbols are reserved and have special meaning when
used in operands: these are names of various registers.

D0 to D7 data registers
 also the symbols D0.W, D0.L etc.

A0 to A7 address registers
 also the symbols A0.W, A0.L etc.

SP synonym for A7
 also the symbols SP.W, SP.,L

34

USP user stack pointer

CCR condition code register (low 8 bits of SR)

SR status register

PC program counter

The syntax of instruction operands is developed below, preceded
by a few general definitions.

<areg> = A0 | ... | A7 | SP

<dreg> = DO | ... | D7

<ireg> = <areg> | <dreg> |
 A0.W | ... | A7.W | SP.W | D0.W |
 ... | D7.W
 A0.L | ... | A7.L | SP.L | D0.L | ... |D7.L

<multireg> = <range>{/<range>}

<range> = <areg> | <dreg> |
 <areg> – <areg> |
 <dreg> – <dreg>

 (where the registers in an individual
 range must be in increasing register
 order, e.g. D0 – D3 is valid and A4 – A2
 is not valid)

The following addressing modes are called (by Motorola) 'effective
address' and can be coded (or at least a subset of them) in any
instruction which has a general effective address as an operand:

<ea> = <dreg> | D register direct
 <areg> | A register direct
 (<areg>) | register indirect
 (<areg>)+ | postincrement
 -(<areg>) | predecrement

35

 <expr>(<areg>) | indirect with displacement
 <expr>(<areg>,<ireg>) | indirect with index

 <expr> | absolute short
 <expr> | absolute long

 <expr> | PC relative
 <expr>(PC) | PC relative

 <expr>(PC,<ireg>) | PC with index

 #<expr> immediate

Note that the syntax <expr> means either PC with displacement
addressing or either form of absolute addressing, and this
ambiguity is resolved according to the semantics of the <expr>. See
below for details.

Also the operand <dreg>, for example, could be either a register
direct addressing mode or a <multireg> and hence a multiple
register specification: the assembler is capable of deciding what is
meant depending on the instruction being assembled.

B.4.2 Interpretation of addressing modes
Basically all references which involve relocatable destinations must
be PC-relative for the code to be position-independent, which is a
requirement for running under Qdos. This means that references to
labels more than 32k bytes away will fail, and the programmer must
find some other means of reaching the destination.

All forms of the effective address are coded exactly as meant, apart
from:

<expr>

which can mean an absolute short address, an absolute long
address or a PC-relative address.

36

The addressing mode generated depends on whether the referring
instruction is in absolute code (in the range of an ORG) or
relocatable code (in the range of a SECTION). This table
summarises the generated addressing modes:

From To Generates
abs abs absolute short or long as appropriate
 reloc absolute long
 forward absolute long
 XREF absolute long
 XREF.S absolute short
 XREF.L absolute long

reloc abs absolute short or long as appropriate
 reloc PC-relative
 forward PC-relative
 XREF PC-relative
 XREF.S absolute short
 XREF.L absolute long

If the value of the expression is complex relocatable the assembler
will produce an error message.

Forward references within absolute code will always be generated
as absolute long addresses. You can code an explicit (PC) to make
such references PC-relative, but there is no way to force them to be
absolute short.

Forward references which are undefined at the time of meeting the
symbol are assumed to be simple relocatable. If the programmer
wishes to reference an absolute address this can only be done by
coding a number, or by coding a symbol which has previously been
equated to a number. For example:

 MOVE.B #$80,SCREEN

SCREEN EQU $18063

37

(within a SECTION) is not legal and will generate an error,
whereas:

 JMP FRED

FRED

(within a SECTION) is legal and will generate a PC-relative
addressing mode.

An immediate operand #<expr> where the <expr> is not absolute
will probably generate wrong code, as the assembler does not
know where the code will be loaded and executed and is unable to
add the necessary relocation base(s). Therefore, the assembler will
generate warning messages if a relocatable <expr> is used as an
immediate operand.

B.4.3 Branch instructions
The branch instructions (Bcc, BSR) can use either an 8-bit PC-
relative displacement or a 16-bit displacement; the assembler will
correctly choose the most efficient option for a backwards reference
but needs some help with forward references. The default option is
to generate a long (16-bit) displacement.

These branch instructions can have an explicit extent coded of .S
(short) meaning that an 8 bit displacement is to be used or .L (long)
meaning that a 16 bit displacement is to be used, for example:

BNE.S FRED FRED is not very far away

B.5 Instructions
This section lists all the 68000 instruction mnemonics, describes
how the various modifiers are coded, and defines the operand
syntax of each instruction. Note, however, that for precise details of
the actual addressing modes etc. legal for each instruction, a
manual for the Motorola 68000 should not be consulted.

38

An instruction may optionally have a <label>. Before any code for
an instruction is generated the current location counter is advanced
to an even address, if not already even. It is this adjusted address
that is assigned to the <symbol> in the <label>.

B.5.1 Instruction mnemonic format
The operation field of a source line containing a machine instruction
is simply a <symbol>. However there is some flexibility allowed in
the coding of mnemonics as there are some generic mnemonics
that relate to a group of instructions, the actual instruction wanted
being chosen by the assembler depending on the operands coded.

Instructions which may operate on operands of different lengths
must have the length of the operand coded as part of the
<symbol>: this takes the form of '.B', '.W' or '.L' as the last two
characters of the <symbol> depending on whether the operand
length is byte, word or long. If a length is required and no length is
coded the assembler will assume .W and will print a warning
message.

Instructions which may only take a single operand length may
optionally have the length coded as above.

A dot '.' as the last character of an instruction (or directive or macro)
name in the operation field of a source line is ignored (e.g. the
exchange instruction may be coded as EXG, EXG. or EXG.L). This
feature is sometimes useful when designing macros.

The branch instructions may optionally have .S or .L coded as the
last two characters of the <symbol> to indicate the displacement
size as described at B.4.3 above.

Examples

MOVE.L an instruction with an operand length
 coded

BEQ.S an instruction with an extent coded

JSR an instruction with no extra bits

39

MOVE.L D0,A0 automatically generates MOVEA.L

MOVE.L #2,D3 automatically generates MOVEQ.L

B.5.2 Data movement instructions
The various forms of the MOVE Instruction are used to move data
between registers and/or memory. These are:

MOVE<length> <ea>,<ea>

which is the generic instruction, and will generate one of the
following if necessary:

MOVEA<length> <ea>,<areg>

MOVEQ[.L] #<expr>,<dreg>

Note that both MOVEA and MOVEQ can be coded explicitly if
desired. Note also that the assembler will only convert a MOVE to a
MOVEQ if the length is specified as .L.

Various other special forms of the MOVE instruction are always
coded as MOVE (they have no specific mnemonic) but they all
operate on a single length of operand and the operand length is
optional. These are:

MOVE[.W] <ea>,CCR
MOVE[.W] <ea>,SR
MOVE[.W] SR,<ea>
MOVE[.L] <areg>,USP
MOVE[.L] USP,<areg>

The MOVEM and MOVEP instructions are also involved with data
movement but are not generated automatically by the assembler
from the MOVE mnemonic. Their syntax is:

MOVEM<length> <multireg>,<ea>
MOVEM<length> <ea>,<multireg>

MOVEP<length> <dreg>,<expr>(<areg>)
MOVEP<length> <expr>(<areg>),<dreg>

40

The other data movement instructions are:

EXG[.L] <reg>,<reg>
 where <reg> = <areg> | <dreg>
LEA[.L] <ea>,<areg>
PEA[.L] <ea>
SWAP[.W] <dreg>

B.5.3 Arithmetic instructions
In a similar way to the MOVE instruction, the ADD, CMP and SUB
mnemonics are generic and will generate ADDA, ADDI, ADDQ,
CMPA, CMPI, CMPM, SUBA, SUBI, SUBQ if necessary; again, the
explicit forms can be coded if desired.

ADD<length> <ea>,<ea>
CMP<length> <ea>,<ea>
SUB<length> <ea>,<ea>

ADDA<length> <ea>,<areg>
ADDI<length> #<expr>,<ea>
ADDQ<length> #<expr>,<ea>

CMPA<length> <ea>,<areg>
CMPI<length> #<expr>,<ea>
CMPM<length> (<areg>)+,(<areg>)+

SUBA<length> <ea>,<areg>
SUBI<length> #<expr>,<ea>
SUBQ<length> #<expr>,<ea>

Additional (binary) arithmetic instructions are:

ADDX<length> <dreg>,<dreg>
ADDX<length> –(<areg>),–(<areg>)

CLR<length> <ea>

DIVS[.W] <ea>,<dreg>
DIVU[.W] <ea>,<dreg>

41

EXT<length> <dreg>

MULS[.W] <ea>,<dreg>
MULU[.W] <ea>,<dreg>

NEG<length> <ea>
NEGX<length> <ea>

SUBX<length> <dreg>,<dreg>
SUBX<length> –(<areg>), (<areg>)

TST<length> <ea>

The binary coded decimal instructions are written as follows:

ABCD[.B] <dreg>,<dreg>
ABCD[.B] –(<areg>),–(<areg>)

NBCD[.B] <ea>

SBCD[.B] <dreg>,<dreg>
SBCD[.B] –(<areg>),–(<areg>)

B.5.4 Logical operations
AND, EOR, OR are generic mnemonics that will generate ANDI,
EORI, ORI as necessary:

AND<length> <ea>,<dreg>
AND<length> <dreg>,<ea>
AND<length> #<expr>,<ea>
ANDI<length> #<expr>,<ea>

EOR<length> <dreg>,<ea>
EOR<length> #<expr>,<ea>
EORI<length> #<expr>,<ea>

NOT<length> <ea>

OR<length> <ea>,<dreg>
OR<length> <dreg>,<ea>
OR<length> #<expr>,<ea>
ORI<length> #<expr>,<ea>

42

There are special forms of the ANDI, EORI and ORI instructions
which operate on the status register.

AND.B #<expr>,SR
AND.W #<expr>,SR
AND [.B] #<expr>,CCR

ANDI.B #<expr>,SR
ANDI.W #<expr>,SR
ANDI[B] #<expr>,CCR

EOR.B #<expr>,SR
EOR.W #<expr>,SR
EOR[.B] #<expr>,CCR

EORI.B #<expr>,SR
EORI.W #<expr>,SR
EORI[.B] #<expr>,CCR

OR.B #<expr>,SR
OR.W #<expr>,SR
OR[.B] #<expr>,CCR

ORI.B #<expr>,SR
ORI.W #<expr>,SR
ORI[.B] #<expr>,CCR

B.5.5 Shift operations
ASL<length> <dreg>,<dreg>
ASL<length> #<expr>,<dreg>
ASL[.W] <ea>

ASR<length> <dreg>,<dreg>
ASR<length> #<expr>,<dreg>
ASR[.W] <ea>

LSL<length> <dreg>,<dreg>
LSL<length> #<expr>,<dreg>
LSL[.W] <ea>

43

LSR<length> <dreg>,<dreg>
LSR<length> #<expr>,<dreg>
LSR[.W] <ea>

ROL<length> <dreg>,<dreg>
ROL<length> #<expr>,<dreg>
ROL[.W] <ea>

ROR<length> <dreg>,<dreg>
ROR<length> #<expr>,<dreg>
ROR[.W] <ea>

ROXL<length> <dreg>,<dreg>
ROXL<length> #<expr>,<dreg>
ROXL[.W] <ea>

ROXR<length> <dreg>,<dreg>
ROXR<length> #<expr>,<dreg>
ROXR[.W] <ea>

B.5.6 Bit operations
The length specification is optional on these instructions as the
length must be long if the <ea> is a <dreg> and must be byte if the
<ea> is anything else.

BCHG[<length>] <dreg>,<ea>
BCHG[<length>] #<expr>,<ea>

BCLR[<length>] <dreg>,<ea>
BCLR[<length>] #<expr>,<ea>

BSET[<length>] <dreg>,<ea>
BSET[<length>] #<expr>,<ea>

BTST[<length>] <dreg>,<ea>
BTST[<length>] #<expr>,<ea>

44

B.5.7 Branch instructions
The branch instructions may optionally have an extent (.S or .L)
coded as described at B.4.3 above.

B<cc>[<extent>] <expr>

where:

<cc> = CC | CS | EQ | GE | GT | HI | LE |
 LS | LT | MI | NE | PL | VC | VS |
 HS | LO

<extent> = .S | .L

The unconditional branch instruction is:

BRA[<extent>] <expr>
and is in fact a version of the conditional branch instruction that
means "branch regardless of the condition codes".

The branch to subroutine instruction is:

BSR[<extent>] <expr>

B.5.8 Trap instructions
Grouped here are those instructions whose main purpose is to
generate traps, either conditionally or unconditionally.

CHK[.W] <ea>,<dreg>
TRAP # <expr>
TRAPV

B.5.9 The DBcc instruction
This instruction is a looping primitive; it tests the condition codes as
does the Bcc instruction but also allows the conditions "always true"
and "always false" to be tested.

DB<dbcc>[.W] <dreg>,<expr>

45

where:

<dbcc> = <cc> | T | F | RA

RA is a synonym for F, meaning branch regardless of the condition
codes; thus the instruction DBRA loops without testing conditions
other than the value of the loop counter.

B.5.10 Jump instructions
The jump instructions are an unconditional jump and a subroutine
call:

JMP <ea>
JSR <ea>

See section B.4.2 for a definition of how the assembler interprets
<expr> as an <ea>, as that paragraph is particularly relevant to
these two instructions.

B.5.11 Stack frame management

LINK <areg>, # <expr>
UNLK <areg>

B.5.12 Odds and ends

NOP
RESET
RTE
RTR
RTS
TAS[.B] <ea>
STOP #<expr>

The Scc instruction has the same set of conditions as DBcc but not
the RA synonym:

S<scc>[.B] <ea>

where:

<scc> = <cc> | T | F

46

B.6 Assembler directives
Assembler directives are instructions to the assembler and, with the
exception of DC and DCB, do not directly generate any code. The
directives provided are summarised below.

The following directives must not have labels:

INCLUDE read another source file

SECTION relocatable program section
ORG absolute program section
COMMON COMMON section
RORG adjust current location
OFFSET define offset symbols

DATA specify data space
END end of program

XREF refer to external symbols
XDEF define symbols to be external
MODULE define module name for the linker
COMMENT include comment in linker listing

The following directives require labels:

EQU assign value to symbol
REG define register list

The following directives may optionally have labels:

DC define constants
DS reserve storage
DCB define constant block

The following are listing control directives and must not have labels:

PAGE start new listing page
PAGEWID define width of page
PAGELEN define length of page
LIST switch listing on

47

NOLIST switch listing off
TITLE define title for listing

There are a number of other directives which are involved in the
macro and conditional assembly facilities and these are described
below in section B.7.

B.6.1 INCLUDE – read another source file
This directive causes the named file to be read as if it were present
in the original source file in place of the INCLUDE directive.
INCLUDE directives may be nested to at least three levels.

The syntax of an INCLUDE directive is:

INCLUDE <file name>

where <file name> (with optional surrounding quotes) is the normal
syntax of a file name for Qdos.

B.6.2 SECTION – start relocatable section
The directive:

SECTION <symbol>

specifies that following instructions and data are to be placed in the
named relocatable section. You may choose any names you wish
for sections; these names may be the same as operand type
symbols or operator type symbols.

If you have coded the –NOLINK option then all generated code is
placed in one section and the <symbol>s given on SECTION
directives are ignored.

The assembler insists that all instructions are coded within a section.
Almost all programs must therefore contain at least one SECTION
directive.

The start of a section within a module is forced (by the linker) to
begin on an even address, but changing between sections within a
module does not cause any automatic even address alignment.

48

For example:

SECTION ONE
DC.B 1 this starts on an even address

SECTION TWO
 (anything)

SECTION ONE
DC.B 2 this byte is at an odd address

The section names are neither operand type symbols nor operator
type symbols and therefore you cannot refer to a section name
from anywhere other than a SECTION directive.

It is however possible to have an operand type symbol with the
same name as a section name, and it is possible to declare this
name to be an external symbol, for example:

 SECTION FRED

FRED:
 XDEF FRED

In this example the symbol FRED refers to the first address in the
subsection of FRED which resides in the current module, and this
symbol is available to other modules which may refer to it using
XREF.

B.6.3 ORG – start absolute section
The directive:

ORG <expr>

instructs the assembler to generate code at the absolute address
specified by <expr>, which must be absolute and contain no
external or forward references.

The ORG directive is not permitted if the –NOLINK option has been
coded.

49

The use of the ORG directive renders the resulting program
position-dependent so that it will not normally be possible to run it
as a Qdos program.

B.6.4 COMMON – start COMMON section
The directive:

COMMON <symbol>

introduces a common section in the same way as the SECTION
directive introduces an ordinary section.

The COMMON directive is not permitted if the –NOLINK option has
been coded.

This directive exists to allow declaration of and access to Fortran-
style common blocks. This is not considered to be a generally
useful feature and is included solely to enable assembler access to
data structures used by Fortran (or other high level languages
which make use of the Fortran COMMON scheme).

The COMMON directive creates the <symbol> of section type (as
does the SECTION directive); it also creates an operand type
symbol of the same name as if it had been declared with an
XREF.L directive. The value of this symbol is an offset from a
global origin of common blocks.

In the two cases which are not re-entrant (default and COMMON
END - see the QL Linker manual) the global origin of common
blocks is the start of the program, and in the re-entrant case
(COMMON DUMMY) it is the start of the store area allocated to the
common blocks (which is not known until run-time).

There is no way to tell the assembler which type of common
allocation will be performed by the linker, but the way the assembler
handles common allows most of the code to be the same for both
cases.

The symbols declared as labels within a COMMON section have
absolute values as if they were declared within range of an
OFFSET 0 directive. They are intended to be used as offsets to an
address register which holds the address of the base of the
common block.

50

You must ensure that an address register is allocated throughout to
hold the address of the base of all common blocks, and the
initialisation of this register depends on whether code which is not
re-entrant is being generated in which case something like:

LEA COMMBASE(PC),A5

will do, or whether re-entrant code is being generated in which case
a call to the operating system to allocated memory space will return
the address of the base of that space.

From here on the same code can be used in both cases: to obtain
the base address of common block FRED above in A4:

MOVE.L A5,A4 base of all common blocks
ADD.L #FRED,A4 base of FRED

and you can then move data around in the common block in the
same way in both cases, e.g.:

MOVE.L VAR1(A4),VAR2(A4)

Note that this code knows that VAR1 and VAR2 are within 32k
bytes of the start of FRED but makes no assumptions about where
the linker will put FRED in relation to the start of all common blocks.
If you know that the whole program (in the non-re-entrant case) or
the total size of all common blocks (in the re-entrant case) is less
than 32k you may use:

ADD.W #FRED,A4

instead, and the linker will complain if there is any overflow.

Note that the use of the symbols VAR1 etc. in any other way is
likely to be unhelpful, for example code like:

MOVE.L VAR1,VAR2

will do silly things like trying to copy parts of the operating system
ROM around.

51

Within range of a COMMON directive DS and RORG directives may
always be coded. If the code generated is to be non-re-entrant then
DC and DCB directives may also be coded. In no circumstances
may instructions be coded.

If re-entrant code is required (linker option COMMON DUMMY) and
DC or DCB directives are coded within range of a COMMON
directive then the linker will generate error messages.

B.6.5 RORG – adjust relocatable origin
The directive

RORG <expr>

resets the current location counter to <expr> bytes from the start of
the current section or common section. RORG directives must only
be coded following a SECTION or COMMON (with no intervening
OFFSET or ORG).

If the <expr> in a RORG directive has a value higher than the
address of any code generated in the section then the length of the
section is increased to this value which will be used by the linker in
performing address allocation.

The <expr> may be absolute or relocatable; in the latter case it
must be simple relocatable with respect to the current section. It
must contain no forward or external references and must not be
negative.

The <expr> must not contain any symbols which are COMMON
section names.

B.6.6 OFFSET – define offset symbols
The OFFSET directive provides a means for symbols to be defined
as offsets from a given point: this is particularly useful for defining
field names for data structures.

The <expr> given in an OFFSET directive must be absolute and
must not contain forward references or external references. The
value of the <expr> is the initial value of a dummy location counter
which can then be used to define labels on following DS directives.

52

The syntax of the OFFSET directive is:

OFFSET <expr>

Between an OFFSET directive and a following OFFSET or
SECTION (or END) directive the following are not allowed:

DC, DCB, instructions.

B.6.7 END – end of program
The END directive defines the end of the source input; if there is
anything else in the file on subsequent lines then this will be
ignored by the assembler.

The syntax of the end statement is:

END

B.6.8 XREF – refer to external symbol
The directive:

XREF[<xlen>] <symbol>{,<symbol>}

declares the listed <symbol>s to be external. Code within the
current module may make references to these symbols and the
references will be resolved by the linker.

The XREF directive for a symbol must occur before any other
reference to the symbol otherwise the assembler will report an error.
The XREF directive is not permitted if the –NOLINK option has
been coded.

When a <symbol> declared in an XREF directive forms (possibly
part of) an <expr> which is coded where a general effective
address (<ea>) is required the user must give the assembler some
help in choosing the addressing mode required. This is done via the
<xlen> field.

53

<xlen> may be blank, in which case the assembler will usually
generate PC-relative addressing modes when the <symbol>s are
referred to, or '.S' in which case the assembler will generate
absolute short addressing modes when the <symbol>s are referred
to, or '.L' in which case the assembler will generate absolute long
addressing modes when the symbols are referred to.

Note that (for example) a relocatable symbol may be referred to by
XREF.L, in which case absolute long address references to it may
be made. In most circumstances the linker will end up with the right
answer for this sort of thing as long as you didn't want the program
to be position independent.

The rules for the addressing mode chosen when an <expr>
contains several symbols of different types are discussed at B.4.2
above.

A symbol may be declared in more than one XREF directive (so that,
in particular, XREFs can be used in macros with no worries about
duplicate declarations). (If the same symbol is defined more than
once in the same XREF then some harmless error messages will
result.)

B.6.9 XDEF – declare external symbol
The directive:

XDEF <symbol>{,<symbol>}

declares the <symbol>s to be external. These symbols should be
defined in the current module and are made available to other
modules by this declaration.

There are no positioning requirements on the XDEF directive, which
may occur either before or after any other uses of the <symbol>s.
The XDEF directive is not permitted if the –NOLINK option has
been coded. A symbol may appear in more than one XDEF
directive.

54

Due to restrictions imposed by the relocatable binary format and the
linker only some types of <symbol> can be coded in an XDEF
directive. The following types of <symbol> can be coded in an
XDEF directive:

some absolute symbols, being:

 labels following an ORG directive

 symbols defined by an EQU directive which involve no (residual)
 external references and no (residual) SECTION or COMMON
 relocation bases

some symbols whose value is an offset from the start of a
SECTION present in the current module, being:

 labels following a SECTION directive

 symbols defined by an EQU directive which involve no (residual)
 external references and only one (residual) SECTION relocation
 base with a relocation factor of 1.

The following types of symbol cannot be coded in an XDEF
directive due to the relocatable binary and linker restrictions:

 symbols defined by an EQU directive which involve one or more
 residual external references and/or more than one residual
 SECTION relocation base and/or any SECTION relocation base
 with a relocation factor other than 1.

B.6.10 MODULE – declare module name
The directive:

MODULE <title string>

is optional and specifies the contents of the source directive in the
output relocatable binary file. Normally it is not necessary to code a
MODULE directive and a default will be constructed by the
assembler as described at 2.7.1 above.

The MODULE directive is ignored if the –NOLINK option has been
coded.

55

B.6.11 COMMENT – include comment in binary
The directive:

COMMENT <title string>

places the string in the relocatable binary output file as a comment
directive. This has no effect on anything except that it is included in
the listing generated by the QL Linker.

The COMMENT directive is ignored if the –NOLINK option has
been coded.

B.6.12 EQU – assign value to symbol
Syntax:

<label> EQU <expr>

The <expr> is evaluated and the value is assigned to the <symbol>
given in the <label>.

The <expr> may not include references to any symbol which has
not yet been defined.

The <expr> may include references to external symbols (defined by
earlier XREF directives).

The value of the defined symbol is calculated as explained in B.3.1.

B.6.13 REG – define register list
Syntax:

<label> REG <multireg>

The <symbol> given in the <label> is defined to refer to the register
list given in <multireg> and may be used in MOVEM instructions
only.

The purpose of this directive is to allow a symbol to be defined
which represents a register list pushed at the start of a subroutine
so that the same list of registers can be popped at the end of the
subroutine without the risks involved in writing the list out twice.

56

B.6.14 DC – define constants
This directive defines constants in memory. Memory is reserved
and the values of the constants given are stored in this memory.
This facility is intended to allow constants and tables to be created.

Syntax:

[<label>] DC<length> <constant> {,<constant>}

where:

<constant> = <expr> | <string>

This directive may be coded within the range of a SECTION or
ORG directive. It may also be coded within the range of a
COMMON directive but this should only be done if the code is to be
non-re-entrant.

If a <constant> consists of a single string and no other operators or
operands then it is left justified in as many bytes, words or long
words (depending on whether <length> is .B, .W or .L) as
necessary, with the last word or long word padded with zero bytes
as necessary. In this case the <string> can be of any (non-zero)
length; there is no restriction as there is with <string>s that form
part of <expr>s.

This leads to the rather strange feature that:
DC.L 'a'

causes the character to be left-justified whereas

DC.L 'a'+0

is an <expr> and so causes the character to be right-justified. (Note
that other 68000 assemblers have even stranger features in this
area.)

57

in,the case of DC.W and DC.L the current location counter is
advanced to a word boundary if necessary; and the optional
<label> is defined with this adjusted value. Thus the code
fragments:

 FRED DC.W

and

 FRED
 DC.W ...

do not necessarily have the same effect as the second could result
in FRED having an odd value depending on earlier use of DC.B,
DS.B or DCB.B.

Expressions given as operands of DC directives may contain any
legal combination of external references.

Data to be generated may have any value type. However any data
with a relocation factor other than zero will cause a warning
message to be produced as the result is probably a program which
is not position independent.

No more than six bytes of code generated by a DC are printed on
the listing; if all generated bytes are required. then the constants
must be coded on more separate DC directives.

B.6.15 DS – reserve storage
This directive reserves memory locations. The memory contents are
undefined. The directive is used to define offsets in conjunction with
the OFFSET directive and to leave 'holes' in data generated by DC
and DCB; it is also of use in ensuring that the current location
counter has an even value.

Syntax:

[<label>] DS<length> <expr>

58

If the length is .W or .L the current location counter (which can be a
dummy location counter initiated by OFFSET) is advanced to a
word boundary if necessary. The (optional) <label> is assigned the
value of the adjusted location counter.

The <expr> must be absolute and contain no forward or external
references.

DS.B reserves <expr> bytes, DS.W reserves <expr> words and
DS.L reserves <expr> long words.

<expr> may have the value zero in which case DS.W and DS.L
ensure that the location counter is on an even boundary, and the
optional <label> is defined.

B.6.16 DCB – define constant block
The directive:

[<label>] DCB<length> <expr>,<expr>

causes the assembler to generate a block of bytes, words or longs
depending on whether <length> is .B, .W or .L.

This directive may be coded within the range of a COMMON
directive but this should only be done if the code is to be non-re-
entrant.

If the length is .W or .L the current location counter is advanced to a
word boundary if necessary. The (optional) <label> is assigned the
value of the adjusted location counter.

The first <expr> must be absolute and contain no forward or
external references and is the number of storage units (bytes,
words or longs) to be initialised, and the second <expr> is the value
to be stored in each of these storage units.

The second <expr> may contain any legal combination of external
references.

59

Data to be generated may have any value type. However any data
with a relocation factor other than zero will cause a warning
message to be produced as the result is probably a program which
is not position independent.

B.6.17 PAGE – start new listing page
The directive

PAGE

causes the next line of the listing to appear at the top of the next
page. The PAGE directive itself is not listed.

B.6.18 PAGEWID – define width of page
The directive

PAGEWID <expr>

defines the width of the printed output to be <expr> characters. The
<expr> must be absolute and contain no forward or external
references and must be between 72 and 132 inclusive. If no
PAGEWID directive is present the default is 132 characters.

B.6.19 PAGELEN – define length of page
The directive

PAGELEN <expr>

defines the length of each listing page to be <expr> lines. The
<expr> must be absolute and must contain no forward or external
references. The value given is the physical length of the paper;
rather fewer lines of assembler source are actually listed on each
page.

B.6.20 LIST – switch listing on
The directive

LIST

restarts listing that was suppressed by a previous NOLIST directive.
The LIST directive itself is not listed.

60

B.6.21 NOLIST– switch listing off
The directive

NOLIST

suppresses listing until a LIST directive is encountered. The
NOLIST directive itself is not listed.

B.6.22 TITLE – define title for listing
The directive

TITLE <title string>

causes the <title string> to be printed at the top of each subsequent
page of listing. If a title is wanted on the first page of the listing then
the TITLE directive should appear before any source line which
would get listed. The TITLE directive itself is not listed.

B.6.23 DATA – define size of data space
The directive

DATA <expr>

defines the size of the data space that will be allocated to the
program when it is executed by Qdos. The <expr> gives the
number of bytes to be reserved.

The expression must be absolute and contain no forward or
external references.

If several DATA directives are coded the last one takes effect.

If no DATA directives are coded then 4096 bytes of data space will
be allocated to the program.

61

B.7 Macro facilities
A macro is a set of assembler source statements (both instructions
and directives) which are given a name.

This set of statements may be included in your program at any point
by coding the name of the macro in the operation field of a source
line as if it were a user-defined instruction or directive.

Thus a macro can be used as a shorthand way of writing a set of
statements which has to be repeated several times in a program.

A set of text substitution and conditional assembly facilities is also
provided so that a macro need not generate exactly the same
sequence of code each time it is used but can generate different
code depending on parameters passed to it.

As all these facilities are interdependent it is not possible to arrange
this section of the manual so as to avoid forward references
entirely: you may find it necessary to read right through section B.7
quickly so as to gain a general understanding and then read it
again to study the details.

B.7.1 Text substitution
The input to the assembly process may come from the input files or
from a macro which is being expanded. In either of these cases
(but not while a macro definition is being processed or on a
comment line introduced by an asterisk '*' in column 1) any
occurrence of:

[<variable>]

(where the [] are literal) will be replaced by the string value
currently associated with the <variable>. There are two (syntactic)
types of <variable>, being <symbols>s or calls to functions:

<variable> = <symbol> |
 <function>

<function> =<symbol>[(<parm>{,<parm>})]

62

<parm> = <variable> |
 <expr> |
 <ea>

(where the [] and { } are metasymbols). A <parm> may be
interpreted as a <variable> or an <expr> or an <ea> depending on
the type of data required for that parameter by the particular
function.

Substitutions can be nested. For example, suppose the current
value of the variable N is the string '3' (not including the quotes) and
the current value of the variable VAR3 is the string ‘A value’ (not
including the quotes) then the assembler source:

DC. B '[VAR[N]]'

will be expanded to:

DC.B 'A value'

For a list of functions provided in the assembler see B.7.4.

Note that the character '[' will always attempt to cause a substitution
and so this is effectively a reserved character in that any
attempt to code it as part of a string or comment will always cause
either a substitution or an error message.

For a discussion of the scope of variables and macro parameters
see B.7.3.

B.7.2 Macro definitions
A macro definition begins with the directive:

<label> MACRO [<symbol>{,<symbol>}]

the commas are optional and macro parameters can alternatively or
in addition be separated by <white space>; in addition the comma
or <white space> can be followed by a backslash character ' \' in
which case the rest of the line is ignored and the next parameter is
taken from the next input line

63

(where the []{ }are metasymbols) and ends with the directive:

ENDM

Macro definitions may not be nested.

The <label> is defined to be the name of the macro. It is defined as
an operator type symbol (and must not therefore clash with any
directive, instruction or other macro name).

The list of <symbol>s gives names to the parameters to the macro.
The macro parameters may then be accessed by substituting for
the parameters as variables, e.g.:

FRED MACRO P1,P2
 ...
 DS.W [P2]
 ...
 ENDM

Alternatively the functions .NPARMS and .PARM may be used to
access the parameters and in this case no prior knowledge of the
number of parameters to be coded is needed. Example:

FRED MACRO P1,P2
 ...
 DS.W [.PARM(2)]
 ...
 ENDM

has the same effect as the previous example.

When a macro definition is encountered in the assembler's input it is
scanned without any string substitution until an ENDM directive is
found. The ENDM must therefore be coded directly and must not be
generated by substitution! This also applies to the MACLAB
directive (see B.7.7).

64

B.7.3 Defining variables
Variables may be declared as local to a macro either by their
appearance as macro parameters on the MACRO directive or by
their appearance in LOCAL directives. This does not assign any
values to the variables.

Variables are given values by SETSTR or SETNUM directives. In
addition variables which are macro parameters are given values
when the macro is called.

The values of variables are used when the variable name appears
in square brackets[].

The LOCAL directive
The directive

LOCAL <symbol>{,<symbol>}

(where the { } are metasymbols) declares the <symbol>s to be
local variables within the macro currently being expanded. None of
the <symbol>s may appear as a parameter name for the current
macro or in another LOCAL directive in the same macro.

For a full discussion of the scope of variables see below.

 The SETSTR directive

The directive

<label> SETSTR <arbitrary string>
defines the <label> to be a variable and assigns it the
<arbitrary string> as its value.

See below for a discussion of the scope of variables. Variables can
be set (using SETSTR and/or SETNUM, see below) as often as you
like during an assembly.

65

When setting a variable to a string value which does not contain any
special characters which might confuse the assembler (space,
comma, semicolon) it is not necessary to code the curly brackets
{ } round the <arbitrary string>, for example:

FRED SETSTR The.value.of.bert
BERT SETSTR 197.999
WOMBAT SETSTR [FRED]=[BERT]

When one of these special characters is required the curly brackets
must be coded, for example:

STRING SETSTR {This has spaces in it}
STRING2 SETSTR {'and so does this'}
STRING3 SETSTR {don't take; semicolon as comment}
NULL SETSTR {} how to set a null string
DANGER SETSTR {[A]) don't know if A contains spaces

 The SETNUM directive
The directive

<label> SETNUM <expr>

evaluates the <expr>, converts the final numeric result to a string,
and assigns this string to the variable <label> in the same way as
for SETSTR.

The use of SETNUM is often for counting;

COUNT SETNUM [COUNT]+1

in conjunction with conditional assembly for the generation of tables
etc.

The following example shows the difference between SETNUM and
SETSTR:

STR SETSTR 1+1+1
NUM SETNUM 1+1+1

; STR = [STR] (must use ';' because '*' comments
; NUM = [NUM] are not expanded)

66

The above two lines of comment will be expanded to:

; STR = 1+1+1 (must use ';' because ‘*’ comments
; NUM = 3 are not expanded)

 Scope of variables and macro parameters
Variables and functions occupy a separate name space from all
others; there is in particular no danger of name clashes with
ordinary labels. Within this name space the names of functions are
unique. The names of macro parameters and LOCAL variables are
unique within a macro but may be duplicated in other macros or by
global variables.

A macro parameter is in scope for the duration of the expansion of
that macro. It is effectively created, and given the appropriate value,
at macro call time, and deleted when the macro expansion has
finished.

Macro parameters may be set to new values by SETSTR or
SETNUM directives.

Variables which appear in LOCAL directives are similarly in scope
for the duration of the expansion of the macro in which the LOCAL
directive appears (but only from the LOCAL directive to the ENDM
directive: any use of the same name before the LOCAL directive is
processed refers to the global variable of the same name).

The scope of a variable which does not appear in a relevant LOCAL
directive is global: at any point after the first definition of the symbol
it may be used in substitution, regardless of the macro generation
levels of both the definition and the substitution.

Functions are global except that some cannot usefully be called
outside a macro. Such calls will produce null strings or error
messages depending on the individual function.

When a variable to be substituted is encountered, the macro
parameter or LOCAL variable within the current macro of that name
is used, if any. Otherwise the global variable of the same name is
used. If there isn't one of these either then an error message is
generated.

67

B.7.4 functions
The assembler contains a number of functions which can be used in
string substitutions. The names of these functions are all
<symbol>s which begin with a dot '.' to help avoid confusion with
ordinary user variables. It is not possible for the user to define his
own functions.

For example:

DS.B [.LEN(VAR3)]

will expand (with the value of VAR3 given earlier) to:

DS.B 7

and:

DC.B '[.LEFT(VAR[N],[.LEN(VAR[N])]–1)]'

will first expand to:

DC.B '[.LEFT(VAR3,[LEN(VAR3)]–1)]'

and will then expand to:

DC.B '[.LEFT(VAR3,7–1)]'

At this point the .LEFT function will be expanded: as it requires a
number for its second parameter an attempt is made to evaluate
the second parameter as an ordinary <expr>. The result of this
operation is:

DC.B '[.LEFT(VAR3,6)]'

and the final substitution gives:

DC.B 'A valu'

The individual functions available are listed in paragraphs below.

68

 .DEF – whether variable is defined
The function

.DEF(<symbol>)

returns the string 'TRUE' if the <symbol> has previously been
defined by a SETNUM or SETSTR directive or the string 'FALSE'
otherwise, in both cases not including the quotes.

 .LEN – length of a string
The function

.LEN(<variable>)

returns (as a string, e.g. '7') the length in characters of the string
represented by the <variable>.

 .LEFT – left substring
The function

.LEFT(<variable>,<expr>)

returns a string consisting of the leftmost <expr> characters of
<variable>. If <expr> is zero or negative the result is the null string.
If <expr> is greater than the length of the string <variable> then the
result is identical to <variable>.

n .RIGHT— right substring
The function

.RIGHT(<variable>,<expr>)

returns a string consisting of the rightmost <expr> characters of
<variable>. If <expr> is zero or negative the result is the null string.
If <expr> is greater than the length of the string <variable> then the
result is identical to <variable>.

69

 .INSTR – locate substring
The function

.INSTR(<variable>, <variable>)

returns as a string the character position of the first occurrence of
the second <variable> as a substring in the first <variable>. The
first character in the first variable is regarded as character position
1. If there is no match then .INSTR returns zero.

 .UCASE – convert to upper case
The function

.UCASE(<variable>)

returns as a string its parameter with all lower case letters
converted to upper case. The use of this function to identify macro
parameters is highly recommended as it means that the user of the
macro does not need to code the parameters in any particular case.

 .NPARMS – number of parameters
The function

.NPARMS

returns the number of parameters that have been passed to the
current macro. If called outside any macro it is an error.

 .PARM – macro parameter
The function

.PARM(<expr>)

returns the <expr>th parameter to the current macro. If called
outside any macro, or if the macro had less than <expr>
parameters on the current call, then an error is generated.

This error case can be avoided by checking against .NPARMS
before using .PARM.

70

 .LAB – macro call label
The function

.LAB

returns the label that was coded on the macro call. If no label was
coded the null string is returned. If this function is coded outside a
macro then an error is generated.

 .EXT – macro call extension
The function

.EXT

returns the last character of the macro name coded if the
penultimate character of the macro name was dot '.'. If the macro
call had no extension then .EXT returns the null string. If this
function is used outside a macro then an error is generated.

 .L – unique label generation
The function

.L

will give a different four-digit number for each macro expansion in
which it is used. This is useful for generating local labels that will
not clash with other labels generated by others macros or other
invocations of the same macro.

If this function is used outside a macro then an error is generated.

Example: suppose a label is needed inside some code generated
by a macro, and the macro is likely to be called several times in the
assembly:

LOOP[.L]

 DBRA D3, LOOP[.L]

71

 .OTYPE – type of operand
The function

.OTYPE(<ea>)

investigates the <ea> as if it were an operand to an instruction and,
depending on the operand type, returns one of the following strings:

Result string Format of <ea>
DREG <dreg>
AREG <areg>
IND (<areg>)
INDDEC –(<areg>)
INDINC (<areg>)+
DISPL <expr>(<areg>)
INDEX <expr>(<areg>,<ireg>)
EXPR <expr>
PC <expr>(PC)
PCINDEX <expr>(PC,<ireg>)
IMMED #<expr>
MULT register list
USP USP
CCR CCR
SR SR
ERROR anything else

 .ABS – enquire type of value
The function

.ABS (<expr>)

returns TRUE if the <expr> has no relocation bases, i.e. the
numeric part is all there is to say about it, or FALSE if some
relocation bases are involved.

Together with .OTYPE above, this function enables macros to
detect things like a parameter having value '#FRED' where FRED
was an EQU symbol with value of absolute zero. This is likely to be
helpful when trying to write macros to generate structure
statements.

72

 Assembler environment enquiries
The functions:

.TIME of assembly

.DATE of assembly

.FILE primary source file being assembled

.VER version number of the assembler

.OS host operating system ('Qdos' or '68K/OS')

are provided so that the program can know something about how it
is being assembled.

B.7.5 Listing control
 Listing of substituted lines

Normally a line is fully expanded and then processed by the
assembler as before. This means that (only) the fully expanded
form is listed.

When the assembler processes macro definitions it does not
expand substitutions, and does not act on most of the data
contained in the macro body. Lines of macro definitions are printed
as coded, without any expansion.

When an error is encountered during expansion (such as wrong
brackets of various types '[] { } (),', missing parameters to
functions, failure to evaluate <expr>s as desired) the current partly
expanded state of the line is listed, with error messages as
appropriate, and no further processing is applied to the line.

 Listing of macro-generated lines
Macro definitions are listed or not in the normal way subject to the
normal options and directives, except that any listing control
directives present inside the macro definitions themselves are not
acted on.

Macro calls are listed or not in the normal way subject to the normal
options and directives, which may include macro expansion
controls if the macro call was generated by a macro.

73

Lines generated by macros are listed subject to the –NOLIST,
 –ERRORS and –LIST options and the LIST and NOLIST directives
in the usual way. In addition the directive NOEXPAND switches off
listing of lines generated by macros until either the EXPAND or
ENDM directive is met. If the EXPAND directive is met, listing is
switched back on again. If the ENDM directive for the macro in
which the NOEXPAND appeared is met, the listing status reverts to
what it was in the calling macro. A NOEXPAND directive may be
coded outside all macros, in which case no macro expansions are
listed unless they contain EXPAND directives.

The NOEXPAND and EXPAND directives themselves are not listed.

No special form of comment which overrides expansion
suppression is provided as this can be achieved with:

 EXPAND
 Macro FRED has generated a [WOMBAT]
 NOEXPAND

Note that in order to debug, a macro you may have to test it with all
the NOEXPAND directives missing, and put these in later when you
have got it basically working. You can of course write all your
NOEXPAND directives as

[DEBUG]EXPAND

and SETSTR DEBUG to NO or {} as required.

Two directives are provided to generate error and warning
messages. respectively. These can be used by a macro which
checks its parameters for validity to tell the programmer that wrong
or suspect parameters have been coded.

ERROR
WARNING

The directive is listed, together with an error or warning message
respectively, regardless of the state of NOEXPAND and NOLIST
(as are any other lines in macro expansions which generate error
messages). Normally comments would be included on these
directives to tell the user what he has done wrong:

74

ERROR Parameter P1 should not be [P1]
WARNING Use of XPQ option would generate less code

B.7.6 Macro calls
A macro is called by coding:

[<label>] <symbol> [<arbitrary string>{,<arbitrary string>}]

(where the [] { }are metasymbols) where:

<label> is passed through to the body of the macro as the
 value of the function .LAB

<symbol> is the name of the macro, optionally with a one-
 character extension preceded by a dot '.'; if a legal
 extension is coded this is passed through to the body
 of the macro as the value of the function .EXT

<arbitrary string>s are macro parameters

the commas are optional and macro parameters can alternatively,
or in addition, be separated by <white space>; in addition the
comma or <white space> can be followed by a backslash character
'\' in which case the rest of the line is ignored and the next
parameter is taken from the next input line.

Note that as parameters can be separated by spaces, everything
on the line will be assumed to be macro parameters, including the
comment, unless you do something about it. What you do is to
precede any comment (on the last continuation line) with a
semicolon ';'.

There is virtually nothing you can do wrong, as far as the assembler
is concerned, when coding a macro call. If too few parameters are
coded then the remainder of the named parameters in the macro
will be assigned null string values. If too many parameters are
coded this is not an error because you can access them within the
macro using the .NPARMS and .PARM functions. If no label or
extension is coded the functions .LAB and .EXT will return null
strings.

75

Macro calls may be nested to any depth (subject only to running out
of memory). Macro calls may be recursive.

Example:

MAKETAB 27, 49, 123, 99, \ first row of table
 1, 99, 0, 3, \ second row of table
 5, 8, 187, -1 ; last row of table

B.7.7 Conditional assembly facilities
Conditional assembly is provided within macros only.

The facilities provided are:

 – the ability to define a special sort of label

 – a conditional GOTO directive which either does or does not
resume expansion of the macro at a specified label depending on a
string or numeric comparison of two values

 The MACLAB directive
The directive:

<label> MACLAB

defines the label. This directive is processed during micro definition
and must not contain any string substitutions (except, perhaps, in
the comment).

The scope of the <label> is local within the macro in which it is
defined. Jumping to a macro label leaves you at the same recursive
level, if the macro has been called recursively.

 The IFSTR, IFNUM and GOTO directives
The directive:

 IFSTR <arbitrary string>,<compop>,
<arbitrary string>,GOTO,<label>
where the commas may be preceded or followed or replaced by
<white space>, and backslash may be used to introduce
continuation lines, as for macro calls

76

means 'perform a string comparison, and if the condition is true
resume assembly at the line containing a MACLAB definition of the
<label>'. The GOTO is a noise word and can be omitted.

Similarly IFNUM makes a numeric comparison between two
<expr>s:

 IFNUM <expr>,<compop>,<expr>,GOTO,<label>

Examples:

 IFSTR [.LEFT(P2,1)] = D GOTO DREG
 IFSTR {[P3]} = {} GOTO EXIT

COUNT SETNUM 1

LOOP MACLAB
 DC.L [.PARM([COUNT])]
COUNT SETNUM [COUNT]+1
 IFNUM [COUNT] <= [.NPARMS] GOTO LOOP

As a piece of syntactic sugar a GOTO directive is provided so that:

GOTO <label>

can be coded instead of garbage such as:
 IFSTR { } = { } GOTO <label>

Note that if there is any chance of an <arbitrary string> expanding
to something containing spaces or commas then the { } must be
coded. For example, if you code:

 IFSTR [FRED] = 99 GOTO LABEL

and FRED has the null string as value, this will expand to:

 IFSTR = 99 GOTO LABEL

which is an error of some sort, whereas:

 IFSTR {[FRED]} = 99 GOTO LABEL

will be much safer.

77

B.8 The macro library
Included with the QL Macro Assembler is a file containing
definitions of some useful macros. This section describes those
macros as supplied, but you may of course add to them and modify
them if you need extra features.

B.8.1 Common features
The following features are common to all relevant macros.

 Length of jumps
Some macros generate forward branches. These branches will be
short unless .L is explicitly specified as part of the appropriate
macro or parameter.

 Reserved Identifiers
All names generated by macros which are not local to a macro start
with a dot; this includes all variable names and any generated
symbol names (including labels and register lists). To avoid clashes
with the names in the library user variables and symbols should not
start with a dot when you are using the macro library.

 THEN and DO
Any macro which requires the word THEN as a parameter will
accept DO as a synonym and vice versa.

B.8.2 Syntax definitions
The following syntax definitions are used in the descriptions of the
macros.

 Simple condition

<scond> = <relop> |
 <ea> SET <ea> |
 <ea> CLEAR <ea>

These combinations of simple tests allow the user to test condition
codes or to perform a generalised compare or to test the value of a
bit.

The SET and CLEAR comparisons test the state of a bit. The first
<ea> a bit number in a form acceptable to a BTST instruction and
the second <ea> is the address of the operand in which the bit
resides (also in a form acceptable to a BTST instruction).

78

 Condition

<cond> = <scond> |
 <scond> OR <scond> |
 <scond> AND <scond>

 Relational operator

<relop> = <cc>[<length>]

<cc> = NE | CC | HS | HI | VC | GE | GT | PL |
 EQ | CS | LO | LS | VS | LT | LE | MI

The <length> on the <relop> is the size of the compare instruction
generated to give the condition result.

B.8.3 IF and associated macros
The macros IF, ELSEIF, ELSE and ENDIF may be used to write code
which tests values of operands and executes one of a number of
pieces of code depending on those values. Use of these macros can
avoid having to write a lot of error-prone CMP and Bcc instructions.

The general structure which you may construct using these macros is:

IF <cond> THEN[<extent>]
.
.
{
 ELSEIF[<extent>] <cond> THEN[<extent>]
 .
 .
}
[
 ELSE[<extent>]
 .
 .
]
ENDIF

 The IF macro
The IF macro is allowed anywhere where code is allowed. The
<extent> on the THEN parameter is the distance to the corresponding
ELSEIF, ELSE or ENDIF macro.

79

 The ELSEIF macro
The ELSEIF macro is allowed only after a corresponding IF or
ELSEIF macro.

The <extent> on the ELSEIF macro is the length of branch to the
ENDIF macro (this branch is taken if the previous test was
successful). The <extent> on the THEN parameter is the length of
branch to the next ELSEIF, ELSE or ENDIF macro (this branch is
taken if the test is not successful).

 The ELSE macro
The ELSE macro is only allowed after a corresponding IF or
ELSEIF macro.

The <extent> on the ELSE macro is the length of the branch to the
corresponding ENDIF macro.

 The ENDIF macro
The ENDIF macro is allowed after a corresponding IF, ELSEIF or
ELSE macro.

B.8.4 FOR and associated macros
The macros FOR and ENDFOR allow you to code a loop which will
execute a given number of times (possibly zero).

The structure of a FOR Loop is:

FOR [<length>] <ea> = <ea> <a> [] DO[<extent>]
ENDFOR

where:

<a> = TO <ea> | DOWNTO <ea>
 = STEP <ea> | BY <ea>

 The FOR macro
Either the TO parameter must be coded, in which case you should
ensure that the STEP is a positive number and the loop counts
upwards, or the DOWNTO parameter must be coded, in which case
you should ensure that the STEP is a negative number and the
loop counts downwards.

The test for loop termination uses signed arithmetic in all cases.

80

The STEP parameter gives the amount to be added to the loop
index each time round. If you omit it then ’#1’ is assumed for a TO
loop or '# -1' is assumed for DOWNTO loop. The word BY may be
used instead of STEP.

The <length>on the FOR macro is the length of all instructions
generated for setting, stepping and comparing the counter. The
<extent> on the DO parameter is the length of the branch to the
ENDFOR macro.

 The ENDFOR macro
The ENDFOR macro may only be used after a corresponding FOR
macro.

B.8.5 Loop macros
The macros WHILE, ENDWHILE, REPEAT, UNTIL and FOREVER
allow you to code loops that execute repeatedly while some
condition is true or until some condition is true.

WHILE and ENDWHILE generate a loop that tests its condition at
the beginning of the loop.

REPEAT and UNTIL generate a loop that tests its condition at the
end of the loop; this loop is always executed at least once.

REPEAT and FOREVER generate a loop that executes forever; this
is sometimes useful for the main loop in a program.

WHILE <cond> DO[extent>]
 .
 .
ENDWHILE

REPEAT
 .
 .
UNTIL <cond>

REPEAT
 .
 .
FOREVER

81

 The WHILE macro
The WHILE macro is allowed anywhere where code may be placed.

The <extent> on the DO parameter is the length of the branch to the
corresponding ENDWHILE macro.

 The ENDWHILE macro
The ENDWHILE macro is only valid after a WHILE macro. It marks
the end of the loop.

 The REPEAT macro
The REPEAT macro is valid anywhere where code may be placed.
The macro simply provides a label for the UNTIL test to branch
back to.

 The UNTIL macro
The UNTIL macro is only valid after a corresponding REPEAT
macro.

 The FOREVER macro
The FOREVER macro is only allowed after a corresponding
REPEAT macro to provide an infinite loop (effectively an always
FALSE version of the UNTIL macro).

B.8.6 CASE and associated macros
The macros SWITCH, CASE, ENDC, DEFAULT and ENDSWITCH
allow a structure to be coded that selects one of a number of
sequences of code depending on a control value. (The same effect
could be achieved using IF, ELSEIF, ELSE, ENDIF but the CASE
macros are often a more readable way to code a selection with
many branches.)

82

The general structure is:

SWITCH<length> <ea>
{
 CASE[<extent>] <ea>
 .
 .
 [ENDC[<extent>]]
}
[
 DEFAULT
 .
 .
 [ENDC[<extent>]]
]

ENDSWITCH

 The SWITCH macro
The SWITCH macro introduces a set of CASE options. It is allowed
anywhere where code is allowed. The <length> is the length of all
the comparisons generated by all the relevant CASE macros.

The <ea> is the control variable which is used to select the CASE to
be executed.

 The CASE macro
The CASE macro introduces an option. The CASE macro is allowed
only after a previous CASE, SWITCH or ENDC macro.

The <extent> on the CASE macro is the length of the branch to the
next CASE, DEFAULT or ENDSWITCH macro.

The code following the CASE macro up to the next ENDC macro is
executed if the control variable is equal to the <ea>, after which the
program resumes at the ENDSWITCH macro.

 The ENDC macro
The ENDC macro is allowed only after a previous CASE or
DEFAULT macro. The <extent> is the length of the branch to the
ENDSWITCH macro.

83

The DEFAULT macro
The DEFAULT macro is allowed only after a previous CASE or
ENDC macro. Its purpose is to provide the default option if all
previous options have not been satisfied.

 The ENDSWITCH macro
The ENDSWITCH macro is only allowed after a previous ENDC,
DEFAULT, CASE or SWITCH macro. Its purpose is to terminate the
SWITCH structure.

B.8.7 Stack handling
The PUSH$ and POP$ macros save values (usually registers) on
the A7 stack and restore them.

PUSH$[<length>] <ea>

generates:

MOVE<length> <ea>, – (A7)

and:

POP$[<length>] <ea>

generates:

MOVE<length> (A7)+ ,<ea>

B.8.8. STRINGS definition

<name> STRING$ '<string>'

creates a string in standard format consisting of the two-byte length
of the string followed by the characters of the string. The parameter
should be enclosed in quotes, e.g.:

FILE STRING$ 'MDVI_MY_Fl LE'

and if it includes spaces, commas etc. the curly brackets must also
be used, e.g.:

STRING1 STRING$ {'This is a string'}
STRING2 STRING$ {'A line followed by a line feed',$0A}

84

B.8.9 SUBROUTINE$ and associated macros
The macros SUBROUTINE$ and END$ are useful to mark the start
and end of subroutines. If a subroutine needs to preserve a set of
registers then these macros will generate the necessary MOVEM
instructions; END$ also generates RTS.

In addition these macros will check that structure macros used
inside the subroutine have been terminated properly, e.g. a missing
ENDIF will cause a warning message when the END$ is processed.

SUBROUTINE$ <name>[,<multireg>]
 .
 .
 .
END$[<name>]

The <name> is generated as a label by SUBROUTINE$ so that it
can be used as the destination of JSR and BSR instructions. If a
<name> is coded on the END$ macro it is checked to see that it
matches the previous SUBROUTINE$ and an error message is
generated if not.

B.8.10 Macros for calling Qdos
The following macros are provided for making calls to Qdos:

QDOSMT$ <function name>

is used for manager traps and generates:

MOVEQ #<function name>, D0
TRAP #1

and:

QDOSOC$ <function name>

is used for open and close channel calls and generates:

MOVEQ #<function name>, D0
TRAP #2

85

and:

QDOSIO$ <function name>

is used for other input/output operations and generates:

MOVEQ #<function name>,D0
TRAP #3

In each case the <function name>s needed for the various Qdos
traps are provided in the parameter files supplied with the macro
assembler, so if you INCLUDE the necessary parameter files and
macro library you can write Qdos calls like this:

MOVEQ #-1,D1 current job
CLR.L D3 old, exclusive
LEA FILENAME,A0 name of
QDOSOC$ IO.OPEN file to open
.
.
FILENAME STRING$ ‘MDV1_INPUT_FILE’

86

Appendix C – Error and warning
Messages
This appendix lists the error and warning messages which can be
produced by the assembler in numerical order.

C.1 Error messages
 00 – unknown instruction/directive

 An unknown symbol has been used where an instruction or
 directive is expected in the operation field.

 01– illegal line after OFFSET
 Instructions and directives which generate code (DC, DCB) are
 not allowed in the dummy section defined by the OFFSET
 directive. Return to a SECTION before instructions or data.

 02 – syntax error in instruction field
 The operation field does not contain a <symbol>.

 03 – redefined symbol
 The symbol has already been defined earlier in the assembly.
 The first definition of the symbol will be used; further definitions
 will just produce this error message.

 04 – phasing error
 This is an assembler internal error – it should only happen if the
 source file has changed between pass 1 of the assembler and
 pass 2.

 05 – missing operand
 The instruction requires two operands, and only one has been
 coded.

 06 –syntax error
 The line contains a syntax error which has left the assembler
 with very little idea of what was meant.

87

 07 – syntax error in expression or operand
 The assembler is expecting an expression or other instruction
 operand but does not understand what it has found.

 08 – multireg, cannot mix Dreg & Areg
 Data registers and address registers may not be combined in a
 range: eg D3 – A4 is illegal.

 09 – multireg, bad sequence
 The registers in a range must be in increasing order— eg D5 –
 D2 is illegal.

 0A – unmatched open bracket
 There are too many open brackets in the expression: unmatched
 open brackets are 'closed' at the end of the expression.

 0B – unmatched close bracket
 There are too many close brackets in the expression: unmatched
 close brackets are ignored.

 0C –expression too complicated
 An expression is limited to five levels of nested brackets. Certain
 combinations of operators can cause this error with fewer
 brackets – eg when low priority operators are followed by high
 priority operators.

 0D – expression: string too long
 When a string is used as a term in an expression, it may be up to
 four characters long.

 0E – internal error – expression stack underflow
 This is an internal assembler error which should never occur.

 0F – invalid character
 Some characters such as " ? ^ = have no meaning to the
 assembler. They may only be used within strings. The character
 is ignored.

 11– no digits in number
 A number is expected (eg after $ or %) but no digits are present.

88

 12 – number overflow
 The number is too large and will not fit in 32 bits.

 13 – string terminator missing
 A string must be terminated by a quote character.

 14 – relocatable value not allowed here
 Some addressing modes and directives require absolute values.

 15 – multiply overflow in expression
 A multiply overflow error occurred while evaluating an expression.

 16 – divide by 0 or divide underflow
 A divide error occurred during evaluation of an expression.

 18 – -ve value illegal
 Some directives (eg DS) can accept a zero or positive number,
 but a negative value is illegal.

 19 – value must be +ve nonzero
 Some instructions or directives require a positive, non-zero,
 value (eg the,number of elements for DCB).

 1A – value out of range
 This is a general purpose message for any value out of range in
 instructions or directives. The actual value range depends on
 context – read again the description of the instruction or directive
 involved.

 1D – size not allowed on directive
 Most directives do not accept a size extension: the only ones
 that do allow a size are DC, DCB & DS.

 1E – invalid size
 The size specified on the instruction or directive is not legal.

 1F– size .B illegal for Areg
 Byte operations on address registers are not allowed.

89

 20 – label illegal on this directive
 Many directives (eg INCLUDE, SECTION, LIST, PAGE) do not
 accept a label.

 21 – too many errors
 If a line has more than ten errors or warnings, only the first ten
 are printed, followed by this message.

 22 – invalid operand(s) for this instruction
 The operand(s) specified are not valid for the instruction. Check
 the rules for the instruction you are using in a 68000 manual. If
 one of the operands to the instruction is an "effective address"
 this error can mean that the actual addressing mode specified is
 not legal.

 The assembler will try to point the error flag (the vertical bar
 character) at the invalid operand, but as the assembler may not
 even know (in the case of a generic mnemonic) which instruction
 you meant it will get this wrong sometimes.

 23 – undefined symbol
 The symbol has not been defined in the assembly.

 24 – forward reference not allowed here
 Many directives do not allow a forward reference.

 25 – short branch out of range
 BRA.S (or some other Branch.S) has been coded but the
 destination is more than 128 bytes away.

 26 – long branch out of range
 The destination of a long branch must be within 32k.

 27 – value must be simple relocatable
 The expression should be simple relocatable: absolute or
 complex values are illegal (e.g. in the destination of a branch
 instruction).

 28 – value must not be complex
 Absolute and simple relocatable expressions can generally be
 used as addresses but a complex relocatable value is illegal.

90

 29 – this directive must have a label
 EQU,REG, MACRO and MACLAB require a label

 2A – unable to generate position independent code here
 Normally if a label or expression is used to specify an address in
 an instruction, a PC-relative addressing mode is generated to
 produce position independent code. This is not an alterable
 addressing mode, so this error message is generated when an
 alterable addressing mode is required.

 2B – short branch to next instruction – NOP generated
 A short branch to the next instruction is not a legal 68000 opcode.
 The assembler generates a NOP instruction in this case.

 2E – not allowed with –NOLINK option
 Many of the directives relating to relocation and linking may not
 be used if the –NOLINK option has been coded on the command
 line.

 2F – not allowed in this context
 This line is not allowed here because the context is wrong; this
 usually means that the wrong sort of location counter is in use,
 for example instructions are not allowed in a COMMON section.
 The most frequent cause of this error message is forgetting to
 code an appropriate SECTION directive.

 30 – same name used in SECTION and COMMON
 You cannot have ordinary SECTIONs and COMMON sections
 with the same name.

 31 – wrong relocation for PC-relative address
 The assembler is trying to generate a PC-relative address but
 can't because the relocation factor of the instruction does not
 match that of the destination (e.g. a reference to a relocatable
 address from an instruction which follows an ORG).

 32 – COMMON block name cannot be used here
 The name of a COMMON block can only be used in a very
 restricted set of circumstances; this isn't one of them.

91

 33 – same name used in, SECTION and COMMON
 You cannot have ordinary SECTIONS and COMMON sections
 with the same name.

 34 – illegal expression for RORG
 The <expr> in a RORG directive is not absolute and is not simple
 relocatable with respect to the current section (or has something
 else wrong with it). See the description of RORG for the full list of
 restrictions which apply to this <expr>.

 35 – references to external symbols not allowed
 Some directives need to know the actual values of their
 operands at assembly time and these do not therefore permit
 external symbols (those whose names appear in XREF
 directives) to be coded.

 36 – expressions needing linking not allowed
 In some circumstances expressions whose final value must be
 determined by the linker are not allowed; replace the expression
 with one whose value is known to the assembler.

 37 – this symbol invalid in XDEF
 There are various restrictions on the type of symbol that may be
 named in an XDEF directive. See the description of the XDEF
 directive for full details.

 39 – label not found for GOTO
 The label specified as the destination of the IFSTR, IFNUM or
 GOTO directive is not defined on a MACLAB directive in the
 current macro.

 3A – not currently in a macro
 This directive or function may only be used within a macro.

 3B – user generated error
 An ERROR directive was processed.

 3C – expression does not result in a value
 An expression used at this point must evaluate to an absolute
 value involving no forward references or relocation bases or
 external symbols.

92

 3D – illegal parameter number for .PARM
 The value of the expression lies outside the range 1 to
 .NPARMS.

 3E – unexpected end of file after continuation line
 The last line in a file ended in a backslash ' \' and a continuation
 line was expected.

 3F – MACRO name same as instruction or directive
 You cannot define a macro with the same name as an instruction
 or an assembler directive.

 40 – built-in function not allowed here
 A function call is not allowed here (e.g. as the parameter to the
 .DEF function).

C.2 Warning messages
 50 – size missing, W assumed

 No size was specified on an index register.

 51 – size missing, W assumed
 The instruction or directive can have more than one size, but no
 size was specified.
 52 – multiply defined register

 A register has been multiply defined in a multiregister sequence
(eg A0/D1/D0–D3 has D1 multiply defined).

 53 – decimal number goes negative
 A decimal number has a value between $80000000 and
 $FFFFFFFF. This is a perfectly valid number with which to do
 unsigned arithmetic, but it is an overflow if the programmer was
 intending to use it for signed arithmetic. As the assembler does
 not know what the programmer wants to do with the number it
 produces this warning.

 55 – value will be sign extended to 32 bits
 In MOVEQ the expression is between $80 and $FF so it will be
 sign-extended to a 32-bit negative value.

93

 56 – nonstandard use of this instruction
 This warning is printed when an instruction is used in a
 nonstandard manner which may be a bug (eg LINK with a
 positive displacement).

 57 – branch could be short
 A forwards branch or a branch with an explicit .L is within 128
 bytes range and could be a short branch.

 58 – END directive missing
 An END directive is expected at the end of the assembly, but
 endof-file was found instead.

 59 – XREF.S value will probably overflow when linked
 An expression is of type XREF.S and is being placed in a 1-byte
 field. Depending on the actual value of the external symbols
 when the program is linked this may or may not cause an
 overflow.

 5A – XREF.L value will probably overflow when linked
 An expression is of type XREF.L and is being placed in a 1– or
 2–byte field. Depending on the actual value of the external
 symbols when the program is linked this may or may not cause
 an overflow.

 5B – ENDM directive missing after macro definition
 End of file was found while processing a macro definition. This
 probably indicates that you omitted an ENDM directive or coded
 it in such a way that it could not be recognised (recall that ENDM
 must not be generated by variable substitution).

 5C – ENDM directive missing while expanding a macro
 The assembler ran off the end of the file while expanding a
 macro.

 5D – user generated warning
 A WARNING directive was processed.

 5E – multiply defined symbol
 Either the same name is used for two different macros or the
 same name is declared twice in LOCAL directives in the same
 macro. In both cases the first definition takes effect and
 subsequent definitions are ignored.

94

C.3 Operating system errors
When the assembler gets an error code from Qdos it usually gives
up completely, first displaying a message relating to the error on the
screen.

Most Qdos errors relate to particular input or output files or devices
and the file or device name involved is displayed as part of the
message wherever possible.

In the case of a serious error (such as bad Microdrive tape)
affecting an input source file the assembler does not however tell
you which of the various source (e.g. INCLUDEd) files is involved.

If the assembler is run with EXEC_W the error code is passed back
to the EXEC_W command which will display another error message.

