
;**
;** An Assembly File Listing to generate a 16K ROM for the ZX Spectrum **
;**

; -------------------------
; Last updated: 09-AUG-2003
; -------------------------

; TASM cross-assembler directives.
; (comment out, perhaps, for other assemblers - see Notes at end.)

#define DEFB .BYTE
#define DEFW .WORD
#define DEFM .TEXT
#define ORG .ORG
#define EQU .EQU
#define equ .EQU

; It is always a good idea to anchor, using ORGs, important sections such as
; the character bitmaps so that they don't move as code is added and removed.

; Generally most approaches try to maintain main entry points as they are
; often used by third-party software. The Sinclair Interface 1 ROM written
; by Dr. Ian Logan and Martin Brennan calls numerous routines in this ROM.
; Non-standard entry points have a label beginning with X.

; ORG 0000

;***
;** Part 1. RESTART ROUTINES AND TABLES **
;***

; -----------
; THE 'START'
; -----------
; At switch on, the Z80 chip is in Interrupt Mode 0.
; The Spectrum uses Interrupt Mode 1.
; This location can also be 'called' to reset the machine.
; Typically with PRINT USR 0.

;; START
L0000: DI ; Disable Interrupts.
 XOR A ; Signal coming from START.
 LD DE,$FFFF ; Set pointer to top of possible physical RAM.
 JP L11CB ; Jump forward to common code at START-NEW.

; -------------------
; THE 'ERROR' RESTART
; -------------------
; The error pointer is made to point to the position of the error to enable
; the editor to highlight the error position if it occurred during syntax
; checking. It is used at 37 places in the program. An instruction fetch
; on address $0008 may page in a peripheral ROM such as the Sinclair
; Interface 1 or Disciple Disk Interface. This was not an original design
; concept and not all errors pass through here.

;; ERROR-1
L0008: LD HL,($5C5D) ; Fetch the character address from CH_ADD.
 LD ($5C5F),HL ; Copy it to the error pointer X_PTR.
 JR L0053 ; Forward to continue at ERROR-2.

; -----------------------------
; THE 'PRINT CHARACTER' RESTART
; -----------------------------

; The A register holds the code of the character that is to be sent to
; the output stream of the current channel. The alternate register set is
; used to output a character in the A register so there is no need to
; preserve any of the current main registers (HL, DE, BC).
; This restart is used 21 times.

;; PRINT-A
L0010: JP L15F2 ; Jump forward to continue at PRINT-A-2.

; ---

 DEFB $FF, $FF, $FF ; Five unused locations.
 DEFB $FF, $FF ;

; -------------------------------
; THE 'COLLECT CHARACTER' RESTART
; -------------------------------
; The contents of the location currently addressed by CH_ADD are fetched.
; A return is made if the value represents a character that has
; relevance to the BASIC parser. Otherwise CH_ADD is incremented and the
; tests repeated. CH_ADD will be addressing somewhere -
; 1) in the BASIC program area during line execution.
; 2) in workspace if evaluating, for example, a string expression.
; 3) in the edit buffer if parsing a direct command or a new BASIC line.
; 4) in workspace if accepting input but not that from INPUT LINE.

;; GET-CHAR
L0018: LD HL,($5C5D) ; fetch the address from CH_ADD.
 LD A,(HL) ; use it to pick up current character.

;; TEST-CHAR
L001C: CALL L007D ; routine SKIP-OVER tests if the character is
 ; relevant.
 RET NC ; Return if it is significant.

; ------------------------------------
; THE 'COLLECT NEXT CHARACTER' RESTART
; ------------------------------------
; As the BASIC commands and expressions are interpreted, this routine is
; called repeatedly to step along the line. It is used 83 times.

;; NEXT-CHAR
L0020: CALL L0074 ; routine CH-ADD+1 fetches the next immediate
 ; character.
 JR L001C ; jump back to TEST-CHAR until a valid
 ; character is found.

; ---

 DEFB $FF, $FF, $FF ; unused

; -----------------------
; THE 'CALCULATE' RESTART
; -----------------------
; This restart enters the Spectrum's internal, floating-point, stack-based,
; FORTH-like language.
; It is further used recursively from within the calculator.
; It is used on 77 occasions.

;; FP-CALC
L0028: JP L335B ; jump forward to the CALCULATE routine.

; ---

 DEFB $FF, $FF, $FF ; spare - note that on the ZX81, space being a
 DEFB $FF, $FF ; little cramped, these same locations were
 ; used for the five-byte end-calc literal.

; ------------------------------
; THE 'CREATE BC SPACES' RESTART
; ------------------------------
; This restart is used on only 12 occasions to create BC spaces
; between workspace and the calculator stack.

;; BC-SPACES
L0030: PUSH BC ; Save number of spaces.
 LD HL,($5C61) ; Fetch WORKSP.
 PUSH HL ; Save address of workspace.
 JP L169E ; Jump forward to continuation code RESERVE.

; --------------------------------
; THE 'MASKABLE INTERRUPT' ROUTINE
; --------------------------------
; This routine increments the Spectrum's three-byte FRAMES counter fifty
; times a second (sixty times a second in the USA).
; Both this routine and the called KEYBOARD subroutine use the IY register
; to access system variables and flags so a user-written program must
; disable interrupts to make use of the IY register.

;; MASK-INT
L0038: PUSH AF ; Save the registers that will be used but not
 PUSH HL ; the IY register unfortunately.
 LD HL,($5C78) ; Fetch the first two bytes at FRAMES1.
 INC HL ; Increment lowest two bytes of counter.
 LD ($5C78),HL ; Place back in FRAMES1.
 LD A,H ; Test if the result was zero.
 OR L ;
 JR NZ,L0048 ; Forward, if not, to KEY-INT

 INC (IY+$40) ; otherwise increment FRAMES3 the third byte.

; Now save the rest of the main registers and read and decode the keyboard.

;; KEY-INT
L0048: PUSH BC ; Save the other main registers.
 PUSH DE ;

 CALL L02BF ; Routine KEYBOARD executes a stage in the
 ; process of reading a key-press.
 POP DE ;
 POP BC ; Restore registers.

 POP HL ;
 POP AF ;

 EI ; Enable Interrupts.
 RET ; Return.

; ---------------------
; THE 'ERROR-2' ROUTINE
; ---------------------
; A continuation of the code at 0008.
; The error code is stored and after clearing down stacks, an indirect jump
; is made to MAIN-4, etc. to handle the error.

;; ERROR-2
L0053: POP HL ; drop the return address - the location
 ; after the RST 08H instruction.

 LD L,(HL) ; fetch the error code that follows.
 ; (nice to see this instruction used.)

; Note. this entry point is used when out of memory at REPORT-4.
; The L register has been loaded with the report code but X-PTR is not
; updated.

;; ERROR-3
L0055: LD (IY+$00),L ; Store it in the system variable ERR_NR.
 LD SP,($5C3D) ; ERR_SP points to an error handler on the
 ; machine stack. There may be a hierarchy
 ; of routines.
 ; To MAIN-4 initially at base.
 ; or REPORT-G on line entry.
 ; or ED-ERROR when editing.
 ; or ED-FULL during ed-enter.
 ; or IN-VAR-1 during runtime input etc.

 JP L16C5 ; Jump to SET-STK to clear the calculator stack
 ; and reset MEM to usual place in the systems
 ; variables area and then indirectly to MAIN-4,
 ; etc.

; ---

 DEFB $FF, $FF, $FF ; Unused locations
 DEFB $FF, $FF, $FF ; before the fixed-position
 DEFB $FF ; NMI routine.

; ------------------------------------
; THE 'NON-MASKABLE INTERRUPT' ROUTINE
; ------------------------------------
; New
; There is no NMI switch on the standard Spectrum or its peripherals.
; When the NMI line is held low, then no matter what the Z80 was doing at
; the time, it will now execute the code at 66 Hex.
; This Interrupt Service Routine will jump to location zero if the contents
; of the system variable NMIADD are zero or return if the location holds a
; non-zero address. So attaching a simple switch to the NMI as in the book
; "Spectrum Hardware Manual" causes a reset. The logic was obviously
; intended to work the other way. Sinclair Research said that, since they
; had never advertised the NMI, they had no plans to fix the error "until
; the opportunity arose".
;
; Note. The location NMIADD was, in fact, later used by Sinclair Research
; to enhance the text channel on the ZX Interface 1.
; On later Amstrad-made Spectrums, and the Brazilian Spectrum, the logic of
; this routine was indeed reversed but not as at first intended.
;
; It can be deduced by looking elsewhere in this ROM that the NMIADD system
; variable pointed to L121C and that this enabled a Warm Restart to be
; performed at any time, even while playing machine code games, or while
; another Spectrum has been allowed to gain control of this one.
;
; Software houses would have been able to protect their games from attack by
; placing two zeros in the NMIADD system variable.

;; RESET
L0066: PUSH AF ; save the
 PUSH HL ; registers.
 LD HL,($5CB0) ; fetch the system variable NMIADD.
 LD A,H ; test address
 OR L ; for zero.

 JR NZ,L0070 ; skip to NO-RESET if NOT ZERO

 JP (HL) ; jump to routine (i.e. L0000)

;; NO-RESET
L0070: POP HL ; restore the
 POP AF ; registers.
 RETN ; return to previous interrupt state.

; ---------------------------
; THE 'CH ADD + 1' SUBROUTINE
; ---------------------------
; This subroutine is called from RST 20, and three times from elsewhere
; to fetch the next immediate character following the current valid character
; address and update the associated system variable.
; The entry point TEMP-PTR1 is used from the SCANNING routine.
; Both TEMP-PTR1 and TEMP-PTR2 are used by the READ command routine.

;; CH-ADD+1
L0074: LD HL,($5C5D) ; fetch address from CH_ADD.

;; TEMP-PTR1
L0077: INC HL ; increase the character address by one.

;; TEMP-PTR2
L0078: LD ($5C5D),HL ; update CH_ADD with character address.

X007B: LD A,(HL) ; load character to A from HL.
 RET ; and return.

; --------------------------
; THE 'SKIP OVER' SUBROUTINE
; --------------------------
; This subroutine is called once from RST 18 to skip over white-space and
; other characters irrelevant to the parsing of a BASIC line etc. .
; Initially the A register holds the character to be considered
; and HL holds its address which will not be within quoted text
; when a BASIC line is parsed.
; Although the 'tab' and 'at' characters will not appear in a BASIC line,
; they could be present in a string expression, and in other situations.
; Note. although white-space is usually placed in a program to indent loops
; and make it more readable, it can also be used for the opposite effect and
; spaces may appear in variable names although the parser never sees them.
; It is this routine that helps make the variables 'Anum bEr5 3BUS' and
; 'a number 53 bus' appear the same to the parser.

;; SKIP-OVER
L007D: CP $21 ; test if higher than space.
 RET NC ; return with carry clear if so.

 CP $0D ; carriage return ?
 RET Z ; return also with carry clear if so.

 ; all other characters have no relevance
 ; to the parser and must be returned with
 ; carry set.

 CP $10 ; test if 0-15d
 RET C ; return, if so, with carry set.

 CP $18 ; test if 24-32d
 CCF ; complement carry flag.
 RET C ; return with carry set if so.

 ; now leaves 16d-23d

 INC HL ; all above have at least one extra character
 ; to be stepped over.

 CP $16 ; controls 22d ('at') and 23d ('tab') have two.
 JR C,L0090 ; forward to SKIPS with ink, paper, flash,
 ; bright, inverse or over controls.
 ; Note. the high byte of tab is for RS232 only.
 ; it has no relevance on this machine.

 INC HL ; step over the second character of 'at'/'tab'.

;; SKIPS
L0090: SCF ; set the carry flag
 LD ($5C5D),HL ; update the CH_ADD system variable.
 RET ; return with carry set.

; ------------------
; THE 'TOKEN' TABLES
; ------------------
; The tokenized characters 134d (RND) to 255d (COPY) are expanded using
; this table. The last byte of a token is inverted to denote the end of
; the word. The first is an inverted step-over byte.

;; TKN-TABLE
L0095: DEFB '?'+$80
 DEFM "RN"
 DEFB 'D'+$80
 DEFM "INKEY"
 DEFB '$'+$80
 DEFB 'P','I'+$80
 DEFB 'F','N'+$80
 DEFM "POIN"
 DEFB 'T'+$80
 DEFM "SCREEN"
 DEFB '$'+$80
 DEFM "ATT"
 DEFB 'R'+$80
 DEFB 'A','T'+$80
 DEFM "TA"
 DEFB 'B'+$80
 DEFM "VAL"
 DEFB '$'+$80
 DEFM "COD"
 DEFB 'E'+$80
 DEFM "VA"
 DEFB 'L'+$80
 DEFM "LE"
 DEFB 'N'+$80
 DEFM "SI"
 DEFB 'N'+$80
 DEFM "CO"
 DEFB 'S'+$80
 DEFM "TA"
 DEFB 'N'+$80
 DEFM "AS"
 DEFB 'N'+$80
 DEFM "AC"
 DEFB 'S'+$80
 DEFM "AT"
 DEFB 'N'+$80
 DEFB 'L','N'+$80

 DEFM "EX"
 DEFB 'P'+$80
 DEFM "IN"
 DEFB 'T'+$80
 DEFM "SQ"
 DEFB 'R'+$80
 DEFM "SG"
 DEFB 'N'+$80
 DEFM "AB"
 DEFB 'S'+$80
 DEFM "PEE"
 DEFB 'K'+$80
 DEFB 'I','N'+$80
 DEFM "US"
 DEFB 'R'+$80
 DEFM "STR"
 DEFB '$'+$80
 DEFM "CHR"
 DEFB '$'+$80
 DEFM "NO"
 DEFB 'T'+$80
 DEFM "BI"
 DEFB 'N'+$80

; The previous 32 function-type words are printed without a leading space
; The following have a leading space if they begin with a letter

 DEFB 'O','R'+$80
 DEFM "AN"
 DEFB 'D'+$80
 DEFB $3C,'='+$80 ; <=
 DEFB $3E,'='+$80 ; >=
 DEFB $3C,$3E+$80 ; <>
 DEFM "LIN"
 DEFB 'E'+$80
 DEFM "THE"
 DEFB 'N'+$80
 DEFB 'T','O'+$80
 DEFM "STE"
 DEFB 'P'+$80
 DEFM "DEF F"
 DEFB 'N'+$80
 DEFM "CA"
 DEFB 'T'+$80
 DEFM "FORMA"
 DEFB 'T'+$80
 DEFM "MOV"
 DEFB 'E'+$80
 DEFM "ERAS"
 DEFB 'E'+$80
 DEFM "OPEN "
 DEFB '#'+$80
 DEFM "CLOSE "
 DEFB '#'+$80
 DEFM "MERG"
 DEFB 'E'+$80
 DEFM "VERIF"
 DEFB 'Y'+$80
 DEFM "BEE"
 DEFB 'P'+$80
 DEFM "CIRCL"
 DEFB 'E'+$80
 DEFM "IN"
 DEFB 'K'+$80

 DEFM "PAPE"
 DEFB 'R'+$80
 DEFM "FLAS"
 DEFB 'H'+$80
 DEFM "BRIGH"
 DEFB 'T'+$80
 DEFM "INVERS"
 DEFB 'E'+$80
 DEFM "OVE"
 DEFB 'R'+$80
 DEFM "OU"
 DEFB 'T'+$80
 DEFM "LPRIN"
 DEFB 'T'+$80
 DEFM "LLIS"
 DEFB 'T'+$80
 DEFM "STO"
 DEFB 'P'+$80
 DEFM "REA"
 DEFB 'D'+$80
 DEFM "DAT"
 DEFB 'A'+$80
 DEFM "RESTOR"
 DEFB 'E'+$80
 DEFM "NE"
 DEFB 'W'+$80
 DEFM "BORDE"
 DEFB 'R'+$80
 DEFM "CONTINU"
 DEFB 'E'+$80
 DEFM "DI"
 DEFB 'M'+$80
 DEFM "RE"
 DEFB 'M'+$80
 DEFM "FO"
 DEFB 'R'+$80
 DEFM "GO T"
 DEFB 'O'+$80
 DEFM "GO SU"
 DEFB 'B'+$80
 DEFM "INPU"
 DEFB 'T'+$80
 DEFM "LOA"
 DEFB 'D'+$80
 DEFM "LIS"
 DEFB 'T'+$80
 DEFM "LE"
 DEFB 'T'+$80
 DEFM "PAUS"
 DEFB 'E'+$80
 DEFM "NEX"
 DEFB 'T'+$80
 DEFM "POK"
 DEFB 'E'+$80
 DEFM "PRIN"
 DEFB 'T'+$80
 DEFM "PLO"
 DEFB 'T'+$80
 DEFM "RU"
 DEFB 'N'+$80
 DEFM "SAV"
 DEFB 'E'+$80
 DEFM "RANDOMIZ"
 DEFB 'E'+$80

 DEFB 'I','F'+$80
 DEFM "CL"
 DEFB 'S'+$80
 DEFM "DRA"
 DEFB 'W'+$80
 DEFM "CLEA"
 DEFB 'R'+$80
 DEFM "RETUR"
 DEFB 'N'+$80
 DEFM "COP"
 DEFB 'Y'+$80

; ----------------
; THE 'KEY' TABLES
; ----------------
; These six look-up tables are used by the keyboard reading routine
; to decode the key values.
;
; The first table contains the maps for the 39 keys of the standard
; 40-key Spectrum keyboard. The remaining key [SHIFT $27] is read directly.
; The keys consist of the 26 upper-case alphabetic characters, the 10 digit
; keys and the space, ENTER and symbol shift key.
; Unshifted alphabetic keys have $20 added to the value.
; The keywords for the main alphabetic keys are obtained by adding $A5 to
; the values obtained from this table.

;; MAIN-KEYS
L0205: DEFB $42 ; B
 DEFB $48 ; H
 DEFB $59 ; Y
 DEFB $36 ; 6
 DEFB $35 ; 5
 DEFB $54 ; T
 DEFB $47 ; G
 DEFB $56 ; V
 DEFB $4E ; N
 DEFB $4A ; J
 DEFB $55 ; U
 DEFB $37 ; 7
 DEFB $34 ; 4
 DEFB $52 ; R
 DEFB $46 ; F
 DEFB $43 ; C
 DEFB $4D ; M
 DEFB $4B ; K
 DEFB $49 ; I
 DEFB $38 ; 8
 DEFB $33 ; 3
 DEFB $45 ; E
 DEFB $44 ; D
 DEFB $58 ; X
 DEFB $0E ; SYMBOL SHIFT
 DEFB $4C ; L
 DEFB $4F ; O
 DEFB $39 ; 9
 DEFB $32 ; 2
 DEFB $57 ; W
 DEFB $53 ; S
 DEFB $5A ; Z
 DEFB $20 ; SPACE
 DEFB $0D ; ENTER
 DEFB $50 ; P
 DEFB $30 ; 0
 DEFB $31 ; 1

 DEFB $51 ; Q
 DEFB $41 ; A

;; E-UNSHIFT
; The 26 unshifted extended mode keys for the alphabetic characters.
; The green keywords on the original keyboard.
L022C: DEFB $E3 ; READ
 DEFB $C4 ; BIN
 DEFB $E0 ; LPRINT
 DEFB $E4 ; DATA
 DEFB $B4 ; TAN
 DEFB $BC ; SGN
 DEFB $BD ; ABS
 DEFB $BB ; SQR
 DEFB $AF ; CODE
 DEFB $B0 ; VAL
 DEFB $B1 ; LEN
 DEFB $C0 ; USR
 DEFB $A7 ; PI
 DEFB $A6 ; INKEY$
 DEFB $BE ; PEEK
 DEFB $AD ; TAB
 DEFB $B2 ; SIN
 DEFB $BA ; INT
 DEFB $E5 ; RESTORE
 DEFB $A5 ; RND
 DEFB $C2 ; CHR$
 DEFB $E1 ; LLIST
 DEFB $B3 ; COS
 DEFB $B9 ; EXP
 DEFB $C1 ; STR$
 DEFB $B8 ; LN

;; EXT-SHIFT
; The 26 shifted extended mode keys for the alphabetic characters.
; The red keywords below keys on the original keyboard.
L0246: DEFB $7E ; ~
 DEFB $DC ; BRIGHT
 DEFB $DA ; PAPER
 DEFB $5C ; \
 DEFB $B7 ; ATN
 DEFB $7B ; {
 DEFB $7D ; }
 DEFB $D8 ; CIRCLE
 DEFB $BF ; IN
 DEFB $AE ; VAL$
 DEFB $AA ; SCREEN$
 DEFB $AB ; ATTR
 DEFB $DD ; INVERSE
 DEFB $DE ; OVER
 DEFB $DF ; OUT
 DEFB $7F ; (Copyright character)
 DEFB $B5 ; ASN
 DEFB $D6 ; VERIFY
 DEFB $7C ; |
 DEFB $D5 ; MERGE
 DEFB $5D ;]
 DEFB $DB ; FLASH
 DEFB $B6 ; ACS
 DEFB $D9 ; INK
 DEFB $5B ; [
 DEFB $D7 ; BEEP

;; CTL-CODES
; The ten control codes assigned to the top line of digits when the shift
; key is pressed.
L0260: DEFB $0C ; DELETE
 DEFB $07 ; EDIT
 DEFB $06 ; CAPS LOCK
 DEFB $04 ; TRUE VIDEO
 DEFB $05 ; INVERSE VIDEO
 DEFB $08 ; CURSOR LEFT
 DEFB $0A ; CURSOR DOWN
 DEFB $0B ; CURSOR UP
 DEFB $09 ; CURSOR RIGHT
 DEFB $0F ; GRAPHICS

;; SYM-CODES
; The 26 red symbols assigned to the alphabetic characters of the keyboard.
; The ten single-character digit symbols are converted without the aid of
; a table using subtraction and minor manipulation.
L026A: DEFB $E2 ; STOP
 DEFB $2A ; *
 DEFB $3F ; ?
 DEFB $CD ; STEP
 DEFB $C8 ; >=
 DEFB $CC ; TO
 DEFB $CB ; THEN
 DEFB $5E ; ^
 DEFB $AC ; AT
 DEFB $2D ; -
 DEFB $2B ; +
 DEFB $3D ; =
 DEFB $2E ; .
 DEFB $2C ; ,
 DEFB $3B ; ;
 DEFB $22 ; "
 DEFB $C7 ; <=
 DEFB $3C ; <
 DEFB $C3 ; NOT
 DEFB $3E ; >
 DEFB $C5 ; OR
 DEFB $2F ; /
 DEFB $C9 ; <>
 DEFB $60 ; pound
 DEFB $C6 ; AND
 DEFB $3A ; :

;; E-DIGITS
; The ten keywords assigned to the digits in extended mode.
; The remaining red keywords below the keys.
L0284: DEFB $D0 ; FORMAT
 DEFB $CE ; DEF FN
 DEFB $A8 ; FN
 DEFB $CA ; LINE
 DEFB $D3 ; OPEN #
 DEFB $D4 ; CLOSE #
 DEFB $D1 ; MOVE
 DEFB $D2 ; ERASE
 DEFB $A9 ; POINT
 DEFB $CF ; CAT

;*******************************

;** Part 2. KEYBOARD ROUTINES **
;*******************************

; Using shift keys and a combination of modes the Spectrum 40-key keyboard
; can be mapped to 256 input characters

; ---
;
; 0 1 2 3 4 -Bits- 4 3 2 1 0
; PORT PORT
;
; F7FE [1] [2] [3] [4] [5] | [6] [7] [8] [9] [0] EFFE
; ^ | v
; FBFE [Q] [W] [E] [R] [T] | [Y] [U] [I] [O] [P] DFFE
; ^ | v
; FDFE [A] [S] [D] [F] [G] | [H] [J] [K] [L] [ENT] BFFE
; ^ | v
; FEFE [SHI] [Z] [X] [C] [V] | [B] [N] [M] [sym] [SPC] 7FFE
; ^ $27 $18 v
; Start End
; 00100111 00011000
;
; ---
; The above map may help in reading.
; The neat arrangement of ports means that the B register need only be
; rotated left to work up the left hand side and then down the right
; hand side of the keyboard. When the reset bit drops into the carry
; then all 8 half-rows have been read. Shift is the first key to be
; read. The lower six bits of the shifts are unambiguous.

; -------------------------------
; THE 'KEYBOARD SCANNING' ROUTINE
; -------------------------------
; From keyboard and s-inkey$
; Returns 1 or 2 keys in DE, most significant shift first if any
; key values 0-39 else 255

;; KEY-SCAN
L028E: LD L,$2F ; initial key value
 ; valid values are obtained by subtracting
 ; eight five times.
 LD DE,$FFFF ; a buffer to receive 2 keys.

 LD BC,$FEFE ; the commencing port address
 ; B holds 11111110 initially and is also
 ; used to count the 8 half-rows
;; KEY-LINE
L0296: IN A,(C) ; read the port to A - bits will be reset
 ; if a key is pressed else set.
 CPL ; complement - pressed key-bits are now set
 AND $1F ; apply 00011111 mask to pick up the
 ; relevant set bits.

 JR Z,L02AB ; forward to KEY-DONE if zero and therefore
 ; no keys pressed in row at all.

 LD H,A ; transfer row bits to H
 LD A,L ; load the initial key value to A

;; KEY-3KEYS
L029F: INC D ; now test the key buffer
 RET NZ ; if we have collected 2 keys already
 ; then too many so quit.

;; KEY-BITS
L02A1: SUB $08 ; subtract 8 from the key value
 ; cycling through key values (top = $27)
 ; e.g. 2F> 27>1F>17>0F>07
 ; 2E> 26>1E>16>0E>06
 SRL H ; shift key bits right into carry.
 JR NC,L02A1 ; back to KEY-BITS if not pressed
 ; but if pressed we have a value (0-39d)

 LD D,E ; transfer a possible previous key to D
 LD E,A ; transfer the new key to E
 JR NZ,L029F ; back to KEY-3KEYS if there were more
 ; set bits - H was not yet zero.

;; KEY-DONE
L02AB: DEC L ; cycles 2F>2E>2D>2C>2B>2A>29>28 for
 ; each half-row.
 RLC B ; form next port address e.g. FEFE > FDFE
 JR C,L0296 ; back to KEY-LINE if still more rows to do.

 LD A,D ; now test if D is still FF ?
 INC A ; if it is zero we have at most 1 key
 ; range now $01-$28 (1-40d)
 RET Z ; return if one key or no key.

 CP $28 ; is it capsshift (was $27) ?
 RET Z ; return if so.

 CP $19 ; is it symbol shift (was $18) ?
 RET Z ; return also

 LD A,E ; now test E
 LD E,D ; but first switch
 LD D,A ; the two keys.
 CP $18 ; is it symbol shift ?
 RET ; return (with zero set if it was).
 ; but with symbol shift now in D

; ----------------------
; THE 'KEYBOARD' ROUTINE
; ----------------------
; Called from the interrupt 50 times a second.
;

;; KEYBOARD
L02BF: CALL L028E ; routine KEY-SCAN
 RET NZ ; return if invalid combinations

; then decrease the counters within the two key-state maps
; as this could cause one to become free.
; if the keyboard has not been pressed during the last five interrupts
; then both sets will be free.

 LD HL,$5C00 ; point to KSTATE-0

;; K-ST-LOOP
L02C6: BIT 7,(HL) ; is it free ? (i.e. $FF)
 JR NZ,L02D1 ; forward to K-CH-SET if so

 INC HL ; address the 5-counter
 DEC (HL) ; decrease the counter
 DEC HL ; step back

 JR NZ,L02D1 ; forward to K-CH-SET if not at end of count

 LD (HL),$FF ; else mark this particular map free.

;; K-CH-SET
L02D1: LD A,L ; make a copy of the low address byte.
 LD HL,$5C04 ; point to KSTATE-4
 ; (ld l,$04 would do)
 CP L ; have both sets been considered ?
 JR NZ,L02C6 ; back to K-ST-LOOP to consider this 2nd set

; now the raw key (0-38d) is converted to a main key (uppercase).

 CALL L031E ; routine K-TEST to get main key in A

 RET NC ; return if just a single shift

 LD HL,$5C00 ; point to KSTATE-0
 CP (HL) ; does the main key code match ?
 JR Z,L0310 ; forward to K-REPEAT if so

; if not consider the second key map.

 EX DE,HL ; save kstate-0 in de
 LD HL,$5C04 ; point to KSTATE-4
 CP (HL) ; does the main key code match ?
 JR Z,L0310 ; forward to K-REPEAT if so

; having excluded a repeating key we can now consider a new key.
; the second set is always examined before the first.

 BIT 7,(HL) ; is the key map free ?
 JR NZ,L02F1 ; forward to K-NEW if so.

 EX DE,HL ; bring back KSTATE-0
 BIT 7,(HL) ; is it free ?
 RET Z ; return if not.
 ; as we have a key but nowhere to put it yet.

; continue or jump to here if one of the buffers was free.

;; K-NEW
L02F1: LD E,A ; store key in E
 LD (HL),A ; place in free location
 INC HL ; advance to the interrupt counter
 LD (HL),$05 ; and initialize counter to 5
 INC HL ; advance to the delay
 LD A,($5C09) ; pick up the system variable REPDEL
 LD (HL),A ; and insert that for first repeat delay.
 INC HL ; advance to last location of state map.

 LD C,(IY+$07) ; pick up MODE (3 bytes)
 LD D,(IY+$01) ; pick up FLAGS (3 bytes)
 PUSH HL ; save state map location
 ; Note. could now have used, to avoid IY,
 ; ld l,$41; ld c,(hl); ld l,$3B; ld d,(hl).
 ; six and two threes of course.

 CALL L0333 ; routine K-DECODE

 POP HL ; restore map pointer
 LD (HL),A ; put the decoded key in last location of map.

;; K-END

L0308: LD ($5C08),A ; update LASTK system variable.
 SET 5,(IY+$01) ; update FLAGS - signal a new key.
 RET ; return to interrupt routine.

; -----------------------
; THE 'REPEAT KEY' BRANCH
; -----------------------
; A possible repeat has been identified. HL addresses the raw key.
; The last location of the key map holds the decoded key from the first
; context. This could be a keyword and, with the exception of NOT a repeat
; is syntactically incorrect and not really desirable.

;; K-REPEAT
L0310: INC HL ; increment the map pointer to second location.
 LD (HL),$05 ; maintain interrupt counter at 5.
 INC HL ; now point to third location.
 DEC (HL) ; decrease the REPDEL value which is used to
 ; time the delay of a repeat key.

 RET NZ ; return if not yet zero.

 LD A,($5C0A) ; fetch the system variable value REPPER.
 LD (HL),A ; for subsequent repeats REPPER will be used.

 INC HL ; advance
 ;
 LD A,(HL) ; pick up the key decoded possibly in another
 ; context.
 ; Note. should compare with $A5 (RND) and make
 ; a simple return if this is a keyword.
 ; e.g. cp $a5; ret nc; (3 extra bytes)
 JR L0308 ; back to K-END

; ----------------------
; THE 'KEY-TEST' ROUTINE
; ----------------------
; also called from s-inkey$
; begin by testing for a shift with no other.

;; K-TEST
L031E: LD B,D ; load most significant key to B
 ; will be $FF if not shift.
 LD D,$00 ; and reset D to index into main table
 LD A,E ; load least significant key from E
 CP $27 ; is it higher than 39d i.e. FF
 RET NC ; return with just a shift (in B now)

 CP $18 ; is it symbol shift ?
 JR NZ,L032C ; forward to K-MAIN if not

; but we could have just symbol shift and no other

 BIT 7,B ; is other key $FF (ie not shift)
 RET NZ ; return with solitary symbol shift

;; K-MAIN
L032C: LD HL,L0205 ; address: MAIN-KEYS
 ADD HL,DE ; add offset 0-38
 LD A,(HL) ; pick up main key value
 SCF ; set carry flag
 RET ; return (B has other key still)

; ----------------------------------

; THE 'KEYBOARD DECODING' SUBROUTINE
; ----------------------------------
; also called from s-inkey$

;; K-DECODE
L0333: LD A,E ; pick up the stored main key
 CP $3A ; an arbitrary point between digits and letters
 JR C,L0367 ; forward to K-DIGIT with digits, space, enter.

 DEC C ; decrease MODE (0='KLC', 1='E', 2='G')

 JP M,L034F ; to K-KLC-LET if was zero

 JR Z,L0341 ; to K-E-LET if was 1 for extended letters.

; proceed with graphic codes.
; Note. should selectively drop return address if code > 'U' ($55).
; i.e. abort the KEYBOARD call.
; e.g. cp 'V'; jr c,addit; pop af ;pop af ;;addit etc. (6 extra bytes).
; (s-inkey$ never gets into graphics mode.)

;; addit
 ADD A,$4F ; add offset to augment 'A' to graphics A say.
 RET ; return.
 ; Note. (but [GRAPH] V gives RND, etc).

; ---

; the jump was to here with extended mode with uppercase A-Z.

;; K-E-LET
L0341: LD HL,L022C-$41 ; base address of E-UNSHIFT L022c.
 ; ($01EB in standard ROM).
 INC B ; test B is it empty i.e. not a shift.
 JR Z,L034A ; forward to K-LOOK-UP if neither shift.

 LD HL,L0246-$41 ; Address: $0205 L0246-$41 EXT-SHIFT base

;; K-LOOK-UP
L034A: LD D,$00 ; prepare to index.
 ADD HL,DE ; add the main key value.
 LD A,(HL) ; pick up other mode value.
 RET ; return.

; ---

; the jump was here with mode = 0

;; K-KLC-LET
L034F: LD HL,L026A-$41 ; prepare base of sym-codes
 BIT 0,B ; shift=$27 sym-shift=$18
 JR Z,L034A ; back to K-LOOK-UP with symbol-shift

 BIT 3,D ; test FLAGS is it 'K' mode (from OUT-CURS)
 JR Z,L0364 ; skip to K-TOKENS if so

 BIT 3,(IY+$30) ; test FLAGS2 - consider CAPS LOCK ?
 RET NZ ; return if so with main code.

 INC B ; is shift being pressed ?
 ; result zero if not
 RET NZ ; return if shift pressed.

 ADD A,$20 ; else convert the code to lower case.

 RET ; return.

; ---

; the jump was here for tokens

;; K-TOKENS
L0364: ADD A,$A5 ; add offset to main code so that 'A'
 ; becomes 'NEW' etc.

 RET ; return.

; ---

; the jump was here with digits, space, enter and symbol shift (< $xx)

;; K-DIGIT
L0367: CP $30 ; is it '0' or higher ?
 RET C ; return with space, enter and symbol-shift

 DEC C ; test MODE (was 0='KLC', 1='E', 2='G')
 JP M,L039D ; jump to K-KLC-DGT if was 0.

 JR NZ,L0389 ; forward to K-GRA-DGT if mode was 2.

; continue with extended digits 0-9.

 LD HL,L0284-$30 ; $0254 - base of E-DIGITS
 BIT 5,B ; test - shift=$27 sym-shift=$18
 JR Z,L034A ; to K-LOOK-UP if sym-shift

 CP $38 ; is character '8' ?
 JR NC,L0382 ; to K-8-&-9 if greater than '7'

 SUB $20 ; reduce to ink range $10-$17
 INC B ; shift ?
 RET Z ; return if not.

 ADD A,$08 ; add 8 to give paper range $18 - $1F
 RET ; return

; ---

; 89

;; K-8-&-9
L0382: SUB $36 ; reduce to 02 and 03 bright codes
 INC B ; test if shift pressed.
 RET Z ; return if not.

 ADD A,$FE ; subtract 2 setting carry
 RET ; to give 0 and 1 flash codes.

; ---

; graphics mode with digits

;; K-GRA-DGT
L0389: LD HL,L0260-$30 ; $0230 base address of CTL-CODES

 CP $39 ; is key '9' ?
 JR Z,L034A ; back to K-LOOK-UP - changed to $0F, GRAPHICS.

 CP $30 ; is key '0' ?

 JR Z,L034A ; back to K-LOOK-UP - changed to $0C, delete.

; for keys '0' - '7' we assign a mosaic character depending on shift.

 AND $07 ; convert character to number. 0 - 7.
 ADD A,$80 ; add offset - they start at $80

 INC B ; destructively test for shift
 RET Z ; and return if not pressed.

 XOR $0F ; toggle bits becomes range $88-$8F
 RET ; return.

; ---

; now digits in 'KLC' mode

;; K-KLC-DGT
L039D: INC B ; return with digit codes if neither
 RET Z ; shift key pressed.

 BIT 5,B ; test for caps shift.

 LD HL,L0260-$30 ; prepare base of table CTL-CODES.
 JR NZ,L034A ; back to K-LOOK-UP if shift pressed.

; must have been symbol shift

 SUB $10 ; for ASCII most will now be correct
 ; on a standard typewriter.

 CP $22 ; but '@' is not - see below.
 JR Z,L03B2 ; forward to K-@-CHAR if so

 CP $20 ; '_' is the other one that fails
 RET NZ ; return if not.

 LD A,$5F ; substitute ASCII '_'
 RET ; return.

; ---

;; K-@-CHAR
L03B2: LD A,$40 ; substitute ASCII '@'
 RET ; return.

; --
; The Spectrum Input character keys. One or two are abbreviated.
; From $00 Flash 0 to $FF COPY. The routine above has decoded all these.

; | 00 Fl0| 01 Fl1| 02 Br0| 03 Br1| 04 In0| 05 In1| 06 CAP| 07 EDT|
; | 08 LFT| 09 RIG| 0A DWN| 0B UP | 0C DEL| 0D ENT| 0E SYM| 0F GRA|
; | 10 Ik0| 11 Ik1| 12 Ik2| 13 Ik3| 14 Ik4| 15 Ik5| 16 Ik6| 17 Ik7|
; | 18 Pa0| 19 Pa1| 1A Pa2| 1B Pa3| 1C Pa4| 1D Pa5| 1E Pa6| 1F Pa7|
; | 20 SP | 21 ! | 22 " | 23 # | 24 $ | 25 % | 26 & | 27 ' |
; | 28 (| 29) | 2A * | 2B + | 2C , | 2D - | 2E . | 2F / |
; | 30 0 | 31 1 | 32 2 | 33 3 | 34 4 | 35 5 | 36 6 | 37 7 |
; | 38 8 | 39 9 | 3A : | 3B ; | 3C < | 3D = | 3E > | 3F ? |
; | 40 @ | 41 A | 42 B | 43 C | 44 D | 45 E | 46 F | 47 G |
; | 48 H | 49 I | 4A J | 4B K | 4C L | 4D M | 4E N | 4F O |
; | 50 P | 51 Q | 52 R | 53 S | 54 T | 55 U | 56 V | 57 W |
; | 58 X | 59 Y | 5A Z | 5B [| 5C \ | 5D] | 5E ^ | 5F _ |
; | 60 ukp| 61 a | 62 b | 63 c | 64 d | 65 e | 66 f | 67 g |

; | 68 h | 69 i | 6A j | 6B k | 6C l | 6D m | 6E n | 6F o |
; | 70 p | 71 q | 72 r | 73 s | 74 t | 75 u | 76 v | 77 w |
; | 78 x | 79 y | 7A z | 7B { | 7C | | 7D } | 7E ~ | 7F (c)|
; | 80 128| 81 129| 82 130| 83 131| 84 132| 85 133| 86 134| 87 135|
; | 88 136| 89 137| 8A 138| 8B 139| 8C 140| 8D 141| 8E 142| 8F 143|
; | 90 [A]| 91 [B]| 92 [C]| 93 [D]| 94 [E]| 95 [F]| 96 [G]| 97 [H]|
; | 98 [I]| 99 [J]| 9A [K]| 9B [L]| 9C [M]| 9D [N]| 9E [O]| 9F [P]|
; | A0 [Q]| A1 [R]| A2 [S]| A3 [T]| A4 [U]| A5 RND| A6 IK$| A7 PI |
; | A8 FN | A9 PNT| AA SC$| AB ATT| AC AT | AD TAB| AE VL$| AF COD|
; | B0 VAL| B1 LEN| B2 SIN| B3 COS| B4 TAN| B5 ASN| B6 ACS| B7 ATN|
; | B8 LN | B9 EXP| BA INT| BB SQR| BC SGN| BD ABS| BE PEK| BF IN |
; | C0 USR| C1 ST$| C2 CH$| C3 NOT| C4 BIN| C5 OR | C6 AND| C7 <= |
; | C8 >= | C9 <> | CA LIN| CB THN| CC TO | CD STP| CE DEF| CF CAT|
; | D0 FMT| D1 MOV| D2 ERS| D3 OPN| D4 CLO| D5 MRG| D6 VFY| D7 BEP|
; | D8 CIR| D9 INK| DA PAP| DB FLA| DC BRI| DD INV| DE OVR| DF OUT|
; | E0 LPR| E1 LLI| E2 STP| E3 REA| E4 DAT| E5 RES| E6 NEW| E7 BDR|
; | E8 CON| E9 DIM| EA REM| EB FOR| EC GTO| ED GSB| EE INP| EF LOA|
; | F0 LIS| F1 LET| F2 PAU| F3 NXT| F4 POK| F5 PRI| F6 PLO| F7 RUN|
; | F8 SAV| F9 RAN| FA IF | FB CLS| FC DRW| FD CLR| FE RET| FF CPY|

; Note that for simplicity, Sinclair have located all the control codes
; below the space character.
; ASCII DEL, $7F, has been made a copyright symbol.
; Also $60, '`', not used in BASIC but used in other languages, has been
; allocated the local currency symbol for the relevant country -
; ukp in most Spectrums.

; --

;**********************************
;** Part 3. LOUDSPEAKER ROUTINES **
;**********************************

; Documented by Alvin Albrecht.

; ------------------------------
; Routine to control loudspeaker
; ------------------------------
; Outputs a square wave of given duration and frequency
; to the loudspeaker.
; Enter with: DE = #cycles - 1
; HL = tone period as described next
;
; The tone period is measured in T states and consists of
; three parts: a coarse part (H register), a medium part
; (bits 7..2 of L) and a fine part (bits 1..0 of L) which
; contribute to the waveform timing as follows:
;
; coarse medium fine
; duration of low = 118 + 1024*H + 16*(L>>2) + 4*(L&0x3)
; duration of hi = 118 + 1024*H + 16*(L>>2) + 4*(L&0x3)
; Tp = tone period = 236 + 2048*H + 32*(L>>2) + 8*(L&0x3)
; = 236 + 2048*H + 8*L = 236 + 8*HL
;
; As an example, to output five seconds of middle C (261.624 Hz):
; (a) Tone period = 1/261.624 = 3.822ms
; (b) Tone period in T-States = 3.822ms*fCPU = 13378
; where fCPU = clock frequency of the CPU = 3.5MHz
; (c) Find H and L for desired tone period:
; HL = (Tp - 236) / 8 = (13378 - 236) / 8 = 1643 = 0x066B
; (d) Tone duration in cycles = 5s/3.822ms = 1308 cycles
; DE = 1308 - 1 = 0x051B

;
; The resulting waveform has a duty ratio of exactly 50%.
;
;
;; BEEPER
L03B5: DI ; Disable Interrupts so they don't disturb
timing
 LD A,L ;
 SRL L ;
 SRL L ; L = medium part of tone period
 CPL ;
 AND $03 ; A = 3 - fine part of tone period
 LD C,A ;
 LD B,$00 ;
 LD IX,L03D1 ; Address: BE-IX+3
 ADD IX,BC ; IX holds address of entry into the loop
 ; the loop will contain 0-3 NOPs, implementing
 ; the fine part of the tone period.
 LD A,($5C48) ; BORDCR
 AND $38 ; bits 5..3 contain border colour
 RRCA ; border colour bits moved to 2..0
 RRCA ; to match border bits on port #FE
 RRCA ;
 OR $08 ; bit 3 set (tape output bit on port #FE)
 ; for loud sound output
;; BE-IX+3
L03D1: NOP ;(4) ; optionally executed NOPs for small
 ; adjustments to tone period
;; BE-IX+2
L03D2: NOP ;(4) ;

;; BE-IX+1
L03D3: NOP ;(4) ;

;; BE-IX+0
L03D4: INC B ;(4) ;
 INC C ;(4) ;

;; BE-H&L-LP
L03D6: DEC C ;(4) ; timing loop for duration of
 JR NZ,L03D6 ;(12/7); high or low pulse of waveform

 LD C,$3F ;(7) ;
 DEC B ;(4) ;
 JP NZ,L03D6 ;(10) ; to BE-H&L-LP

 XOR $10 ;(7) ; toggle output beep bit
 OUT ($FE),A ;(11) ; output pulse
 LD B,H ;(4) ; B = coarse part of tone period
 LD C,A ;(4) ; save port #FE output byte
 BIT 4,A ;(8) ; if new output bit is high, go
 JR NZ,L03F2 ;(12/7); to BE-AGAIN

 LD A,D ;(4) ; one cycle of waveform has completed
 OR E ;(4) ; (low->low). if cycle countdown = 0
 JR Z,L03F6 ;(12/7); go to BE-END

 LD A,C ;(4) ; restore output byte for port #FE
 LD C,L ;(4) ; C = medium part of tone period
 DEC DE ;(6) ; decrement cycle count
 JP (IX) ;(8) ; do another cycle

;; BE-AGAIN ; halfway through cycle
L03F2: LD C,L ;(4) ; C = medium part of tone period

 INC C ;(4) ; adds 16 cycles to make duration of high =
duration of low
 JP (IX) ;(8) ; do high pulse of tone

;; BE-END
L03F6: EI ; Enable Interrupts
 RET ;

; ------------------
; THE 'BEEP' COMMAND
; ------------------
; BASIC interface to BEEPER subroutine.
; Invoked in BASIC with:
; BEEP dur, pitch
; where dur = duration in seconds
; pitch = # of semitones above/below middle C
;
; Enter with: pitch on top of calculator stack
; duration next on calculator stack
;
;; beep
L03F8: RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate ; duplicate pitch
 DEFB $27 ;;int ; convert to
integer
 DEFB $C0 ;;st-mem-0 ; store integer
pitch to memory 0
 DEFB $03 ;;subtract ; calculate
fractional part of pitch = fp_pitch - int_pitch
 DEFB $34 ;;stk-data ; push constant
 DEFB $EC ;;Exponent: $7C, Bytes: 4 ; constant =
0.05762265
 DEFB $6C,$98,$1F,$F5 ;;($6C,$98,$1F,$F5)
 DEFB $04 ;;multiply ; compute:
 DEFB $A1 ;;stk-one ; 1 + 0.05762265 *
fraction_part(pitch)
 DEFB $0F ;;addition
 DEFB $38 ;;end-calc ; leave on calc
stack

 LD HL,$5C92 ; MEM-0: number stored here is in 16 bit integer
format (pitch)
 ; 0, 0/FF (pos/neg), LSB, MSB, 0
 ; LSB/MSB is stored in two's complement
 ; In the following, the pitch is checked if it
is in the range -128<=p<=127
 LD A,(HL) ; First byte must be zero, otherwise
 AND A ; error in integer conversion
 JR NZ,L046C ; to REPORT-B

 INC HL ;
 LD C,(HL) ; C = pos/neg flag = 0/FF
 INC HL ;
 LD B,(HL) ; B = LSB, two's complement
 LD A,B ;
 RLA ;
 SBC A,A ; A = 0/FF if B is pos/neg
 CP C ; must be the same as C if the pitch is
-128<=p<=127
 JR NZ,L046C ; if no, error REPORT-B

 INC HL ; if -128<=p<=127, MSB will be 0/FF if B is
pos/neg

 CP (HL) ; verify this
 JR NZ,L046C ; if no, error REPORT-B
 ; now we know -128<=p<=127
 LD A,B ; A = pitch + 60
 ADD A,$3C ; if -60<=pitch<=67,
 JP P,L0425 ; goto BE-i-OK

 JP PO,L046C ; if pitch <= 67 goto REPORT-B
 ; lower bound of pitch set at -60

;; BE-I-OK ; here, -60<=pitch<=127
 ; and A=pitch+60 -> 0<=A<=187

L0425: LD B,$FA ; 6 octaves below middle C

;; BE-OCTAVE ; A=# semitones above 5 octaves below middle C
L0427: INC B ; increment octave
 SUB $0C ; 12 semitones = one octave
 JR NC,L0427 ; to BE-OCTAVE

 ADD A,$0C ; A = # semitones above C (0-11)
 PUSH BC ; B = octave displacement from middle C, 2's
complement: -5<=B<=10
 LD HL,L046E ; Address: semi-tone
 CALL L3406 ; routine LOC-MEM
 ; HL = 5*A + $046E
 CALL L33B4 ; routine STACK-NUM
 ; read FP value (freq) from semitone table
(HL) and push onto calc stack

 RST 28H ;; FP-CALC
 DEFB $04 ;;multiply mult freq by 1 + 0.0576 *
fraction_part(pitch) stacked earlier
 ;; thus taking into account
fractional part of pitch.
 ;; the number 0.0576*frequency is the
distance in Hz to the next
 ;; note (verify with the frequencies
recorded in the semitone
 ;; table below) so that the
fraction_part of the pitch does
 ;; indeed represent a fractional
distance to the next note.
 DEFB $38 ;;end-calc HL points to first byte of fp num
on stack = middle frequency to generate

 POP AF ; A = octave displacement from middle C, 2's
complement: -5<=A<=10
 ADD A,(HL) ; increase exponent by A (equivalent to
multiplying by 2^A)
 LD (HL),A ;

 RST 28H ;; FP-CALC
 DEFB $C0 ;;st-mem-0 ; store frequency in memory
0
 DEFB $02 ;;delete ; remove from calc stack
 DEFB $31 ;;duplicate ; duplicate duration
(seconds)
 DEFB $38 ;;end-calc

 CALL L1E94 ; routine FIND-INT1 ; FP duration to A
 CP $0B ; if dur > 10 seconds,
 JR NC,L046C ; goto REPORT-B

 ;;; The following calculation finds the tone period for HL and the cycle
count
 ;;; for DE expected in the BEEPER subroutine. From the example in the
BEEPER comments,
 ;;;
 ;;; HL = ((fCPU / f) - 236) / 8 = fCPU/8/f - 236/8 = 437500/f -29.5
 ;;; DE = duration * frequency - 1
 ;;;
 ;;; Note the different constant (30.125) used in the calculation of HL
 ;;; below. This is probably an error.

 RST 28H ;; FP-CALC
 DEFB $E0 ;;get-mem-0 ; push frequency
 DEFB $04 ;;multiply ; result1: #cycles =
duration * frequency
 DEFB $E0 ;;get-mem-0 ; push frequency
 DEFB $34 ;;stk-data ; push constant
 DEFB $80 ;;Exponent $93, Bytes: 3 ; constant = 437500
 DEFB $43,$55,$9F,$80 ;;($55,$9F,$80,$00)
 DEFB $01 ;;exchange ; frequency on top
 DEFB $05 ;;division ; 437500 / frequency
 DEFB $34 ;;stk-data ; push constant
 DEFB $35 ;;Exponent: $85, Bytes: 1 ; constant = 30.125
 DEFB $71 ;;($71,$00,$00,$00)
 DEFB $03 ;;subtract ; result2:
tone_period(HL) = 437500 / freq - 30.125
 DEFB $38 ;;end-calc

 CALL L1E99 ; routine FIND-INT2
 PUSH BC ; BC = tone_period(HL)
 CALL L1E99 ; routine FIND-INT2, BC = #cycles to generate
 POP HL ; HL = tone period
 LD D,B ;
 LD E,C ; DE = #cycles
 LD A,D ;
 OR E ;
 RET Z ; if duration = 0, skip BEEP and avoid 65536
cycle
 ; boondoggle that would occur next
 DEC DE ; DE = #cycles - 1
 JP L03B5 ; to BEEPER

; ---

;; REPORT-B
L046C: RST 08H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

; ---------------------
; THE 'SEMI-TONE' TABLE
; ---------------------
;
; Holds frequencies corresponding to semitones in middle octave.
; To move n octaves higher or lower, frequencies are multiplied by 2^n.

;; semi-tone five byte fp decimal freq note (middle)
L046E: DEFB $89, $02, $D0, $12, $86; 261.625565290 C
 DEFB $89, $0A, $97, $60, $75; 277.182631135 C#
 DEFB $89, $12, $D5, $17, $1F; 293.664768100 D
 DEFB $89, $1B, $90, $41, $02; 311.126983881 D#
 DEFB $89, $24, $D0, $53, $CA; 329.627557039 E

 DEFB $89, $2E, $9D, $36, $B1; 349.228231549 F
 DEFB $89, $38, $FF, $49, $3E; 369.994422674 F#
 DEFB $89, $43, $FF, $6A, $73; 391.995436072 G
 DEFB $89, $4F, $A7, $00, $54; 415.304697513 G#
 DEFB $89, $5C, $00, $00, $00; 440.000000000 A
 DEFB $89, $69, $14, $F6, $24; 466.163761616 A#
 DEFB $89, $76, $F1, $10, $05; 493.883301378 B

; "Music is the hidden mathematical endeavour of a soul unconscious it
; is calculating" - Gottfried Wilhelm Liebnitz 1646 - 1716

;**
;** Part 4. CASSETTE HANDLING ROUTINES **
;**

; These routines begin with the service routines followed by a single
; command entry point.
; The first of these service routines is a curiosity.

; -----------------------
; THE 'ZX81 NAME' ROUTINE
; -----------------------
; This routine fetches a filename in ZX81 format and is not used by the
; cassette handling routines in this ROM.

;; zx81-name
L04AA: CALL L24FB ; routine SCANNING to evaluate expression.
 LD A,($5C3B) ; fetch system variable FLAGS.
 ADD A,A ; test bit 7 - syntax, bit 6 - result type.
 JP M,L1C8A ; to REPORT-C if not string result
 ; 'Nonsense in BASIC'.

 POP HL ; drop return address.
 RET NC ; return early if checking syntax.

 PUSH HL ; re-save return address.
 CALL L2BF1 ; routine STK-FETCH fetches string parameters.
 LD H,D ; transfer start of filename
 LD L,E ; to the HL register.
 DEC C ; adjust to point to last character and
 RET M ; return if the null string.
 ; or multiple of 256!

 ADD HL,BC ; find last character of the filename.
 ; and also clear carry.
 SET 7,(HL) ; invert it.
 RET ; return.

; ===
;
; PORT 254 ($FE)
;
; spk mic { border }
; ___ ___ ___ ___ ___ ___ ___ ___
; PORT | | | | | | | | |
; 254 | | | | | | | | |
; $FE |___|___|___|___|___|___|___|___|
; 7 6 5 4 3 2 1 0
;

; ----------------------------------
; Save header and program/data bytes

; ----------------------------------
; This routine saves a section of data. It is called from SA-CTRL to save the
; seventeen bytes of header data. It is also the exit route from that routine
; when it is set up to save the actual data.
; On entry -
; HL points to start of data.
; IX points to descriptor.
; The accumulator is set to $00 for a header, $FF for data.

;; SA-BYTES
L04C2: LD HL,L053F ; address: SA/LD-RET
 PUSH HL ; is pushed as common exit route.
 ; however there is only one non-terminal exit
 ; point.

 LD HL,$1F80 ; a timing constant H=$1F, L=$80
 ; inner and outer loop counters
 ; a five second lead-in is used for a header.

 BIT 7,A ; test one bit of accumulator.
 ; (AND A ?)
 JR Z,L04D0 ; skip to SA-FLAG if a header is being saved.

; else is data bytes and a shorter lead-in is used.

 LD HL,$0C98 ; another timing value H=$0C, L=$98.
 ; a two second lead-in is used for the data.

;; SA-FLAG
L04D0: EX AF,AF' ; save flag
 INC DE ; increase length by one.
 DEC IX ; decrease start.

 DI ; disable interrupts

 LD A,$02 ; select red for border, microphone bit on.
 LD B,A ; also does as an initial slight counter value.

;; SA-LEADER
L04D8: DJNZ L04D8 ; self loop to SA-LEADER for delay.
 ; after initial loop, count is $A4 (or $A3)

 OUT ($FE),A ; output byte $02/$0D to tape port.

 XOR $0F ; switch from RED (mic on) to CYAN (mic off).

 LD B,$A4 ; hold count. also timed instruction.

 DEC L ; originally $80 or $98.
 ; but subsequently cycles 256 times.
 JR NZ,L04D8 ; back to SA-LEADER until L is zero.

; the outer loop is counted by H

 DEC B ; decrement count
 DEC H ; originally twelve or thirty-one.
 JP P,L04D8 ; back to SA-LEADER until H becomes $FF

; now send a sync pulse. At this stage mic is off and A holds value
; for mic on.
; A sync pulse is much shorter than the steady pulses of the lead-in.

 LD B,$2F ; another short timed delay.

;; SA-SYNC-1
L04EA: DJNZ L04EA ; self loop to SA-SYNC-1

 OUT ($FE),A ; switch to mic on and red.
 LD A,$0D ; prepare mic off - cyan
 LD B,$37 ; another short timed delay.

;; SA-SYNC-2
L04F2: DJNZ L04F2 ; self loop to SA-SYNC-2

 OUT ($FE),A ; output mic off, cyan border.
 LD BC,$3B0E ; B=$3B time(*), C=$0E, YELLOW, MIC OFF.

;

 EX AF,AF' ; restore saved flag
 ; which is 1st byte to be saved.

 LD L,A ; and transfer to L.
 ; the initial parity is A, $FF or $00.
 JP L0507 ; JUMP forward to SA-START ->
 ; the mid entry point of loop.

; -------------------------
; During the save loop a parity byte is maintained in H.
; the save loop begins by testing if reduced length is zero and if so
; the final parity byte is saved reducing count to $FFFF.

;; SA-LOOP
L04FE: LD A,D ; fetch high byte
 OR E ; test against low byte.
 JR Z,L050E ; forward to SA-PARITY if zero.

 LD L,(IX+$00) ; load currently addressed byte to L.

;; SA-LOOP-P
L0505: LD A,H ; fetch parity byte.
 XOR L ; exclusive or with new byte.

; -> the mid entry point of loop.

;; SA-START
L0507: LD H,A ; put parity byte in H.
 LD A,$01 ; prepare blue, mic=on.
 SCF ; set carry flag ready to rotate in.
 JP L0525 ; JUMP forward to SA-8-BITS -8->

; ---

;; SA-PARITY
L050E: LD L,H ; transfer the running parity byte to L and
 JR L0505 ; back to SA-LOOP-P
 ; to output that byte before quitting normally.

; ---

; The entry point to save yellow part of bit.
; A bit consists of a period with mic on and blue border followed by
; a period of mic off with yellow border.
; Note. since the DJNZ instruction does not affect flags, the zero flag is
; used to indicate which of the two passes is in effect and the carry
; maintains the state of the bit to be saved.

;; SA-BIT-2
L0511: LD A,C ; fetch 'mic on and yellow' which is
 ; held permanently in C.
 BIT 7,B ; set the zero flag. B holds $3E.

; The entry point to save 1 entire bit. For first bit B holds $3B(*).
; Carry is set if saved bit is 1. zero is reset NZ on entry.

;; SA-BIT-1
L0514: DJNZ L0514 ; self loop for delay to SA-BIT-1

 JR NC,L051C ; forward to SA-OUT if bit is 0.

; but if bit is 1 then the mic state is held for longer.

 LD B,$42 ; set timed delay. (66 decimal)

;; SA-SET
L051A: DJNZ L051A ; self loop to SA-SET
 ; (roughly an extra 66*13 clock cycles)

;; SA-OUT
L051C: OUT ($FE),A ; blue and mic on OR yellow and mic off.

 LD B,$3E ; set up delay
 JR NZ,L0511 ; back to SA-BIT-2 if zero reset NZ (first pass)

; proceed when the blue and yellow bands have been output.

 DEC B ; change value $3E to $3D.
 XOR A ; clear carry flag (ready to rotate in).
 INC A ; reset zero flag i.e. NZ.

; -8->

;; SA-8-BITS
L0525: RL L ; rotate left through carry
 ; C<76543210<C
 JP NZ,L0514 ; JUMP back to SA-BIT-1
 ; until all 8 bits done.

; when the initial set carry is passed out again then a byte is complete.

 DEC DE ; decrease length
 INC IX ; increase byte pointer
 LD B,$31 ; set up timing.

 LD A,$7F ; test the space key and
 IN A,($FE) ; return to common exit (to restore border)
 RRA ; if a space is pressed
 RET NC ; return to SA/LD-RET. - - >

; now test if byte counter has reached $FFFF.

 LD A,D ; fetch high byte
 INC A ; increment.
 JP NZ,L04FE ; JUMP to SA-LOOP if more bytes.

 LD B,$3B ; a final delay.

;; SA-DELAY
L053C: DJNZ L053C ; self loop to SA-DELAY

 RET ; return - - >

; ------------------------------
; THE 'SAVE/LOAD RETURN' ROUTINE
; ------------------------------
; The address of this routine is pushed on the stack prior to any load/save
; operation and it handles normal completion with the restoration of the
; border and also abnormal termination when the break key, or to be more
; precise the space key is pressed during a tape operation.
;
; - - >

;; SA/LD-RET
L053F: PUSH AF ; preserve accumulator throughout.
 LD A,($5C48) ; fetch border colour from BORDCR.
 AND $38 ; mask off paper bits.
 RRCA ; rotate
 RRCA ; to the
 RRCA ; range 0-7.

 OUT ($FE),A ; change the border colour.

 LD A,$7F ; read from port address $7FFE the
 IN A,($FE) ; row with the space key at outside.

 RRA ; test for space key pressed.
 EI ; enable interrupts
 JR C,L0554 ; forward to SA/LD-END if not

;; REPORT-Da
L0552: RST 08H ; ERROR-1
 DEFB $0C ; Error Report: BREAK - CONT repeats

; ---

;; SA/LD-END
L0554: POP AF ; restore the accumulator.
 RET ; return.

; ------------------------------------
; Load header or block of information
; ------------------------------------
; This routine is used to load bytes and on entry A is set to $00 for a
; header or to $FF for data. IX points to the start of receiving location
; and DE holds the length of bytes to be loaded. If, on entry the carry flag
; is set then data is loaded, if reset then it is verified.

;; LD-BYTES
L0556: INC D ; reset the zero flag without disturbing carry.
 EX AF,AF' ; preserve entry flags.
 DEC D ; restore high byte of length.

 DI ; disable interrupts

 LD A,$0F ; make the border white and mic off.
 OUT ($FE),A ; output to port.

 LD HL,L053F ; Address: SA/LD-RET
 PUSH HL ; is saved on stack as terminating routine.

; the reading of the EAR bit (D6) will always be preceded by a test of the
; space key (D0), so store the initial post-test state.

 IN A,($FE) ; read the ear state - bit 6.

 RRA ; rotate to bit 5.
 AND $20 ; isolate this bit.
 OR $02 ; combine with red border colour.
 LD C,A ; and store initial state long-term in C.
 CP A ; set the zero flag.

;

;; LD-BREAK
L056B: RET NZ ; return if at any time space is pressed.

;; LD-START
L056C: CALL L05E7 ; routine LD-EDGE-1
 JR NC,L056B ; back to LD-BREAK with time out and no
 ; edge present on tape.

; but continue when a transition is found on tape.

 LD HL,$0415 ; set up 16-bit outer loop counter for
 ; approx 1 second delay.

;; LD-WAIT
L0574: DJNZ L0574 ; self loop to LD-WAIT (for 256 times)

 DEC HL ; decrease outer loop counter.
 LD A,H ; test for
 OR L ; zero.
 JR NZ,L0574 ; back to LD-WAIT, if not zero, with zero in B.

; continue after delay with H holding zero and B also.
; sample 256 edges to check that we are in the middle of a lead-in section.

 CALL L05E3 ; routine LD-EDGE-2
 JR NC,L056B ; back to LD-BREAK
 ; if no edges at all.

;; LD-LEADER
L0580: LD B,$9C ; set timing value.
 CALL L05E3 ; routine LD-EDGE-2
 JR NC,L056B ; back to LD-BREAK if time-out

 LD A,$C6 ; two edges must be spaced apart.
 CP B ; compare
 JR NC,L056C ; back to LD-START if too close together for a
 ; lead-in.

 INC H ; proceed to test 256 edged sample.
 JR NZ,L0580 ; back to LD-LEADER while more to do.

; sample indicates we are in the middle of a two or five second lead-in.
; Now test every edge looking for the terminal sync signal.

;; LD-SYNC
L058F: LD B,$C9 ; initial timing value in B.
 CALL L05E7 ; routine LD-EDGE-1
 JR NC,L056B ; back to LD-BREAK with time-out.

 LD A,B ; fetch augmented timing value from B.
 CP $D4 ; compare
 JR NC,L058F ; back to LD-SYNC if gap too big, that is,
 ; a normal lead-in edge gap.

; but a short gap will be the sync pulse.
; in which case another edge should appear before B rises to $FF

 CALL L05E7 ; routine LD-EDGE-1
 RET NC ; return with time-out.

; proceed when the sync at the end of the lead-in is found.
; We are about to load data so change the border colours.

 LD A,C ; fetch long-term mask from C
 XOR $03 ; and make blue/yellow.

 LD C,A ; store the new long-term byte.

 LD H,$00 ; set up parity byte as zero.
 LD B,$B0 ; timing.
 JR L05C8 ; forward to LD-MARKER
 ; the loop mid entry point with the alternate
 ; zero flag reset to indicate first byte
 ; is discarded.

; --------------
; the loading loop loads each byte and is entered at the mid point.

;; LD-LOOP
L05A9: EX AF,AF' ; restore entry flags and type in A.
 JR NZ,L05B3 ; forward to LD-FLAG if awaiting initial flag
 ; which is to be discarded.

 JR NC,L05BD ; forward to LD-VERIFY if not to be loaded.

 LD (IX+$00),L ; place loaded byte at memory location.
 JR L05C2 ; forward to LD-NEXT

; ---

;; LD-FLAG
L05B3: RL C ; preserve carry (verify) flag in long-term
 ; state byte. Bit 7 can be lost.

 XOR L ; compare type in A with first byte in L.
 RET NZ ; return if no match e.g. CODE vs. DATA.

; continue when data type matches.

 LD A,C ; fetch byte with stored carry
 RRA ; rotate it to carry flag again
 LD C,A ; restore long-term port state.

 INC DE ; increment length ??
 JR L05C4 ; forward to LD-DEC.
 ; but why not to location after ?

; ---
; for verification the byte read from tape is compared with that in memory.

;; LD-VERIFY
L05BD: LD A,(IX+$00) ; fetch byte from memory.
 XOR L ; compare with that on tape
 RET NZ ; return if not zero.

;; LD-NEXT
L05C2: INC IX ; increment byte pointer.

;; LD-DEC
L05C4: DEC DE ; decrement length.

 EX AF,AF' ; store the flags.
 LD B,$B2 ; timing.

; when starting to read 8 bits the receiving byte is marked with bit at right.
; when this is rotated out again then 8 bits have been read.

;; LD-MARKER
L05C8: LD L,$01 ; initialize as %00000001

;; LD-8-BITS
L05CA: CALL L05E3 ; routine LD-EDGE-2 increments B relative to
 ; gap between 2 edges.
 RET NC ; return with time-out.

 LD A,$CB ; the comparison byte.
 CP B ; compare to incremented value of B.
 ; if B is higher then bit on tape was set.
 ; if <= then bit on tape is reset.

 RL L ; rotate the carry bit into L.

 LD B,$B0 ; reset the B timer byte.
 JP NC,L05CA ; JUMP back to LD-8-BITS

; when carry set then marker bit has been passed out and byte is complete.

 LD A,H ; fetch the running parity byte.
 XOR L ; include the new byte.
 LD H,A ; and store back in parity register.

 LD A,D ; check length of
 OR E ; expected bytes.
 JR NZ,L05A9 ; back to LD-LOOP
 ; while there are more.

; when all bytes loaded then parity byte should be zero.

 LD A,H ; fetch parity byte.
 CP $01 ; set carry if zero.
 RET ; return
 ; in no carry then error as checksum disagrees.

; -------------------------
; Check signal being loaded
; -------------------------
; An edge is a transition from one mic state to another.
; More specifically a change in bit 6 of value input from port $FE.
; Graphically it is a change of border colour, say, blue to yellow.
; The first entry point looks for two adjacent edges. The second entry point
; is used to find a single edge.
; The B register holds a count, up to 256, within which the edge (or edges)
; must be found. The gap between two edges will be more for a '1' than a '0'
; so the value of B denotes the state of the bit (two edges) read from tape.

; ->

;; LD-EDGE-2
L05E3: CALL L05E7 ; call routine LD-EDGE-1 below.
 RET NC ; return if space pressed or time-out.
 ; else continue and look for another adjacent
 ; edge which together represent a bit on the
 ; tape.

; ->

; this entry point is used to find a single edge from above but also
; when detecting a read-in signal on the tape.

;; LD-EDGE-1
L05E7: LD A,$16 ; a delay value of twenty two.

;; LD-DELAY
L05E9: DEC A ; decrement counter
 JR NZ,L05E9 ; loop back to LD-DELAY 22 times.

 AND A ; clear carry.

;; LD-SAMPLE
L05ED: INC B ; increment the time-out counter.
 RET Z ; return with failure when $FF passed.

 LD A,$7F ; prepare to read keyboard and EAR port
 IN A,($FE) ; row $7FFE. bit 6 is EAR, bit 0 is SPACE key.
 RRA ; test outer key the space. (bit 6 moves to 5)
 RET NC ; return if space pressed. >>>

 XOR C ; compare with initial long-term state.
 AND $20 ; isolate bit 5
 JR Z,L05ED ; back to LD-SAMPLE if no edge.

; but an edge, a transition of the EAR bit, has been found so switch the
; long-term comparison byte containing both border colour and EAR bit.

 LD A,C ; fetch comparison value.
 CPL ; switch the bits
 LD C,A ; and put back in C for long-term.

 AND $07 ; isolate new colour bits.
 OR $08 ; set bit 3 - MIC off.
 OUT ($FE),A ; send to port to effect the change of colour.

 SCF ; set carry flag signaling edge found within
 ; time allowed.
 RET ; return.

; ---------------------------------
; Entry point for all tape commands
; ---------------------------------
; This is the single entry point for the four tape commands.
; The routine first determines in what context it has been called by examining
; the low byte of the Syntax table entry which was stored in T_ADDR.
; Subtracting $EO (the present arrangement) gives a value of
; $00 - SAVE
; $01 - LOAD
; $02 - VERIFY
; $03 - MERGE
; As with all commands the address STMT-RET is on the stack.

;; SAVE-ETC
L0605: POP AF ; discard address STMT-RET.
 LD A,($5C74) ; fetch T_ADDR

; Now reduce the low byte of the Syntax table entry to give command.
; Note. For ZASM use SUB $E0 as next instruction.

L0609: SUB L1ADF + 1 % 256 ; subtract the known offset.
 ; (is SUB $E0 in standard ROM)

 LD ($5C74),A ; and put back in T_ADDR as 0,1,2, or 3

 ; for future reference.

 CALL L1C8C ; routine EXPT-EXP checks that a string
 ; expression follows and stacks the
 ; parameters in run-time.

 CALL L2530 ; routine SYNTAX-Z
 JR Z,L0652 ; forward to SA-DATA if checking syntax.

 LD BC,$0011 ; presume seventeen bytes for a header.
 LD A,($5C74) ; fetch command from T_ADDR.
 AND A ; test for zero - SAVE.
 JR Z,L0621 ; forward to SA-SPACE if so.

 LD C,$22 ; else double length to thirty four.

;; SA-SPACE
L0621: RST 30H ; BC-SPACES creates 17/34 bytes in workspace.

 PUSH DE ; transfer the start of new space to
 POP IX ; the available index register.

; ten spaces are required for the default filename but it is simpler to
; overwrite the first file-type indicator byte as well.

 LD B,$0B ; set counter to eleven.
 LD A,$20 ; prepare a space.

;; SA-BLANK
L0629: LD (DE),A ; set workspace location to space.
 INC DE ; next location.
 DJNZ L0629 ; loop back to SA-BLANK till all eleven done.

 LD (IX+$01),$FF ; set first byte of ten character filename
 ; to $FF as a default to signal null string.

 CALL L2BF1 ; routine STK-FETCH fetches the filename
 ; parameters from the calculator stack.
 ; length of string in BC.
 ; start of string in DE.

 LD HL,$FFF6 ; prepare the value minus ten.
 DEC BC ; decrement length.
 ; ten becomes nine, zero becomes $FFFF.
 ADD HL,BC ; trial addition.
 INC BC ; restore true length.
 JR NC,L064B ; forward to SA-NAME if length is one to ten.

; the filename is more than ten characters in length or the null string.

 LD A,($5C74) ; fetch command from T_ADDR.
 AND A ; test for zero - SAVE.
 JR NZ,L0644 ; forward to SA-NULL if not the SAVE command.

; but no more than ten characters are allowed for SAVE.
; The first ten characters of any other command parameter are acceptable.
; Weird, but necessary, if saving to sectors.
; Note. the golden rule that there are no restriction on anything is broken.

;; REPORT-Fa
L0642: RST 08H ; ERROR-1
 DEFB $0E ; Error Report: Invalid file name

; continue with LOAD, MERGE, VERIFY and also SAVE within ten character limit.

;; SA-NULL
L0644: LD A,B ; test length of filename
 OR C ; for zero.
 JR Z,L0652 ; forward to SA-DATA if so using the 255
 ; indicator followed by spaces.

 LD BC,$000A ; else trim length to ten.

; other paths rejoin here with BC holding length in range 1 - 10.

;; SA-NAME
L064B: PUSH IX ; push start of file descriptor.
 POP HL ; and pop into HL.

 INC HL ; HL now addresses first byte of filename.
 EX DE,HL ; transfer destination address to DE, start
 ; of string in command to HL.
 LDIR ; copy up to ten bytes
 ; if less than ten then trailing spaces follow.

; the case for the null string rejoins here.

;; SA-DATA
L0652: RST 18H ; GET-CHAR
 CP $E4 ; is character after filename the token 'DATA' ?
 JR NZ,L06A0 ; forward to SA-SCR$ to consider SCREEN$ if
 ; not.

; continue to consider DATA.

 LD A,($5C74) ; fetch command from T_ADDR
 CP $03 ; is it 'VERIFY' ?
 JP Z,L1C8A ; jump forward to REPORT-C if so.
 ; 'Nonsense in BASIC'
 ; VERIFY "d" DATA is not allowed.

; continue with SAVE, LOAD, MERGE of DATA.

 RST 20H ; NEXT-CHAR
 CALL L28B2 ; routine LOOK-VARS searches variables area
 ; returning with carry reset if found or
 ; checking syntax.
 SET 7,C ; this converts a simple string to a
 ; string array. The test for an array or string
 ; comes later.
 JR NC,L0672 ; forward to SA-V-OLD if variable found.

 LD HL,$0000 ; set destination to zero as not fixed.
 LD A,($5C74) ; fetch command from T_ADDR
 DEC A ; test for 1 - LOAD
 JR Z,L0685 ; forward to SA-V-NEW with LOAD DATA.
 ; to load a new array.

; otherwise the variable was not found in run-time with SAVE/MERGE.

;; REPORT-2a
L0670: RST 08H ; ERROR-1
 DEFB $01 ; Error Report: Variable not found

; continue with SAVE/LOAD DATA

;; SA-V-OLD
L0672: JP NZ,L1C8A ; to REPORT-C if not an array variable.

 ; or erroneously a simple string.
 ; 'Nonsense in BASIC'

 CALL L2530 ; routine SYNTAX-Z
 JR Z,L0692 ; forward to SA-DATA-1 if checking syntax.

 INC HL ; step past single character variable name.
 LD A,(HL) ; fetch low byte of length.
 LD (IX+$0B),A ; place in descriptor.
 INC HL ; point to high byte.
 LD A,(HL) ; and transfer that
 LD (IX+$0C),A ; to descriptor.
 INC HL ; increase pointer within variable.

;; SA-V-NEW
L0685: LD (IX+$0E),C ; place character array name in header.
 LD A,$01 ; default to type numeric.
 BIT 6,C ; test result from look-vars.
 JR Z,L068F ; forward to SA-V-TYPE if numeric.

 INC A ; set type to 2 - string array.

;; SA-V-TYPE
L068F: LD (IX+$00),A ; place type 0, 1 or 2 in descriptor.

;; SA-DATA-1
L0692: EX DE,HL ; save var pointer in DE

 RST 20H ; NEXT-CHAR
 CP $29 ; is character ')' ?
 JR NZ,L0672 ; back if not to SA-V-OLD to report
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR advances character address.
 CALL L1BEE ; routine CHECK-END errors if not end of
 ; the statement.

 EX DE,HL ; bring back variables data pointer.
 JP L075A ; jump forward to SA-ALL

; ---
; the branch was here to consider a 'SCREEN$', the display file.

;; SA-SCR$
L06A0: CP $AA ; is character the token 'SCREEN$' ?
 JR NZ,L06C3 ; forward to SA-CODE if not.

 LD A,($5C74) ; fetch command from T_ADDR
 CP $03 ; is it MERGE ?
 JP Z,L1C8A ; jump to REPORT-C if so.
 ; 'Nonsense in BASIC'

; continue with SAVE/LOAD/VERIFY SCREEN$.

 RST 20H ; NEXT-CHAR
 CALL L1BEE ; routine CHECK-END errors if not at end of
 ; statement.

; continue in runtime.

 LD (IX+$0B),$00 ; set descriptor length
 LD (IX+$0C),$1B ; to $1b00 to include bitmaps and attributes.

 LD HL,$4000 ; set start to display file start.
 LD (IX+$0D),L ; place start in
 LD (IX+$0E),H ; the descriptor.
 JR L0710 ; forward to SA-TYPE-3

; ---
; the branch was here to consider CODE.

;; SA-CODE
L06C3: CP $AF ; is character the token 'CODE' ?
 JR NZ,L0716 ; forward if not to SA-LINE to consider an
 ; auto-started BASIC program.

 LD A,($5C74) ; fetch command from T_ADDR
 CP $03 ; is it MERGE ?
 JP Z,L1C8A ; jump forward to REPORT-C if so.
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR advances character address.
 CALL L2048 ; routine PR-ST-END checks if a carriage
 ; return or ':' follows.
 JR NZ,L06E1 ; forward to SA-CODE-1 if there are parameters.

 LD A,($5C74) ; else fetch the command from T_ADDR.
 AND A ; test for zero - SAVE without a specification.
 JP Z,L1C8A ; jump to REPORT-C if so.
 ; 'Nonsense in BASIC'

; for LOAD/VERIFY put zero on stack to signify handle at location saved from.

 CALL L1CE6 ; routine USE-ZERO
 JR L06F0 ; forward to SA-CODE-2

; ---

; if there are more characters after CODE expect start and possibly length.

;; SA-CODE-1
L06E1: CALL L1C82 ; routine EXPT-1NUM checks for numeric
 ; expression and stacks it in run-time.

 RST 18H ; GET-CHAR
 CP $2C ; does a comma follow ?
 JR Z,L06F5 ; forward if so to SA-CODE-3

; else allow saved code to be loaded to a specified address.

 LD A,($5C74) ; fetch command from T_ADDR.
 AND A ; is the command SAVE which requires length ?
 JP Z,L1C8A ; jump to REPORT-C if so.
 ; 'Nonsense in BASIC'

; the command LOAD code may rejoin here with zero stacked as start.

;; SA-CODE-2
L06F0: CALL L1CE6 ; routine USE-ZERO stacks zero for length.
 JR L06F9 ; forward to SA-CODE-4

; ---
; the branch was here with SAVE CODE start,

;; SA-CODE-3
L06F5: RST 20H ; NEXT-CHAR advances character address.

 CALL L1C82 ; routine EXPT-1NUM checks for expression
 ; and stacks in run-time.

; paths converge here and nothing must follow.

;; SA-CODE-4
L06F9: CALL L1BEE ; routine CHECK-END errors with extraneous
 ; characters and quits if checking syntax.

; in run-time there are two 16-bit parameters on the calculator stack.

 CALL L1E99 ; routine FIND-INT2 gets length.
 LD (IX+$0B),C ; place length
 LD (IX+$0C),B ; in descriptor.
 CALL L1E99 ; routine FIND-INT2 gets start.
 LD (IX+$0D),C ; place start
 LD (IX+$0E),B ; in descriptor.
 LD H,B ; transfer the
 LD L,C ; start to HL also.

;; SA-TYPE-3
L0710: LD (IX+$00),$03 ; place type 3 - code in descriptor.
 JR L075A ; forward to SA-ALL.

; ---
; the branch was here with BASIC to consider an optional auto-start line
; number.

;; SA-LINE
L0716: CP $CA ; is character the token 'LINE' ?
 JR Z,L0723 ; forward to SA-LINE-1 if so.

; else all possibilities have been considered and nothing must follow.

 CALL L1BEE ; routine CHECK-END

; continue in run-time to save BASIC without auto-start.

 LD (IX+$0E),$80 ; place high line number in descriptor to
 ; disable auto-start.
 JR L073A ; forward to SA-TYPE-0 to save program.

; ---
; the branch was here to consider auto-start.

;; SA-LINE-1
L0723: LD A,($5C74) ; fetch command from T_ADDR
 AND A ; test for SAVE.
 JP NZ,L1C8A ; jump forward to REPORT-C with anything else.
 ; 'Nonsense in BASIC'

;

 RST 20H ; NEXT-CHAR
 CALL L1C82 ; routine EXPT-1NUM checks for numeric
 ; expression and stacks in run-time.
 CALL L1BEE ; routine CHECK-END quits if syntax path.
 CALL L1E99 ; routine FIND-INT2 fetches the numeric
 ; expression.
 LD (IX+$0D),C ; place the auto-start
 LD (IX+$0E),B ; line number in the descriptor.

; Note. this isn't checked, but is subsequently handled by the system.
; If the user typed 40000 instead of 4000 then it won't auto-start

; at line 4000, or indeed, at all.

; continue to save program and any variables.

;; SA-TYPE-0
L073A: LD (IX+$00),$00 ; place type zero - program in descriptor.
 LD HL,($5C59) ; fetch E_LINE to HL.
 LD DE,($5C53) ; fetch PROG to DE.
 SCF ; set carry flag to calculate from end of
 ; variables E_LINE -1.
 SBC HL,DE ; subtract to give total length.

 LD (IX+$0B),L ; place total length
 LD (IX+$0C),H ; in descriptor.
 LD HL,($5C4B) ; load HL from system variable VARS
 SBC HL,DE ; subtract to give program length.
 LD (IX+$0F),L ; place length of program
 LD (IX+$10),H ; in the descriptor.
 EX DE,HL ; start to HL, length to DE.

;; SA-ALL
L075A: LD A,($5C74) ; fetch command from T_ADDR
 AND A ; test for zero - SAVE.
 JP Z,L0970 ; jump forward to SA-CONTRL with SAVE ->

; ---
; continue with LOAD, MERGE and VERIFY.

 PUSH HL ; save start.
 LD BC,$0011 ; prepare to add seventeen
 ADD IX,BC ; to point IX at second descriptor.

;; LD-LOOK-H
L0767: PUSH IX ; save IX
 LD DE,$0011 ; seventeen bytes
 XOR A ; reset zero flag
 SCF ; set carry flag
 CALL L0556 ; routine LD-BYTES loads a header from tape
 ; to second descriptor.
 POP IX ; restore IX.
 JR NC,L0767 ; loop back to LD-LOOK-H until header found.

 LD A,$FE ; select system channel 'S'
 CALL L1601 ; routine CHAN-OPEN opens it.

 LD (IY+$52),$03 ; set SCR_CT to 3 lines.

 LD C,$80 ; C has bit 7 set to indicate type mismatch as
 ; a default startpoint.

 LD A,(IX+$00) ; fetch loaded header type to A
 CP (IX-$11) ; compare with expected type.
 JR NZ,L078A ; forward to LD-TYPE with mis-match.

 LD C,$F6 ; set C to minus ten - will count characters
 ; up to zero.

;; LD-TYPE
L078A: CP $04 ; check if type in acceptable range 0 - 3.
 JR NC,L0767 ; back to LD-LOOK-H with 4 and over.

; else A indicates type 0-3.

 LD DE,L09C0 ; address base of last 4 tape messages

 PUSH BC ; save BC
 CALL L0C0A ; routine PO-MSG outputs relevant message.
 ; Note. all messages have a leading newline.
 POP BC ; restore BC

 PUSH IX ; transfer IX,
 POP DE ; the 2nd descriptor, to DE.
 LD HL,$FFF0 ; prepare minus seventeen.
 ADD HL,DE ; add to point HL to 1st descriptor.
 LD B,$0A ; the count will be ten characters for the
 ; filename.

 LD A,(HL) ; fetch first character and test for
 INC A ; value 255.
 JR NZ,L07A6 ; forward to LD-NAME if not the wildcard.

; but if it is the wildcard, then add ten to C which is minus ten for a type
; match or -128 for a type mismatch. Although characters have to be counted
; bit 7 of C will not alter from state set here.

 LD A,C ; transfer $F6 or $80 to A
 ADD A,B ; add $0A
 LD C,A ; place result, zero or -118, in C.

; At this point we have either a type mismatch, a wildcard match or ten
; characters to be counted. The characters must be shown on the screen.

;; LD-NAME
L07A6: INC DE ; address next input character
 LD A,(DE) ; fetch character
 CP (HL) ; compare to expected
 INC HL ; address next expected character
 JR NZ,L07AD ; forward to LD-CH-PR with mismatch

 INC C ; increment matched character count

;; LD-CH-PR
L07AD: RST 10H ; PRINT-A prints character
 DJNZ L07A6 ; loop back to LD-NAME for ten characters.

; if ten characters matched and the types previously matched then C will
; now hold zero.

 BIT 7,C ; test if all matched
 JR NZ,L0767 ; back to LD-LOOK-H if not

; else print a terminal carriage return.

 LD A,$0D ; prepare carriage return.
 RST 10H ; PRINT-A outputs it.

; The various control routines for LOAD, VERIFY and MERGE are executed
; during the one-second gap following the header on tape.

 POP HL ; restore xx
 LD A,(IX+$00) ; fetch incoming type
 CP $03 ; compare with CODE
 JR Z,L07CB ; forward to VR-CONTROL if it is CODE.

; type is a program or an array.

 LD A,($5C74) ; fetch command from T_ADDR
 DEC A ; was it LOAD ?
 JP Z,L0808 ; JUMP forward to LD-CONTRL if so to

 ; load BASIC or variables.

 CP $02 ; was command MERGE ?
 JP Z,L08B6 ; jump forward to ME-CONTRL if so.

; else continue into VERIFY control routine to verify.

; ----------------------------
; THE 'VERIFY CONTROL' ROUTINE
; ----------------------------
; There are two branches to this routine.
; 1) From above to verify a program or array
; 2) from earlier with no carry to load or verify code.

;; VR-CONTROL
L07CB: PUSH HL ; save pointer to data.
 LD L,(IX-$06) ; fetch length of old data
 LD H,(IX-$05) ; to HL.
 LD E,(IX+$0B) ; fetch length of new data
 LD D,(IX+$0C) ; to DE.
 LD A,H ; check length of old
 OR L ; for zero.
 JR Z,L07E9 ; forward to VR-CONT-1 if length unspecified
 ; e.g. LOAD "x" CODE

; as opposed to, say, LOAD 'x' CODE 32768,300.

 SBC HL,DE ; subtract the two lengths.
 JR C,L0806 ; forward to REPORT-R if the length on tape is
 ; larger than that specified in command.
 ; 'Tape loading error'

 JR Z,L07E9 ; forward to VR-CONT-1 if lengths match.

; a length on tape shorter than expected is not allowed for CODE

 LD A,(IX+$00) ; else fetch type from tape.
 CP $03 ; is it CODE ?
 JR NZ,L0806 ; forward to REPORT-R if so
 ; 'Tape loading error'

;; VR-CONT-1
L07E9: POP HL ; pop pointer to data
 LD A,H ; test for zero
 OR L ; e.g. LOAD 'x' CODE
 JR NZ,L07F4 ; forward to VR-CONT-2 if destination specified.

 LD L,(IX+$0D) ; else use the destination in the header
 LD H,(IX+$0E) ; and load code at address saved from.

;; VR-CONT-2
L07F4: PUSH HL ; push pointer to start of data block.
 POP IX ; transfer to IX.
 LD A,($5C74) ; fetch reduced command from T_ADDR
 CP $02 ; is it VERIFY ?
 SCF ; prepare a set carry flag
 JR NZ,L0800 ; skip to VR-CONT-3 if not

 AND A ; clear carry flag for VERIFY so that
 ; data is not loaded.

;; VR-CONT-3
L0800: LD A,$FF ; signal data block to be loaded

; -----------------
; Load a data block
; -----------------
; This routine is called from 3 places other than above to load a data block.
; In all cases the accumulator is first set to $FF so the routine could be
; called at the previous instruction.

;; LD-BLOCK
L0802: CALL L0556 ; routine LD-BYTES
 RET C ; return if successful.

;; REPORT-R
L0806: RST 08H ; ERROR-1
 DEFB $1A ; Error Report: Tape loading error

; --------------------------
; THE 'LOAD CONTROL' ROUTINE
; --------------------------
; This branch is taken when the command is LOAD with type 0, 1 or 2.

;; LD-CONTRL
L0808: LD E,(IX+$0B) ; fetch length of found data block
 LD D,(IX+$0C) ; from 2nd descriptor.
 PUSH HL ; save destination
 LD A,H ; test for zero
 OR L ;
 JR NZ,L0819 ; forward if not to LD-CONT-1

 INC DE ; increase length
 INC DE ; for letter name
 INC DE ; and 16-bit length
 EX DE,HL ; length to HL,
 JR L0825 ; forward to LD-CONT-2

; ---

;; LD-CONT-1
L0819: LD L,(IX-$06) ; fetch length from
 LD H,(IX-$05) ; the first header.
 EX DE,HL ;
 SCF ; set carry flag
 SBC HL,DE ;
 JR C,L082E ; to LD-DATA

;; LD-CONT-2
L0825: LD DE,$0005 ; allow overhead of five bytes.
 ADD HL,DE ; add in the difference in data lengths.
 LD B,H ; transfer to
 LD C,L ; the BC register pair
 CALL L1F05 ; routine TEST-ROOM fails if not enough room.

;; LD-DATA
L082E: POP HL ; pop destination
 LD A,(IX+$00) ; fetch type 0, 1 or 2.
 AND A ; test for program and variables.
 JR Z,L0873 ; forward if so to LD-PROG

; the type is a numeric or string array.

 LD A,H ; test the destination for zero
 OR L ; indicating variable does not already exist.
 JR Z,L084C ; forward if so to LD-DATA-1

; else the destination is the first dimension within the array structure

 DEC HL ; address high byte of total length
 LD B,(HL) ; transfer to B.
 DEC HL ; address low byte of total length.
 LD C,(HL) ; transfer to C.
 DEC HL ; point to letter of variable.
 INC BC ; adjust length to
 INC BC ; include these
 INC BC ; three bytes also.
 LD ($5C5F),IX ; save header pointer in X_PTR.
 CALL L19E8 ; routine RECLAIM-2 reclaims the old variable
 ; sliding workspace including the two headers
 ; downwards.
 LD IX,($5C5F) ; reload IX from X_PTR which will have been
 ; adjusted down by POINTERS routine.

;; LD-DATA-1
L084C: LD HL,($5C59) ; address E_LINE
 DEC HL ; now point to the $80 variables end-marker.
 LD C,(IX+$0B) ; fetch new data length
 LD B,(IX+$0C) ; from 2nd header.
 PUSH BC ; * save it.
 INC BC ; adjust the
 INC BC ; length to include
 INC BC ; letter name and total length.
 LD A,(IX-$03) ; fetch letter name from old header.
 PUSH AF ; preserve accumulator though not corrupted.

 CALL L1655 ; routine MAKE-ROOM creates space for variable
 ; sliding workspace up. IX no longer addresses
 ; anywhere meaningful.
 INC HL ; point to first new location.

 POP AF ; fetch back the letter name.
 LD (HL),A ; place in first new location.
 POP DE ; * pop the data length.
 INC HL ; address 2nd location
 LD (HL),E ; store low byte of length.
 INC HL ; address next.
 LD (HL),D ; store high byte.
 INC HL ; address start of data.
 PUSH HL ; transfer address
 POP IX ; to IX register pair.
 SCF ; set carry flag indicating load not verify.
 LD A,$FF ; signal data not header.
 JP L0802 ; JUMP back to LD-BLOCK

; -----------------
; the branch is here when a program as opposed to an array is to be loaded.

;; LD-PROG
L0873: EX DE,HL ; transfer dest to DE.
 LD HL,($5C59) ; address E_LINE
 DEC HL ; now variables end-marker.
 LD ($5C5F),IX ; place the IX header pointer in X_PTR
 LD C,(IX+$0B) ; get new length
 LD B,(IX+$0C) ; from 2nd header
 PUSH BC ; and save it.

 CALL L19E5 ; routine RECLAIM-1 reclaims program and vars.
 ; adjusting X-PTR.

 POP BC ; restore new length.

 PUSH HL ; * save start
 PUSH BC ; ** and length.

 CALL L1655 ; routine MAKE-ROOM creates the space.

 LD IX,($5C5F) ; reload IX from adjusted X_PTR
 INC HL ; point to start of new area.
 LD C,(IX+$0F) ; fetch length of BASIC on tape
 LD B,(IX+$10) ; from 2nd descriptor
 ADD HL,BC ; add to address the start of variables.
 LD ($5C4B),HL ; set system variable VARS

 LD H,(IX+$0E) ; fetch high byte of autostart line number.
 LD A,H ; transfer to A
 AND $C0 ; test if greater than $3F.
 JR NZ,L08AD ; forward to LD-PROG-1 if so with no autostart.

 LD L,(IX+$0D) ; else fetch the low byte.
 LD ($5C42),HL ; set system variable to line number NEWPPC
 LD (IY+$0A),$00 ; set statement NSPPC to zero.

;; LD-PROG-1
L08AD: POP DE ; ** pop the length
 POP IX ; * and start.
 SCF ; set carry flag
 LD A,$FF ; signal data as opposed to a header.
 JP L0802 ; jump back to LD-BLOCK

; ---------------------------
; THE 'MERGE CONTROL' ROUTINE
; ---------------------------
; the branch was here to merge a program and its variables or an array.
;

;; ME-CONTRL
L08B6: LD C,(IX+$0B) ; fetch length
 LD B,(IX+$0C) ; of data block on tape.
 PUSH BC ; save it.
 INC BC ; one for the pot.

 RST 30H ; BC-SPACES creates room in workspace.
 ; HL addresses last new location.
 LD (HL),$80 ; place end-marker at end.
 EX DE,HL ; transfer first location to HL.
 POP DE ; restore length to DE.
 PUSH HL ; save start.

 PUSH HL ; and transfer it
 POP IX ; to IX register.
 SCF ; set carry flag to load data on tape.
 LD A,$FF ; signal data not a header.
 CALL L0802 ; routine LD-BLOCK loads to workspace.
 POP HL ; restore first location in workspace to HL.
X08CE LD DE,($5C53) ; set DE from system variable PROG.

; now enter a loop to merge the data block in workspace with the program and
; variables.

;; ME-NEW-LP
L08D2: LD A,(HL) ; fetch next byte from workspace.
 AND $C0 ; compare with $3F.
 JR NZ,L08F0 ; forward to ME-VAR-LP if a variable or
 ; end-marker.

; continue when HL addresses a BASIC line number.

;; ME-OLD-LP
L08D7: LD A,(DE) ; fetch high byte from program area.
 INC DE ; bump prog address.
 CP (HL) ; compare with that in workspace.
 INC HL ; bump workspace address.
 JR NZ,L08DF ; forward to ME-OLD-L1 if high bytes don't match

 LD A,(DE) ; fetch the low byte of program line number.
 CP (HL) ; compare with that in workspace.

;; ME-OLD-L1
L08DF: DEC DE ; point to start of
 DEC HL ; respective lines again.
 JR NC,L08EB ; forward to ME-NEW-L2 if line number in
 ; workspace is less than or equal to current
 ; program line as has to be added to program.

 PUSH HL ; else save workspace pointer.
 EX DE,HL ; transfer prog pointer to HL
 CALL L19B8 ; routine NEXT-ONE finds next line in DE.
 POP HL ; restore workspace pointer
 JR L08D7 ; back to ME-OLD-LP until destination position
 ; in program area found.

; ---
; the branch was here with an insertion or replacement point.

;; ME-NEW-L2
L08EB: CALL L092C ; routine ME-ENTER enters the line
 JR L08D2 ; loop back to ME-NEW-LP.

; ---
; the branch was here when the location in workspace held a variable.

;; ME-VAR-LP
L08F0: LD A,(HL) ; fetch first byte of workspace variable.
 LD C,A ; copy to C also.
 CP $80 ; is it the end-marker ?
 RET Z ; return if so as complete. >>>>>

 PUSH HL ; save workspace area pointer.
 LD HL,($5C4B) ; load HL with VARS - start of variables area.

;; ME-OLD-VP
L08F9: LD A,(HL) ; fetch first byte.
 CP $80 ; is it the end-marker ?
 JR Z,L0923 ; forward if so to ME-VAR-L2 to add
 ; variable at end of variables area.

 CP C ; compare with variable in workspace area.
 JR Z,L0909 ; forward to ME-OLD-V2 if a match to replace.

; else entire variables area has to be searched.

;; ME-OLD-V1
L0901: PUSH BC ; save character in C.
 CALL L19B8 ; routine NEXT-ONE gets following variable
 ; address in DE.
 POP BC ; restore character in C
 EX DE,HL ; transfer next address to HL.
 JR L08F9 ; loop back to ME-OLD-VP

; ---
; the branch was here when first characters of name matched.

;; ME-OLD-V2
L0909: AND $E0 ; keep bits 11100000
 CP $A0 ; compare 10100000 - a long-named variable.

 JR NZ,L0921 ; forward to ME-VAR-L1 if just one-character.

; but long-named variables have to be matched character by character.

 POP DE ; fetch workspace 1st character pointer
 PUSH DE ; and save it on the stack again.
 PUSH HL ; save variables area pointer on stack.

;; ME-OLD-V3
L0912: INC HL ; address next character in vars area.
 INC DE ; address next character in workspace area.
 LD A,(DE) ; fetch workspace character.
 CP (HL) ; compare to variables character.
 JR NZ,L091E ; forward to ME-OLD-V4 with a mismatch.

 RLA ; test if the terminal inverted character.
 JR NC,L0912 ; loop back to ME-OLD-V3 if more to test.

; otherwise the long name matches in its entirety.

 POP HL ; restore pointer to first character of variable
 JR L0921 ; forward to ME-VAR-L1

; ---
; the branch is here when two characters don't match

;; ME-OLD-V4
L091E: POP HL ; restore the prog/vars pointer.
 JR L0901 ; back to ME-OLD-V1 to resume search.

; ---
; branch here when variable is to replace an existing one

;; ME-VAR-L1
L0921: LD A,$FF ; indicate a replacement.

; this entry point is when A holds $80 indicating a new variable.

;; ME-VAR-L2
L0923: POP DE ; pop workspace pointer.
 EX DE,HL ; now make HL workspace pointer, DE vars pointer
 INC A ; zero flag set if replacement.
 SCF ; set carry flag indicating a variable not a
 ; program line.
 CALL L092C ; routine ME-ENTER copies variable in.
 JR L08F0 ; loop back to ME-VAR-LP

; ------------------------
; Merge a Line or Variable
; ------------------------
; A BASIC line or variable is inserted at the current point. If the line
; number or variable names match (zero flag set) then a replacement takes
; place.

;; ME-ENTER
L092C: JR NZ,L093E ; forward to ME-ENT-1 for insertion only.

; but the program line or variable matches so old one is reclaimed.

 EX AF,AF' ; save flag??
 LD ($5C5F),HL ; preserve workspace pointer in dynamic X_PTR
 EX DE,HL ; transfer program dest pointer to HL.
 CALL L19B8 ; routine NEXT-ONE finds following location
 ; in program or variables area.
 CALL L19E8 ; routine RECLAIM-2 reclaims the space between.
 EX DE,HL ; transfer program dest pointer back to DE.
 LD HL,($5C5F) ; fetch adjusted workspace pointer from X_PTR
 EX AF,AF' ; restore flags.

; now the new line or variable is entered.

;; ME-ENT-1
L093E: EX AF,AF' ; save or re-save flags.
 PUSH DE ; save dest pointer in prog/vars area.
 CALL L19B8 ; routine NEXT-ONE finds next in workspace.
 ; gets next in DE, difference in BC.
 ; prev addr in HL
 LD ($5C5F),HL ; store pointer in X_PTR
 LD HL,($5C53) ; load HL from system variable PROG
 EX (SP),HL ; swap with prog/vars pointer on stack.
 PUSH BC ; ** save length of new program line/variable.
 EX AF,AF' ; fetch flags back.
 JR C,L0955 ; skip to ME-ENT-2 if variable

 DEC HL ; address location before pointer
 CALL L1655 ; routine MAKE-ROOM creates room for BASIC line
 INC HL ; address next.
 JR L0958 ; forward to ME-ENT-3

; ---

;; ME-ENT-2
L0955: CALL L1655 ; routine MAKE-ROOM creates room for variable.

;; ME-ENT-3
L0958: INC HL ; address next?

 POP BC ; ** pop length
 POP DE ; * pop value for PROG which may have been
 ; altered by POINTERS if first line.
 LD ($5C53),DE ; set PROG to original value.
 LD DE,($5C5F) ; fetch adjusted workspace pointer from X_PTR
 PUSH BC ; save length
 PUSH DE ; and workspace pointer
 EX DE,HL ; make workspace pointer source, prog/vars
 ; pointer the destination
 LDIR ; copy bytes of line or variable into new area.
 POP HL ; restore workspace pointer.
 POP BC ; restore length.
 PUSH DE ; save new prog/vars pointer.
 CALL L19E8 ; routine RECLAIM-2 reclaims the space used
 ; by the line or variable in workspace block
 ; as no longer required and space could be
 ; useful for adding more lines.
 POP DE ; restore the prog/vars pointer
 RET ; return.

; --------------------------
; THE 'SAVE CONTROL' ROUTINE
; --------------------------
; A branch from the main SAVE-ETC routine at SAVE-ALL.

; First the header data is saved. Then after a wait of 1 second
; the data itself is saved.
; HL points to start of data.
; IX points to start of descriptor.

;; SA-CONTRL
L0970: PUSH HL ; save start of data

 LD A,$FD ; select system channel 'S'
 CALL L1601 ; routine CHAN-OPEN

 XOR A ; clear to address table directly
 LD DE,L09A1 ; address: tape-msgs
 CALL L0C0A ; routine PO-MSG -
 ; 'Start tape then press any key.'

 SET 5,(IY+$02) ; TV_FLAG - Signal lower screen requires
 ; clearing
 CALL L15D4 ; routine WAIT-KEY

 PUSH IX ; save pointer to descriptor.
 LD DE,$0011 ; there are seventeen bytes.
 XOR A ; signal a header.
 CALL L04C2 ; routine SA-BYTES

 POP IX ; restore descriptor pointer.

 LD B,$32 ; wait for a second - 50 interrupts.

;; SA-1-SEC
L0991: HALT ; wait for interrupt
 DJNZ L0991 ; back to SA-1-SEC until pause complete.

 LD E,(IX+$0B) ; fetch length of bytes from the
 LD D,(IX+$0C) ; descriptor.

 LD A,$FF ; signal data bytes.

 POP IX ; retrieve pointer to start
 JP L04C2 ; jump back to SA-BYTES

; Arrangement of two headers in workspace.
; Originally IX addresses first location and only one header is required
; when saving.
;
; OLD NEW PROG DATA DATA CODE
; HEADER HEADER num chr NOTES.
; ------ ------ ---- ---- ---- ---- -----------------------------
; IX-$11 IX+$00 0 1 2 3 Type.
; IX-$10 IX+$01 x x x x F ($FF if filename is null).
; IX-$0F IX+$02 x x x x i
; IX-$0E IX+$03 x x x x l
; IX-$0D IX+$04 x x x x e
; IX-$0C IX+$05 x x x x n
; IX-$0B IX+$06 x x x x a
; IX-$0A IX+$07 x x x x m
; IX-$09 IX+$08 x x x x e
; IX-$08 IX+$09 x x x x .
; IX-$07 IX+$0A x x x x (terminal spaces).
; IX-$06 IX+$0B lo lo lo lo Total
; IX-$05 IX+$0C hi hi hi hi Length of datablock.
; IX-$04 IX+$0D Auto - - Start Various
; IX-$03 IX+$0E Start a-z a-z addr ($80 if no autostart).

; IX-$02 IX+$0F lo - - - Length of Program
; IX-$01 IX+$10 hi - - - only i.e. without variables.
;

; ------------------------
; Canned cassette messages
; ------------------------
; The last-character-inverted Cassette messages.
; Starts with normal initial step-over byte.

;; tape-msgs
L09A1: DEFB $80
 DEFM "Start tape, then press any key"
L09C0: DEFB '.'+$80
 DEFB $0D
 DEFM "Program:"
 DEFB ' '+$80
 DEFB $0D
 DEFM "Number array:"
 DEFB ' '+$80
 DEFB $0D
 DEFM "Character array:"
 DEFB ' '+$80
 DEFB $0D
 DEFM "Bytes:"
 DEFB ' '+$80

;**
;** Part 5. SCREEN AND PRINTER HANDLING ROUTINES **
;**

; --------------------------
; THE 'PRINT OUTPUT' ROUTINE
; --------------------------
; This is the routine most often used by the RST 10 restart although the
; subroutine is on two occasions called directly when it is known that
; output will definitely be to the lower screen.

;; PRINT-OUT
L09F4: CALL L0B03 ; routine PO-FETCH fetches print position
 ; to HL register pair.
 CP $20 ; is character a space or higher ?
 JP NC,L0AD9 ; jump forward to PO-ABLE if so.

 CP $06 ; is character in range 00-05 ?
 JR C,L0A69 ; to PO-QUEST to print '?' if so.

 CP $18 ; is character in range 24d - 31d ?
 JR NC,L0A69 ; to PO-QUEST to also print '?' if so.

 LD HL,L0A11 - 6 ; address 0A0B - the base address of control
 ; character table - where zero would be.
 LD E,A ; control character 06 - 23d
 LD D,$00 ; is transferred to DE.

 ADD HL,DE ; index into table.

 LD E,(HL) ; fetch the offset to routine.
 ADD HL,DE ; add to make HL the address.
 PUSH HL ; push the address.

 JP L0B03 ; Jump forward to PO-FETCH,

 ; as the screen/printer position has been
 ; disturbed, and then indirectly to the PO-STORE
 ; routine on stack.

; -----------------------------
; THE 'CONTROL CHARACTER' TABLE
; -----------------------------
; For control characters in the range 6 - 23d the following table
; is indexed to provide an offset to the handling routine that
; follows the table.

;; ctlchrtab
L0A11: DEFB L0A5F - $; 06d offset $4E to Address: PO-COMMA
 DEFB L0A69 - $; 07d offset $57 to Address: PO-QUEST
 DEFB L0A23 - $; 08d offset $10 to Address: PO-BACK-1
 DEFB L0A3D - $; 09d offset $29 to Address: PO-RIGHT
 DEFB L0A69 - $; 10d offset $54 to Address: PO-QUEST
 DEFB L0A69 - $; 11d offset $53 to Address: PO-QUEST
 DEFB L0A69 - $; 12d offset $52 to Address: PO-QUEST
 DEFB L0A4F - $; 13d offset $37 to Address: PO-ENTER
 DEFB L0A69 - $; 14d offset $50 to Address: PO-QUEST
 DEFB L0A69 - $; 15d offset $4F to Address: PO-QUEST
 DEFB L0A7A - $; 16d offset $5F to Address: PO-1-OPER
 DEFB L0A7A - $; 17d offset $5E to Address: PO-1-OPER
 DEFB L0A7A - $; 18d offset $5D to Address: PO-1-OPER
 DEFB L0A7A - $; 19d offset $5C to Address: PO-1-OPER
 DEFB L0A7A - $; 20d offset $5B to Address: PO-1-OPER
 DEFB L0A7A - $; 21d offset $5A to Address: PO-1-OPER
 DEFB L0A75 - $; 22d offset $54 to Address: PO-2-OPER
 DEFB L0A75 - $; 23d offset $53 to Address: PO-2-OPER

; -------------------------
; THE 'CURSOR LEFT' ROUTINE
; -------------------------
; Backspace and up a line if that action is from the left of screen.
; For ZX printer backspace up to first column but not beyond.

;; PO-BACK-1
L0A23: INC C ; move left one column.
 LD A,$22 ; value $21 is leftmost column.
 CP C ; have we passed ?
 JR NZ,L0A3A ; to PO-BACK-3 if not and store new position.

 BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 JR NZ,L0A38 ; to PO-BACK-2 if so, as we are unable to
 ; backspace from the leftmost position.

 INC B ; move up one screen line
 LD C,$02 ; the rightmost column position.
 LD A,$18 ; Note. This should be $19
 ; credit. Dr. Frank O'Hara, 1982

 CP B ; has position moved past top of screen ?
 JR NZ,L0A3A ; to PO-BACK-3 if not and store new position.

 DEC B ; else back to $18.

;; PO-BACK-2
L0A38: LD C,$21 ; the leftmost column position.

;; PO-BACK-3
L0A3A: JP L0DD9 ; to CL-SET and PO-STORE to save new

 ; position in system variables.

; --------------------------
; THE 'CURSOR RIGHT' ROUTINE
; --------------------------
; This moves the print position to the right leaving a trail in the
; current background colour.
; "However the programmer has failed to store the new print position
; so CHR$ 9 will only work if the next print position is at a newly
; defined place.
; e.g. PRINT PAPER 2; CHR$ 9; AT 4,0;
; does work but is not very helpful"
; - Dr. Ian Logan, Understanding Your Spectrum, 1982.

;; PO-RIGHT
L0A3D: LD A,($5C91) ; fetch P_FLAG value
 PUSH AF ; and save it on stack.

 LD (IY+$57),$01 ; temporarily set P_FLAG 'OVER 1'.
 LD A,$20 ; prepare a space.
 CALL L0B65 ; routine PO-CHAR to print it.
 ; Note. could be PO-ABLE which would update
 ; the column position.

 POP AF ; restore the permanent flag.
 LD ($5C91),A ; and restore system variable P_FLAG

 RET ; return without updating column position

; -----------------------
; Perform carriage return
; -----------------------
; A carriage return is 'printed' to screen or printer buffer.

;; PO-ENTER
L0A4F: BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 JP NZ,L0ECD ; to COPY-BUFF if so, to flush buffer and reset
 ; the print position.

 LD C,$21 ; the leftmost column position.
 CALL L0C55 ; routine PO-SCR handles any scrolling required.
 DEC B ; to next screen line.
 JP L0DD9 ; jump forward to CL-SET to store new position.

; -----------
; Print comma
; -----------
; The comma control character. The 32 column screen has two 16 character
; tabstops. The routine is only reached via the control character table.

;; PO-COMMA
L0A5F: CALL L0B03 ; routine PO-FETCH - seems unnecessary.

 LD A,C ; the column position. $21-$01
 DEC A ; move right. $20-$00
 DEC A ; and again $1F-$00 or $FF if trailing
 AND $10 ; will be $00 or $10.
 JR L0AC3 ; forward to PO-FILL

; -------------------
; Print question mark
; -------------------
; This routine prints a question mark which is commonly
; used to print an unassigned control character in range 0-31d.

; there are a surprising number yet to be assigned.

;; PO-QUEST
L0A69: LD A,$3F ; prepare the character '?'.
 JR L0AD9 ; forward to PO-ABLE.

; --------------------------------
; Control characters with operands
; --------------------------------
; Certain control characters are followed by 1 or 2 operands.
; The entry points from control character table are PO-2-OPER and PO-1-OPER.
; The routines alter the output address of the current channel so that
; subsequent RST $10 instructions take the appropriate action
; before finally resetting the output address back to PRINT-OUT.

;; PO-TV-2
L0A6D: LD DE,L0A87 ; address: PO-CONT will be next output routine
 LD ($5C0F),A ; store first operand in TVDATA-hi
 JR L0A80 ; forward to PO-CHANGE >>

; ---

; -> This initial entry point deals with two operands - AT or TAB.

;; PO-2-OPER
L0A75: LD DE,L0A6D ; address: PO-TV-2 will be next output routine
 JR L0A7D ; forward to PO-TV-1

; ---

; -> This initial entry point deals with one operand INK to OVER.

;; PO-1-OPER
L0A7A: LD DE,L0A87 ; address: PO-CONT will be next output routine

;; PO-TV-1
L0A7D: LD ($5C0E),A ; store control code in TVDATA-lo

;; PO-CHANGE
L0A80: LD HL,($5C51) ; use CURCHL to find current output channel.
 LD (HL),E ; make it
 INC HL ; the supplied
 LD (HL),D ; address from DE.
 RET ; return.

; ---

;; PO-CONT
L0A87: LD DE,L09F4 ; Address: PRINT-OUT
 CALL L0A80 ; routine PO-CHANGE to restore normal channel.
 LD HL,($5C0E) ; TVDATA gives control code and possible
 ; subsequent character
 LD D,A ; save current character
 LD A,L ; the stored control code
 CP $16 ; was it INK to OVER (1 operand) ?
 JP C,L2211 ; to CO-TEMP-5

 JR NZ,L0AC2 ; to PO-TAB if not 22d i.e. 23d TAB.

 ; else must have been 22d AT.
 LD B,H ; line to H (0-23d)
 LD C,D ; column to C (0-31d)
 LD A,$1F ; the value 31d
 SUB C ; reverse the column number.

 JR C,L0AAC ; to PO-AT-ERR if C was greater than 31d.

 ADD A,$02 ; transform to system range $02-$21
 LD C,A ; and place in column register.

 BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 JR NZ,L0ABF ; to PO-AT-SET as line can be ignored.

 LD A,$16 ; 22 decimal
 SUB B ; subtract line number to reverse
 ; 0 - 22 becomes 22 - 0.

;; PO-AT-ERR
L0AAC: JP C,L1E9F ; to REPORT-B if higher than 22 decimal
 ; Integer out of range.

 INC A ; adjust for system range $01-$17
 LD B,A ; place in line register
 INC B ; adjust to system range $02-$18
 BIT 0,(IY+$02) ; TV_FLAG - Lower screen in use ?
 JP NZ,L0C55 ; exit to PO-SCR to test for scrolling

 CP (IY+$31) ; Compare against DF_SZ
 JP C,L0C86 ; to REPORT-5 if too low
 ; Out of screen.

;; PO-AT-SET
L0ABF: JP L0DD9 ; print position is valid so exit via CL-SET

; ---

; Continue here when dealing with TAB.
; Note. In BASIC, TAB is followed by a 16-bit number and was initially
; designed to work with any output device.

;; PO-TAB
L0AC2: LD A,H ; transfer parameter to A
 ; Losing current character -
 ; High byte of TAB parameter.

;; PO-FILL
L0AC3: CALL L0B03 ; routine PO-FETCH, HL-addr, BC=line/column.
 ; column 1 (right), $21 (left)
 ADD A,C ; add operand to current column
 DEC A ; range 0 - 31+
 AND $1F ; make range 0 - 31d
 RET Z ; return if result zero

 LD D,A ; Counter to D
 SET 0,(IY+$01) ; update FLAGS - signal suppress leading space.

;; PO-SPACE
L0AD0: LD A,$20 ; space character.

 CALL L0C3B ; routine PO-SAVE prints the character
 ; using alternate set (normal output routine)

 DEC D ; decrement counter.
 JR NZ,L0AD0 ; to PO-SPACE until done

 RET ; return

; ----------------------

; Printable character(s)
; ----------------------
; This routine prints printable characters and continues into
; the position store routine

;; PO-ABLE
L0AD9: CALL L0B24 ; routine PO-ANY
 ; and continue into position store routine.

; ----------------------------
; THE 'POSITION STORE' ROUTINE
; ----------------------------
; This routine updates the system variables associated with the main screen,
; the lower screen/input buffer or the ZX printer.

;; PO-STORE
L0ADC: BIT 1,(IY+$01) ; Test FLAGS - is printer in use ?
 JR NZ,L0AFC ; Forward, if so, to PO-ST-PR

 BIT 0,(IY+$02) ; Test TV_FLAG - is lower screen in use ?
 JR NZ,L0AF0 ; Forward, if so, to PO-ST-E

; This section deals with the upper screen.

 LD ($5C88),BC ; Update S_POSN - line/column upper screen
 LD ($5C84),HL ; Update DF_CC - upper display file address

 RET ; Return.

; ---

; This section deals with the lower screen.

;; PO-ST-E
L0AF0: LD ($5C8A),BC ; Update SPOSNL line/column lower screen
 LD ($5C82),BC ; Update ECHO_E line/column input buffer
 LD ($5C86),HL ; Update DFCCL lower screen memory address
 RET ; Return.

; ---

; This section deals with the ZX Printer.

;; PO-ST-PR
L0AFC: LD (IY+$45),C ; Update P_POSN column position printer
 LD ($5C80),HL ; Update PR_CC - full printer buffer memory
 ; address
 RET ; Return.

; Note. that any values stored in location 23681 will be overwritten with
; the value 91 decimal.
; Credit April 1983, Dilwyn Jones. "Delving Deeper into your ZX Spectrum".

; ----------------------------
; THE 'POSITION FETCH' ROUTINE
; ----------------------------
; This routine fetches the line/column and display file address of the upper
; and lower screen or, if the printer is in use, the column position and
; absolute memory address.
; Note. that PR-CC-hi (23681) is used by this routine and if, in accordance
; with the manual (that says this is unused), the location has been used for
; other purposes, then subsequent output to the printer buffer could corrupt
; a 256-byte section of memory.

;; PO-FETCH
L0B03: BIT 1,(IY+$01) ; Test FLAGS - is printer in use ?
 JR NZ,L0B1D ; Forward, if so, to PO-F-PR

; assume upper screen in use and thus optimize for path that requires speed.

 LD BC,($5C88) ; Fetch line/column from S_POSN
 LD HL,($5C84) ; Fetch DF_CC display file address

 BIT 0,(IY+$02) ; Test TV_FLAG - lower screen in use ?
 RET Z ; Return if upper screen in use.

; Overwrite registers with values for lower screen.

 LD BC,($5C8A) ; Fetch line/column from SPOSNL
 LD HL,($5C86) ; Fetch display file address from DFCCL
 RET ; Return.

; ---

; This section deals with the ZX Printer.

;; PO-F-PR
L0B1D: LD C,(IY+$45) ; Fetch column from P_POSN.
 LD HL,($5C80) ; Fetch printer buffer address from PR_CC.
 RET ; Return.

; ---------------------------------
; THE 'PRINT ANY CHARACTER' ROUTINE
; ---------------------------------
; This routine is used to print any character in range 32d - 255d
; It is only called from PO-ABLE which continues into PO-STORE

;; PO-ANY
L0B24: CP $80 ; ASCII ?
 JR C,L0B65 ; to PO-CHAR is so.

 CP $90 ; test if a block graphic character.
 JR NC,L0B52 ; to PO-T&UDG to print tokens and UDGs

; The 16 2*2 mosaic characters 128-143 decimal are formed from
; bits 0-3 of the character.

 LD B,A ; save character
 CALL L0B38 ; routine PO-GR-1 to construct top half
 ; then bottom half.
 CALL L0B03 ; routine PO-FETCH fetches print position.
 LD DE,$5C92 ; MEM-0 is location of 8 bytes of character
 JR L0B7F ; to PR-ALL to print to screen or printer

; ---

;; PO-GR-1
L0B38: LD HL,$5C92 ; address MEM-0 - a temporary buffer in
 ; systems variables which is normally used
 ; by the calculator.
 CALL L0B3E ; routine PO-GR-2 to construct top half
 ; and continue into routine to construct
 ; bottom half.

;; PO-GR-2
L0B3E: RR B ; rotate bit 0/2 to carry
 SBC A,A ; result $00 or $FF
 AND $0F ; mask off right hand side

 LD C,A ; store part in C
 RR B ; rotate bit 1/3 of original chr to carry
 SBC A,A ; result $00 or $FF
 AND $F0 ; mask off left hand side
 OR C ; combine with stored pattern
 LD C,$04 ; four bytes for top/bottom half

;; PO-GR-3
L0B4C: LD (HL),A ; store bit patterns in temporary buffer
 INC HL ; next address
 DEC C ; jump back to
 JR NZ,L0B4C ; to PO-GR-3 until byte is stored 4 times

 RET ; return

; ---

; Tokens and User defined graphics are now separated.

;; PO-T&UDG
L0B52: SUB $A5 ; the 'RND' character
 JR NC,L0B5F ; to PO-T to print tokens

 ADD A,$15 ; add 21d to restore to 0 - 20
 PUSH BC ; save current print position
 LD BC,($5C7B) ; fetch UDG to address bit patterns
 JR L0B6A ; to PO-CHAR-2 - common code to lay down
 ; a bit patterned character

; ---

;; PO-T
L0B5F: CALL L0C10 ; routine PO-TOKENS prints tokens
 JP L0B03 ; exit via a JUMP to PO-FETCH as this routine
 ; must continue into PO-STORE.
 ; A JR instruction could be used.

; This point is used to print ASCII characters 32d - 127d.

;; PO-CHAR
L0B65: PUSH BC ; save print position
 LD BC,($5C36) ; address CHARS

; This common code is used to transfer the character bytes to memory.

;; PO-CHAR-2
L0B6A: EX DE,HL ; transfer destination address to DE
 LD HL,$5C3B ; point to FLAGS
 RES 0,(HL) ; allow for leading space
 CP $20 ; is it a space ?
 JR NZ,L0B76 ; to PO-CHAR-3 if not

 SET 0,(HL) ; signal no leading space to FLAGS

;; PO-CHAR-3
L0B76: LD H,$00 ; set high byte to 0
 LD L,A ; character to A
 ; 0-21 UDG or 32-127 ASCII.
 ADD HL,HL ; multiply
 ADD HL,HL ; by
 ADD HL,HL ; eight
 ADD HL,BC ; HL now points to first byte of character
 POP BC ; the source address CHARS or UDG
 EX DE,HL ; character address to DE

; ----------------------------------
; THE 'PRINT ALL CHARACTERS' ROUTINE
; ----------------------------------
; This entry point entered from above to print ASCII and UDGs but also from
; earlier to print mosaic characters.
; HL=destination
; DE=character source
; BC=line/column

;; PR-ALL
L0B7F: LD A,C ; column to A
 DEC A ; move right
 LD A,$21 ; pre-load with leftmost position
 JR NZ,L0B93 ; but if not zero to PR-ALL-1

 DEC B ; down one line
 LD C,A ; load C with $21
 BIT 1,(IY+$01) ; test FLAGS - Is printer in use
 JR Z,L0B93 ; to PR-ALL-1 if not

 PUSH DE ; save source address
 CALL L0ECD ; routine COPY-BUFF outputs line to printer
 POP DE ; restore character source address
 LD A,C ; the new column number ($21) to C

;; PR-ALL-1
L0B93: CP C ; this test is really for screen - new line ?
 PUSH DE ; save source

 CALL Z,L0C55 ; routine PO-SCR considers scrolling

 POP DE ; restore source
 PUSH BC ; save line/column
 PUSH HL ; and destination
 LD A,($5C91) ; fetch P_FLAG to accumulator
 LD B,$FF ; prepare OVER mask in B.
 RRA ; bit 0 set if OVER 1
 JR C,L0BA4 ; to PR-ALL-2

 INC B ; set OVER mask to 0

;; PR-ALL-2
L0BA4: RRA ; skip bit 1 of P_FLAG
 RRA ; bit 2 is INVERSE
 SBC A,A ; will be FF for INVERSE 1 else zero
 LD C,A ; transfer INVERSE mask to C
 LD A,$08 ; prepare to count 8 bytes
 AND A ; clear carry to signal screen
 BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 JR Z,L0BB6 ; to PR-ALL-3 if screen

 SET 1,(IY+$30) ; update FLAGS2 - signal printer buffer has
 ; been used.
 SCF ; set carry flag to signal printer.

;; PR-ALL-3
L0BB6: EX DE,HL ; now HL=source, DE=destination

;; PR-ALL-4
L0BB7: EX AF,AF' ; save printer/screen flag
 LD A,(DE) ; fetch existing destination byte
 AND B ; consider OVER
 XOR (HL) ; now XOR with source

 XOR C ; now with INVERSE MASK
 LD (DE),A ; update screen/printer
 EX AF,AF' ; restore flag
 JR C,L0BD3 ; to PR-ALL-6 - printer address update

 INC D ; gives next pixel line down screen

;; PR-ALL-5
L0BC1: INC HL ; address next character byte
 DEC A ; the byte count is decremented
 JR NZ,L0BB7 ; back to PR-ALL-4 for all 8 bytes

 EX DE,HL ; destination to HL
 DEC H ; bring back to last updated screen position
 BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 CALL Z,L0BDB ; if not, call routine PO-ATTR to update
 ; corresponding colour attribute.
 POP HL ; restore original screen/printer position
 POP BC ; and line column
 DEC C ; move column to right
 INC HL ; increase screen/printer position
 RET ; return and continue into PO-STORE
 ; within PO-ABLE

; ---

; This branch is used to update the printer position by 32 places
; Note. The high byte of the address D remains constant (which it should).

;; PR-ALL-6
L0BD3: EX AF,AF' ; save the flag
 LD A,$20 ; load A with 32 decimal
 ADD A,E ; add this to E
 LD E,A ; and store result in E
 EX AF,AF' ; fetch the flag
 JR L0BC1 ; back to PR-ALL-5

; -----------------------------------
; THE 'GET ATTRIBUTE ADDRESS' ROUTINE
; -----------------------------------
; This routine is entered with the HL register holding the last screen
; address to be updated by PRINT or PLOT.
; The Spectrum screen arrangement leads to the L register holding the correct
; value for the attribute file and it is only necessary to manipulate H to
; form the correct colour attribute address.

;; PO-ATTR
L0BDB: LD A,H ; fetch high byte $40 - $57
 RRCA ; shift
 RRCA ; bits 3 and 4
 RRCA ; to right.
 AND $03 ; range is now 0 - 2
 OR $58 ; form correct high byte for third of screen
 LD H,A ; HL is now correct
 LD DE,($5C8F) ; make D hold ATTR_T, E hold MASK-T
 LD A,(HL) ; fetch existing attribute
 XOR E ; apply masks
 AND D ;
 XOR E ;
 BIT 6,(IY+$57) ; test P_FLAG - is this PAPER 9 ??
 JR Z,L0BFA ; skip to PO-ATTR-1 if not.

 AND $C7 ; set paper
 BIT 2,A ; to contrast with ink

 JR NZ,L0BFA ; skip to PO-ATTR-1

 XOR $38 ;

;; PO-ATTR-1
L0BFA: BIT 4,(IY+$57) ; test P_FLAG - Is this INK 9 ??
 JR Z,L0C08 ; skip to PO-ATTR-2 if not

 AND $F8 ; make ink
 BIT 5,A ; contrast with paper.
 JR NZ,L0C08 ; to PO-ATTR-2

 XOR $07 ;

;; PO-ATTR-2
L0C08: LD (HL),A ; save the new attribute.
 RET ; return.

; ---------------------------------
; THE 'MESSAGE PRINTING' SUBROUTINE
; ---------------------------------
; This entry point is used to print tape, boot-up, scroll? and error messages.
; On entry the DE register points to an initial step-over byte or the
; inverted end-marker of the previous entry in the table.
; Register A contains the message number, often zero to print first message.
; (HL has nothing important usually P_FLAG)

;; PO-MSG
L0C0A: PUSH HL ; put hi-byte zero on stack to suppress
 LD H,$00 ; trailing spaces
 EX (SP),HL ; ld h,0; push hl would have done ?.
 JR L0C14 ; forward to PO-TABLE.

; ---

; This entry point prints the BASIC keywords, '<>' etc. from alt set

;; PO-TOKENS
L0C10: LD DE,L0095 ; address: TKN-TABLE
 PUSH AF ; save the token number to control
 ; trailing spaces - see later *

; ->

;; PO-TABLE
L0C14: CALL L0C41 ; routine PO-SEARCH will set carry for
 ; all messages and function words.

 JR C,L0C22 ; forward to PO-EACH if not a command, '<>' etc.

 LD A,$20 ; prepare leading space
 BIT 0,(IY+$01) ; test FLAGS - leading space if not set

 CALL Z,L0C3B ; routine PO-SAVE to print a space without
 ; disturbing registers.

;; PO-EACH
L0C22: LD A,(DE) ; Fetch character from the table.
 AND $7F ; Cancel any inverted bit.

 CALL L0C3B ; Routine PO-SAVE to print using the alternate
 ; set of registers.

 LD A,(DE) ; Re-fetch character from table.

 INC DE ; Address next character in the table.

 ADD A,A ; Was character inverted ?
 ; (this also doubles character)
 JR NC,L0C22 ; back to PO-EACH if not.

 POP DE ; * re-fetch trailing space byte to D

 CP $48 ; was the last character '$' ?
 JR Z,L0C35 ; forward to PO-TR-SP to consider trailing
 ; space if so.

 CP $82 ; was it < 'A' i.e. '#','>','=' from tokens
 ; or ' ','.' (from tape) or '?' from scroll

 RET C ; Return if so as no trailing space required.

;; PO-TR-SP
L0C35: LD A,D ; The trailing space flag (zero if an error msg)

 CP $03 ; Test against RND, INKEY$ and PI which have no
 ; parameters and therefore no trailing space.

 RET C ; Return if no trailing space.

 LD A,$20 ; Prepare the space character and continue to
 ; print and make an indirect return.

; -----------------------------------
; THE 'RECURSIVE PRINTING' SUBROUTINE
; -----------------------------------
; This routine which is part of PRINT-OUT allows RST $10 to be used
; recursively to print tokens and the spaces associated with them.
; It is called on three occasions when the value of DE must be preserved.

;; PO-SAVE
L0C3B: PUSH DE ; Save DE value.
 EXX ; Switch in main set

 RST 10H ; PRINT-A prints using this alternate set.

 EXX ; Switch back to this alternate set.
 POP DE ; Restore the initial DE value.

 RET ; Return.

; ------------
; Table search
; ------------
; This subroutine searches a message or the token table for the
; message number held in A. DE holds the address of the table.

;; PO-SEARCH
L0C41: PUSH AF ; save the message/token number
 EX DE,HL ; transfer DE to HL
 INC A ; adjust for initial step-over byte

;; PO-STEP
L0C44: BIT 7,(HL) ; is character inverted ?
 INC HL ; address next
 JR Z,L0C44 ; back to PO-STEP if not inverted.

 DEC A ; decrease counter
 JR NZ,L0C44 ; back to PO-STEP if not zero

 EX DE,HL ; transfer address to DE
 POP AF ; restore message/token number
 CP $20 ; return with carry set
 RET C ; for all messages and function tokens

 LD A,(DE) ; test first character of token
 SUB $41 ; and return with carry set
 RET ; if it is less that 'A'
 ; i.e. '<>', '<=', '>='

; ---------------
; Test for scroll
; ---------------
; This test routine is called when printing carriage return, when considering
; PRINT AT and from the general PRINT ALL characters routine to test if
; scrolling is required, prompting the user if necessary.
; This is therefore using the alternate set.
; The B register holds the current line.

;; PO-SCR
L0C55: BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 RET NZ ; return immediately if so.

 LD DE,L0DD9 ; set DE to address: CL-SET
 PUSH DE ; and push for return address.

 LD A,B ; transfer the line to A.
 BIT 0,(IY+$02) ; test TV_FLAG - lower screen in use ?
 JP NZ,L0D02 ; jump forward to PO-SCR-4 if so.

 CP (IY+$31) ; greater than DF_SZ display file size ?
 JR C,L0C86 ; forward to REPORT-5 if less.
 ; 'Out of screen'

 RET NZ ; return (via CL-SET) if greater

 BIT 4,(IY+$02) ; test TV_FLAG - Automatic listing ?
 JR Z,L0C88 ; forward to PO-SCR-2 if not.

 LD E,(IY+$2D) ; fetch BREG - the count of scroll lines to E.
 DEC E ; decrease and jump
 JR Z,L0CD2 ; to PO-SCR-3 if zero and scrolling required.

 LD A,$00 ; explicit - select channel zero.
 CALL L1601 ; routine CHAN-OPEN opens it.

 LD SP,($5C3F) ; set stack pointer to LIST_SP

 RES 4,(IY+$02) ; reset TV_FLAG - signal auto listing finished.
 RET ; return ignoring pushed value, CL-SET
 ; to MAIN or EDITOR without updating
 ; print position >>

; ---

;; REPORT-5
L0C86: RST 08H ; ERROR-1
 DEFB $04 ; Error Report: Out of screen

; continue here if not an automatic listing.

;; PO-SCR-2

L0C88: DEC (IY+$52) ; decrease SCR_CT
 JR NZ,L0CD2 ; forward to PO-SCR-3 to scroll display if
 ; result not zero.

; now produce prompt.

 LD A,$18 ; reset
 SUB B ; the
 LD ($5C8C),A ; SCR_CT scroll count
 LD HL,($5C8F) ; L=ATTR_T, H=MASK_T
 PUSH HL ; save on stack
 LD A,($5C91) ; P_FLAG
 PUSH AF ; save on stack to prevent lower screen
 ; attributes (BORDCR etc.) being applied.
 LD A,$FD ; select system channel 'K'
 CALL L1601 ; routine CHAN-OPEN opens it
 XOR A ; clear to address message directly
 LD DE,L0CF8 ; make DE address: scrl-mssg
 CALL L0C0A ; routine PO-MSG prints to lower screen
 SET 5,(IY+$02) ; set TV_FLAG - signal lower screen requires
 ; clearing
 LD HL,$5C3B ; make HL address FLAGS
 SET 3,(HL) ; signal 'L' mode.
 RES 5,(HL) ; signal 'no new key'.
 EXX ; switch to main set.
 ; as calling chr input from alternative set.
 CALL L15D4 ; routine WAIT-KEY waits for new key
 ; Note. this is the right routine but the
 ; stream in use is unsatisfactory. From the
 ; choices available, it is however the best.

 EXX ; switch back to alternate set.
 CP $20 ; space is considered as BREAK
 JR Z,L0D00 ; forward to REPORT-D if so
 ; 'BREAK - CONT repeats'

 CP $E2 ; is character 'STOP' ?
 JR Z,L0D00 ; forward to REPORT-D if so

 OR $20 ; convert to lower-case
 CP $6E ; is character 'n' ?
 JR Z,L0D00 ; forward to REPORT-D if so else scroll.

 LD A,$FE ; select system channel 'S'
 CALL L1601 ; routine CHAN-OPEN
 POP AF ; restore original P_FLAG
 LD ($5C91),A ; and save in P_FLAG.
 POP HL ; restore original ATTR_T, MASK_T
 LD ($5C8F),HL ; and reset ATTR_T, MASK-T as 'scroll?' has
 ; been printed.

;; PO-SCR-3
L0CD2: CALL L0DFE ; routine CL-SC-ALL to scroll whole display
 LD B,(IY+$31) ; fetch DF_SZ to B
 INC B ; increase to address last line of display
 LD C,$21 ; set C to $21 (was $21 from above routine)
 PUSH BC ; save the line and column in BC.

 CALL L0E9B ; routine CL-ADDR finds display address.

 LD A,H ; now find the corresponding attribute byte
 RRCA ; (this code sequence is used twice
 RRCA ; elsewhere and is a candidate for
 RRCA ; a subroutine.)

 AND $03 ;
 OR $58 ;
 LD H,A ;

 LD DE,$5AE0 ; start of last 'line' of attribute area
 LD A,(DE) ; get attribute for last line
 LD C,(HL) ; transfer to base line of upper part
 LD B,$20 ; there are thirty two bytes
 EX DE,HL ; swap the pointers.

;; PO-SCR-3A
L0CF0: LD (DE),A ; transfer
 LD (HL),C ; attributes.
 INC DE ; address next.
 INC HL ; address next.
 DJNZ L0CF0 ; loop back to PO-SCR-3A for all adjacent
 ; attribute lines.

 POP BC ; restore the line/column.
 RET ; return via CL-SET (was pushed on stack).

; ---

; The message 'scroll?' appears here with last byte inverted.

;; scrl-mssg
L0CF8: DEFB $80 ; initial step-over byte.
 DEFM "scroll"
 DEFB '?'+$80

;; REPORT-D
L0D00: RST 08H ; ERROR-1
 DEFB $0C ; Error Report: BREAK - CONT repeats

; continue here if using lower display - A holds line number.

;; PO-SCR-4
L0D02: CP $02 ; is line number less than 2 ?
 JR C,L0C86 ; to REPORT-5 if so
 ; 'Out of Screen'.

 ADD A,(IY+$31) ; add DF_SZ
 SUB $19 ;
 RET NC ; return if scrolling unnecessary

 NEG ; Negate to give number of scrolls required.
 PUSH BC ; save line/column
 LD B,A ; count to B
 LD HL,($5C8F) ; fetch current ATTR_T, MASK_T to HL.
 PUSH HL ; and save
 LD HL,($5C91) ; fetch P_FLAG
 PUSH HL ; and save.
 ; to prevent corruption by input AT

 CALL L0D4D ; routine TEMPS sets to BORDCR etc
 LD A,B ; transfer scroll number to A.

;; PO-SCR-4A
L0D1C: PUSH AF ; save scroll number.
 LD HL,$5C6B ; address DF_SZ
 LD B,(HL) ; fetch old value
 LD A,B ; transfer to A
 INC A ; and increment
 LD (HL),A ; then put back.

 LD HL,$5C89 ; address S_POSN_hi - line
 CP (HL) ; compare
 JR C,L0D2D ; forward to PO-SCR-4B if scrolling required

 INC (HL) ; else increment S_POSN_hi
 LD B,$18 ; set count to whole display ??
 ; Note. should be $17 and the top line will be
 ; scrolled into the ROM which is harmless on
 ; the standard set up.
 ; credit P.Giblin 1984.

;; PO-SCR-4B
L0D2D: CALL L0E00 ; routine CL-SCROLL scrolls B lines
 POP AF ; restore scroll counter.
 DEC A ; decrease
 JR NZ,L0D1C ; back to PO-SCR-4A until done

 POP HL ; restore original P_FLAG.
 LD (IY+$57),L ; and overwrite system variable P_FLAG.

 POP HL ; restore original ATTR_T/MASK_T.
 LD ($5C8F),HL ; and update system variables.

 LD BC,($5C88) ; fetch S_POSN to BC.
 RES 0,(IY+$02) ; signal to TV_FLAG - main screen in use.
 CALL L0DD9 ; call routine CL-SET for upper display.

 SET 0,(IY+$02) ; signal to TV_FLAG - lower screen in use.
 POP BC ; restore line/column
 RET ; return via CL-SET for lower display.

; ----------------------
; Temporary colour items
; ----------------------
; This subroutine is called 11 times to copy the permanent colour items
; to the temporary ones.

;; TEMPS
L0D4D: XOR A ; clear the accumulator
 LD HL,($5C8D) ; fetch L=ATTR_P and H=MASK_P
 BIT 0,(IY+$02) ; test TV_FLAG - is lower screen in use ?
 JR Z,L0D5B ; skip to TEMPS-1 if not

 LD H,A ; set H, MASK P, to 00000000.
 LD L,(IY+$0E) ; fetch BORDCR to L which is used for lower
 ; screen.

;; TEMPS-1
L0D5B: LD ($5C8F),HL ; transfer values to ATTR_T and MASK_T

; for the print flag the permanent values are odd bits, temporary even bits.

 LD HL,$5C91 ; address P_FLAG.
 JR NZ,L0D65 ; skip to TEMPS-2 if lower screen using A=0.

 LD A,(HL) ; else pick up flag bits.
 RRCA ; rotate permanent bits to temporary bits.

;; TEMPS-2
L0D65: XOR (HL) ;
 AND $55 ; BIN 01010101
 XOR (HL) ; permanent now as original
 LD (HL),A ; apply permanent bits to temporary bits.
 RET ; and return.

; -----------------
; THE 'CLS' COMMAND
; -----------------
; This command clears the display.
; The routine is also called during initialization and by the CLEAR command.
; If it's difficult to write it should be difficult to read.

;; CLS
L0D6B: CALL L0DAF ; Routine CL-ALL clears the entire display and
 ; sets the attributes to the permanent ones
 ; from ATTR-P.

; Having cleared all 24 lines of the display area, continue into the
; subroutine that clears the lower display area. Note that at the moment
; the attributes for the lower lines are the same as upper ones and have
; to be changed to match the BORDER colour.

; --------------------------
; THE 'CLS-LOWER' SUBROUTINE
; --------------------------
; This routine is called from INPUT, and from the MAIN execution loop.
; This is very much a housekeeping routine which clears between 2 and 23
; lines of the display, setting attributes and correcting situations where
; errors have occurred while the normal input and output routines have been
; temporarily diverted to deal with, say colour control codes.

;; CLS-LOWER
L0D6E: LD HL,$5C3C ; address System Variable TV_FLAG.
 RES 5,(HL) ; TV_FLAG - signal do not clear lower screen.
 SET 0,(HL) ; TV_FLAG - signal lower screen in use.

 CALL L0D4D ; routine TEMPS applies permanent attributes,
 ; in this case BORDCR to ATTR_T.
 ; Note. this seems unnecessary and is repeated
 ; within CL-LINE.

 LD B,(IY+$31) ; fetch lower screen display file size DF_SZ

 CALL L0E44 ; routine CL-LINE clears lines to bottom of the
 ; display and sets attributes from BORDCR while
 ; preserving the B register.

 LD HL,$5AC0 ; set initial attribute address to the leftmost
 ; cell of second line up.

 LD A,($5C8D) ; fetch permanent attribute from ATTR_P.

 DEC B ; decrement lower screen display file size.

 JR L0D8E ; forward to enter the backfill loop at CLS-3
 ; where B is decremented again.

; ---

; The backfill loop is entered at midpoint and ensures, if more than 2
; lines have been cleared, that any other lines take the permanent screen
; attributes.

;; CLS-1
L0D87: LD C,$20 ; set counter to 32 character cells per line

;; CLS-2
L0D89: DEC HL ; decrease attribute address.

 LD (HL),A ; and place attributes in next line up.
 DEC C ; decrease the 32 counter.
 JR NZ,L0D89 ; loop back to CLS-2 until all 32 cells done.

;; CLS-3
L0D8E: DJNZ L0D87 ; decrease B counter and back to CLS-1
 ; if not zero.

 LD (IY+$31),$02 ; now set DF_SZ lower screen to 2

; This entry point is also called from CL-ALL below to
; reset the system channel input and output addresses to normal.

;; CL-CHAN
L0D94: LD A,$FD ; select system channel 'K'

 CALL L1601 ; routine CHAN-OPEN opens it.

 LD HL,($5C51) ; fetch CURCHL to HL to address current channel
 LD DE,L09F4 ; set address to PRINT-OUT for first pass.
 AND A ; clear carry for first pass.

;; CL-CHAN-A
L0DA0: LD (HL),E ; Insert the output address on the first pass
 INC HL ; or the input address on the second pass.
 LD (HL),D ;
 INC HL ;

 LD DE,L10A8 ; fetch address KEY-INPUT for second pass
 CCF ; complement carry flag - will set on pass 1.

 JR C,L0DA0 ; back to CL-CHAN-A if first pass else done.

 LD BC,$1721 ; line 23 for lower screen
 JR L0DD9 ; exit via CL-SET to set column
 ; for lower display

; ---------------------------
; Clearing whole display area
; ---------------------------
; This subroutine called from CLS, AUTO-LIST and MAIN-3
; clears 24 lines of the display and resets the relevant system variables.
; This routine also recovers from an error situation where, for instance, an
; invalid colour or position control code has left the output routine addressing
; PO-TV-2 or PO-CONT.

;; CL-ALL
L0DAF: LD HL,$0000 ; Initialize plot coordinates.
 LD ($5C7D),HL ; Set system variable COORDS to 0,0.

 RES 0,(IY+$30) ; update FLAGS2 - signal main screen is clear.

 CALL L0D94 ; routine CL-CHAN makes channel 'K' 'normal'.

 LD A,$FE ; select system channel 'S'
 CALL L1601 ; routine CHAN-OPEN opens it.

 CALL L0D4D ; routine TEMPS applies permanent attributes,
 ; in this case ATTR_P, to ATTR_T.
 ; Note. this seems unnecessary.

 LD B,$18 ; There are 24 lines.

 CALL L0E44 ; routine CL-LINE clears 24 text lines and sets

 ; attributes from ATTR-P.
 ; This routine preserves B and sets C to $21.

 LD HL,($5C51) ; fetch CURCHL make HL address output routine.

 LD DE,L09F4 ; address: PRINT-OUT
 LD (HL),E ; is made
 INC HL ; the normal
 LD (HL),D ; output address.

 LD (IY+$52),$01 ; set SCR_CT - scroll count - to default.

; Note. BC already contains $1821.

 LD BC,$1821 ; reset column and line to 0,0
 ; and continue into CL-SET, below, exiting
 ; via PO-STORE (for the upper screen).

; --------------------
; THE 'CL-SET' ROUTINE
; --------------------
; This important subroutine is used to calculate the character output
; address for screens or printer based on the line/column for screens
; or the column for printer.

;; CL-SET
L0DD9: LD HL,$5B00 ; the base address of printer buffer
 BIT 1,(IY+$01) ; test FLAGS - is printer in use ?
 JR NZ,L0DF4 ; forward to CL-SET-2 if so.

 LD A,B ; transfer line to A.
 BIT 0,(IY+$02) ; test TV_FLAG - lower screen in use ?
 JR Z,L0DEE ; skip to CL-SET-1 if handling upper part

 ADD A,(IY+$31) ; add DF_SZ for lower screen
 SUB $18 ; and adjust.

;; CL-SET-1
L0DEE: PUSH BC ; save the line/column.
 LD B,A ; transfer line to B
 ; (adjusted if lower screen)

 CALL L0E9B ; routine CL-ADDR calculates address at left
 ; of screen.
 POP BC ; restore the line/column.

;; CL-SET-2
L0DF4: LD A,$21 ; the column $01-$21 is reversed
 SUB C ; to range $00 - $20
 LD E,A ; now transfer to DE
 LD D,$00 ; prepare for addition
 ADD HL,DE ; and add to base address

 JP L0ADC ; exit via PO-STORE to update the relevant
 ; system variables.
; ----------------
; Handle scrolling
; ----------------
; The routine CL-SC-ALL is called once from PO to scroll all the display
; and from the routine CL-SCROLL, once, to scroll part of the display.

;; CL-SC-ALL
L0DFE: LD B,$17 ; scroll 23 lines, after 'scroll?'.

;; CL-SCROLL
L0E00: CALL L0E9B ; routine CL-ADDR gets screen address in HL.
 LD C,$08 ; there are 8 pixel lines to scroll.

;; CL-SCR-1
L0E05: PUSH BC ; save counters.
 PUSH HL ; and initial address.
 LD A,B ; get line count.
 AND $07 ; will set zero if all third to be scrolled.
 LD A,B ; re-fetch the line count.
 JR NZ,L0E19 ; forward to CL-SCR-3 if partial scroll.

; HL points to top line of third and must be copied to bottom of previous 3rd.
; (so HL = $4800 or $5000) (but also sometimes $4000)

;; CL-SCR-2
L0E0D: EX DE,HL ; copy HL to DE.
 LD HL,$F8E0 ; subtract $08 from H and add $E0 to L -
 ADD HL,DE ; to make destination bottom line of previous
 ; third.
 EX DE,HL ; restore the source and destination.
 LD BC,$0020 ; thirty-two bytes are to be copied.
 DEC A ; decrement the line count.
 LDIR ; copy a pixel line to previous third.

;; CL-SCR-3
L0E19: EX DE,HL ; save source in DE.
 LD HL,$FFE0 ; load the value -32.
 ADD HL,DE ; add to form destination in HL.
 EX DE,HL ; switch source and destination
 LD B,A ; save the count in B.
 AND $07 ; mask to find count applicable to current
 RRCA ; third and
 RRCA ; multiply by
 RRCA ; thirty two (same as 5 RLCAs)

 LD C,A ; transfer byte count to C ($E0 at most)
 LD A,B ; store line count to A
 LD B,$00 ; make B zero
 LDIR ; copy bytes (BC=0, H incremented, L=0)
 LD B,$07 ; set B to 7, C is zero.
 ADD HL,BC ; add 7 to H to address next third.
 AND $F8 ; has last third been done ?
 JR NZ,L0E0D ; back to CL-SCR-2 if not.

 POP HL ; restore topmost address.
 INC H ; next pixel line down.
 POP BC ; restore counts.
 DEC C ; reduce pixel line count.
 JR NZ,L0E05 ; back to CL-SCR-1 if all eight not done.

 CALL L0E88 ; routine CL-ATTR gets address in attributes
 ; from current 'ninth line', count in BC.

 LD HL,$FFE0 ; set HL to the 16-bit value -32.
 ADD HL,DE ; and add to form destination address.
 EX DE,HL ; swap source and destination addresses.
 LDIR ; copy bytes scrolling the linear attributes.
 LD B,$01 ; continue to clear the bottom line.

; ------------------------------
; THE 'CLEAR TEXT LINES' ROUTINE
; ------------------------------
; This subroutine, called from CL-ALL, CLS-LOWER and AUTO-LIST and above,

; clears text lines at bottom of display.
; The B register holds on entry the number of lines to be cleared 1-24.

;; CL-LINE
L0E44: PUSH BC ; save line count
 CALL L0E9B ; routine CL-ADDR gets top address
 LD C,$08 ; there are eight screen lines to a text line.

;; CL-LINE-1
L0E4A: PUSH BC ; save pixel line count
 PUSH HL ; and save the address
 LD A,B ; transfer the line to A (1-24).

;; CL-LINE-2
L0E4D: AND $07 ; mask 0-7 to consider thirds at a time
 RRCA ; multiply
 RRCA ; by 32 (same as five RLCA instructions)
 RRCA ; now 32 - 256(0)
 LD C,A ; store result in C
 LD A,B ; save line in A (1-24)
 LD B,$00 ; set high byte to 0, prepare for ldir.
 DEC C ; decrement count 31-255.
 LD D,H ; copy HL
 LD E,L ; to DE.
 LD (HL),$00 ; blank the first byte.
 INC DE ; make DE point to next byte.
 LDIR ; ldir will clear lines.
 LD DE,$0701 ; now address next third adjusting
 ADD HL,DE ; register E to address left hand side
 DEC A ; decrease the line count.
 AND $F8 ; will be 16, 8 or 0 (AND $18 will do).
 LD B,A ; transfer count to B.
 JR NZ,L0E4D ; back to CL-LINE-2 if 16 or 8 to do
 ; the next third.

 POP HL ; restore start address.
 INC H ; address next line down.
 POP BC ; fetch counts.
 DEC C ; decrement pixel line count
 JR NZ,L0E4A ; back to CL-LINE-1 till all done.

 CALL L0E88 ; routine CL-ATTR gets attribute address
 ; in DE and B * 32 in BC.

 LD H,D ; transfer the address
 LD L,E ; to HL.

 INC DE ; make DE point to next location.

 LD A,($5C8D) ; fetch ATTR_P - permanent attributes
 BIT 0,(IY+$02) ; test TV_FLAG - lower screen in use ?
 JR Z,L0E80 ; skip to CL-LINE-3 if not.

 LD A,($5C48) ; else lower screen uses BORDCR as attribute.

;; CL-LINE-3
L0E80: LD (HL),A ; put attribute in first byte.
 DEC BC ; decrement the counter.
 LDIR ; copy bytes to set all attributes.
 POP BC ; restore the line $01-$24.
 LD C,$21 ; make column $21. (No use is made of this)
 RET ; return to the calling routine.

; ------------------

; Attribute handling
; ------------------
; This subroutine is called from CL-LINE or CL-SCROLL with the HL register
; pointing to the 'ninth' line and H needs to be decremented before or after
; the division. Had it been done first then either present code or that used
; at the start of PO-ATTR could have been used.
; The Spectrum screen arrangement leads to the L register already holding
; the correct value for the attribute file and it is only necessary
; to manipulate H to form the correct colour attribute address.

;; CL-ATTR
L0E88: LD A,H ; fetch H to A - $48, $50, or $58.
 RRCA ; divide by
 RRCA ; eight.
 RRCA ; $09, $0A or $0B.
 DEC A ; $08, $09 or $0A.
 OR $50 ; $58, $59 or $5A.
 LD H,A ; save high byte of attributes.

 EX DE,HL ; transfer attribute address to DE
 LD H,C ; set H to zero - from last LDIR.
 LD L,B ; load L with the line from B.
 ADD HL,HL ; multiply
 ADD HL,HL ; by
 ADD HL,HL ; thirty two
 ADD HL,HL ; to give count of attribute
 ADD HL,HL ; cells to the end of display.

 LD B,H ; transfer the result
 LD C,L ; to register BC.

 RET ; return.

; -------------------------------
; Handle display with line number
; -------------------------------
; This subroutine is called from four places to calculate the address
; of the start of a screen character line which is supplied in B.

;; CL-ADDR
L0E9B: LD A,$18 ; reverse the line number
 SUB B ; to range $00 - $17.
 LD D,A ; save line in D for later.
 RRCA ; multiply
 RRCA ; by
 RRCA ; thirty-two.

 AND $E0 ; mask off low bits to make
 LD L,A ; L a multiple of 32.

 LD A,D ; bring back the line to A.

 AND $18 ; now $00, $08 or $10.

 OR $40 ; add the base address of screen.

 LD H,A ; HL now has the correct address.
 RET ; return.

; -------------------
; Handle COPY command
; -------------------
; This command copies the top 176 lines to the ZX Printer
; It is popular to call this from machine code at point

; L0EAF with B holding 192 (and interrupts disabled) for a full-screen
; copy. This particularly applies to 16K Spectrums as time-critical
; machine code routines cannot be written in the first 16K of RAM as
; it is shared with the ULA which has precedence over the Z80 chip.

;; COPY
L0EAC: DI ; disable interrupts as this is time-critical.

 LD B,$B0 ; top 176 lines.
L0EAF: LD HL,$4000 ; address start of the display file.

; now enter a loop to handle each pixel line.

;; COPY-1
L0EB2: PUSH HL ; save the screen address.
 PUSH BC ; and the line counter.

 CALL L0EF4 ; routine COPY-LINE outputs one line.

 POP BC ; restore the line counter.
 POP HL ; and display address.
 INC H ; next line down screen within 'thirds'.
 LD A,H ; high byte to A.
 AND $07 ; result will be zero if we have left third.
 JR NZ,L0EC9 ; forward to COPY-2 if not to continue loop.

 LD A,L ; consider low byte first.
 ADD A,$20 ; increase by 32 - sets carry if back to zero.
 LD L,A ; will be next group of 8.
 CCF ; complement - carry set if more lines in
 ; the previous third.
 SBC A,A ; will be FF, if more, else 00.
 AND $F8 ; will be F8 (-8) or 00.
 ADD A,H ; that is subtract 8, if more to do in third.
 LD H,A ; and reset address.

;; COPY-2
L0EC9: DJNZ L0EB2 ; back to COPY-1 for all lines.

 JR L0EDA ; forward to COPY-END to switch off the printer
 ; motor and enable interrupts.
 ; Note. Nothing else is required.

; ------------------------------
; Pass printer buffer to printer
; ------------------------------
; This routine is used to copy 8 text lines from the printer buffer
; to the ZX Printer. These text lines are mapped linearly so HL does
; not need to be adjusted at the end of each line.

;; COPY-BUFF
L0ECD: DI ; disable interrupts
 LD HL,$5B00 ; the base address of the Printer Buffer.
 LD B,$08 ; set count to 8 lines of 32 bytes.

;; COPY-3
L0ED3: PUSH BC ; save counter.

 CALL L0EF4 ; routine COPY-LINE outputs 32 bytes

 POP BC ; restore counter.
 DJNZ L0ED3 ; loop back to COPY-3 for all 8 lines.
 ; then stop motor and clear buffer.

; Note. the COPY command rejoins here, essentially to execute the next
; three instructions.

;; COPY-END
L0EDA: LD A,$04 ; output value 4 to port
 OUT ($FB),A ; to stop the slowed printer motor.
 EI ; enable interrupts.

; --------------------
; Clear Printer Buffer
; --------------------
; This routine clears an arbitrary 256 bytes of memory.
; Note. The routine seems designed to clear a buffer that follows the
; system variables.
; The routine should check a flag or HL address and simply return if COPY
; is in use.
; (T-ADDR-lo would work for the system but not if COPY called externally.)
; As a consequence of this omission the buffer will needlessly
; be cleared when COPY is used and the screen/printer position may be set to
; the start of the buffer and the line number to 0 (B)
; giving an 'Out of Screen' error.
; There seems to have been an unsuccessful attempt to circumvent the use
; of PR_CC_hi.

;; CLEAR-PRB
L0EDF: LD HL,$5B00 ; the location of the buffer.
 LD (IY+$46),L ; update PR_CC_lo - set to zero - superfluous.
 XOR A ; clear the accumulator.
 LD B,A ; set count to 256 bytes.

;; PRB-BYTES
L0EE7: LD (HL),A ; set addressed location to zero.
 INC HL ; address next byte - Note. not INC L.
 DJNZ L0EE7 ; back to PRB-BYTES. repeat for 256 bytes.

 RES 1,(IY+$30) ; set FLAGS2 - signal printer buffer is clear.
 LD C,$21 ; set the column position .
 JP L0DD9 ; exit via CL-SET and then PO-STORE.

; -----------------
; Copy line routine
; -----------------
; This routine is called from COPY and COPY-BUFF to output a line of
; 32 bytes to the ZX Printer.
; Output to port $FB -
; bit 7 set - activate stylus.
; bit 7 low - deactivate stylus.
; bit 2 set - stops printer.
; bit 2 reset - starts printer
; bit 1 set - slows printer.
; bit 1 reset - normal speed.

;; COPY-LINE
L0EF4: LD A,B ; fetch the counter 1-8 or 1-176
 CP $03 ; is it 01 or 02 ?.
 SBC A,A ; result is $FF if so else $00.
 AND $02 ; result is 02 now else 00.
 ; bit 1 set slows the printer.
 OUT ($FB),A ; slow the printer for the
 ; last two lines.
 LD D,A ; save the mask to control the printer later.

;; COPY-L-1
L0EFD: CALL L1F54 ; call BREAK-KEY to read keyboard immediately.

 JR C,L0F0C ; forward to COPY-L-2 if 'break' not pressed.

 LD A,$04 ; else stop the
 OUT ($FB),A ; printer motor.
 EI ; enable interrupts.
 CALL L0EDF ; call routine CLEAR-PRB.
 ; Note. should not be cleared if COPY in use.

;; REPORT-Dc
L0F0A: RST 08H ; ERROR-1
 DEFB $0C ; Error Report: BREAK - CONT repeats

;; COPY-L-2
L0F0C: IN A,($FB) ; test now to see if
 ADD A,A ; a printer is attached.
 RET M ; return if not - but continue with parent
 ; command.

 JR NC,L0EFD ; back to COPY-L-1 if stylus of printer not
 ; in position.

 LD C,$20 ; set count to 32 bytes.

;; COPY-L-3
L0F14: LD E,(HL) ; fetch a byte from line.
 INC HL ; address next location. Note. not INC L.
 LD B,$08 ; count the bits.

;; COPY-L-4
L0F18: RL D ; prepare mask to receive bit.
 RL E ; rotate leftmost print bit to carry
 RR D ; and back to bit 7 of D restoring bit 1

;; COPY-L-5
L0F1E: IN A,($FB) ; read the port.
 RRA ; bit 0 to carry.
 JR NC,L0F1E ; back to COPY-L-5 if stylus not in position.

 LD A,D ; transfer command bits to A.
 OUT ($FB),A ; and output to port.
 DJNZ L0F18 ; loop back to COPY-L-4 for all 8 bits.

 DEC C ; decrease the byte count.
 JR NZ,L0F14 ; back to COPY-L-3 until 256 bits done.

 RET ; return to calling routine COPY/COPY-BUFF.

; ----------------------------------
; Editor routine for BASIC and INPUT
; ----------------------------------
; The editor is called to prepare or edit a BASIC line.
; It is also called from INPUT to input a numeric or string expression.
; The behaviour and options are quite different in the various modes
; and distinguished by bit 5 of FLAGX.
;
; This is a compact and highly versatile routine.

;; EDITOR
L0F2C: LD HL,($5C3D) ; fetch ERR_SP
 PUSH HL ; save on stack

;; ED-AGAIN
L0F30: LD HL,L107F ; address: ED-ERROR

 PUSH HL ; save address on stack and
 LD ($5C3D),SP ; make ERR_SP point to it.

; Note. While in editing/input mode should an error occur then RST 08 will
; update X_PTR to the location reached by CH_ADD and jump to ED-ERROR
; where the error will be cancelled and the loop begin again from ED-AGAIN
; above. The position of the error will be apparent when the lower screen is
; reprinted. If no error then the re-iteration is to ED-LOOP below when
; input is arriving from the keyboard.

;; ED-LOOP
L0F38: CALL L15D4 ; routine WAIT-KEY gets key possibly
 ; changing the mode.
 PUSH AF ; save key.
 LD D,$00 ; and give a short click based
 LD E,(IY-$01) ; on PIP value for duration.
 LD HL,$00C8 ; and pitch.
 CALL L03B5 ; routine BEEPER gives click - effective
 ; with rubber keyboard.
 POP AF ; get saved key value.
 LD HL,L0F38 ; address: ED-LOOP is loaded to HL.
 PUSH HL ; and pushed onto stack.

; At this point there is a looping return address on the stack, an error
; handler and an input stream set up to supply characters.
; The character that has been received can now be processed.

 CP $18 ; range 24 to 255 ?
 JR NC,L0F81 ; forward to ADD-CHAR if so.

 CP $07 ; lower than 7 ?
 JR C,L0F81 ; forward to ADD-CHAR also.
 ; Note. This is a 'bug' and chr$ 6, the comma
 ; control character, should have had an
 ; entry in the ED-KEYS table.
 ; Steven Vickers, 1984, Pitman.

 CP $10 ; less than 16 ?
 JR C,L0F92 ; forward to ED-KEYS if editing control
 ; range 7 to 15 dealt with by a table

 LD BC,$0002 ; prepare for ink/paper etc.
 LD D,A ; save character in D
 CP $16 ; is it ink/paper/bright etc. ?
 JR C,L0F6C ; forward to ED-CONTR if so

 ; leaves 22d AT and 23d TAB
 ; which can't be entered via KEY-INPUT.
 ; so this code is never normally executed
 ; when the keyboard is used for input.

 INC BC ; if it was AT/TAB - 3 locations required
 BIT 7,(IY+$37) ; test FLAGX - Is this INPUT LINE ?
 JP Z,L101E ; jump to ED-IGNORE if not, else

 CALL L15D4 ; routine WAIT-KEY - input address is KEY-NEXT
 ; but is reset to KEY-INPUT
 LD E,A ; save first in E

;; ED-CONTR
L0F6C: CALL L15D4 ; routine WAIT-KEY for control.
 ; input address will be key-next.

 PUSH DE ; saved code/parameters

 LD HL,($5C5B) ; fetch address of keyboard cursor from K_CUR
 RES 0,(IY+$07) ; set MODE to 'L'

 CALL L1655 ; routine MAKE-ROOM makes 2/3 spaces at cursor

 POP BC ; restore code/parameters
 INC HL ; address first location
 LD (HL),B ; place code (ink etc.)
 INC HL ; address next
 LD (HL),C ; place possible parameter. If only one
 ; then DE points to this location also.
 JR L0F8B ; forward to ADD-CH-1

; ------------------------
; Add code to current line
; ------------------------
; this is the branch used to add normal non-control characters
; with ED-LOOP as the stacked return address.
; it is also the OUTPUT service routine for system channel 'R'.

;; ADD-CHAR
L0F81: RES 0,(IY+$07) ; set MODE to 'L'

X0F85: LD HL,($5C5B) ; fetch address of keyboard cursor from K_CUR

 CALL L1652 ; routine ONE-SPACE creates one space.

; either a continuation of above or from ED-CONTR with ED-LOOP on stack.

;; ADD-CH-1
L0F8B: LD (DE),A ; load current character to last new location.
 INC DE ; address next
 LD ($5C5B),DE ; and update K_CUR system variable.
 RET ; return - either a simple return
 ; from ADD-CHAR or to ED-LOOP on stack.

; ---

; a branch of the editing loop to deal with control characters
; using a look-up table.

;; ED-KEYS
L0F92: LD E,A ; character to E.
 LD D,$00 ; prepare to add.
 LD HL,L0FA0 - 7 ; base address of editing keys table. $0F99
 ADD HL,DE ; add E
 LD E,(HL) ; fetch offset to E
 ADD HL,DE ; add offset for address of handling routine.
 PUSH HL ; push the address on machine stack.
 LD HL,($5C5B) ; load address of cursor from K_CUR.
 RET ; an make an indirect jump forward to routine.

; ------------------
; Editing keys table
; ------------------
; For each code in the range $07 to $0F this table contains a
; single offset byte to the routine that services that code.
; Note. for what was intended there should also have been an
; entry for chr$ 6 with offset to ed-symbol.

;; ed-keys-t
L0FA0: DEFB L0FA9 - $; 07d offset $09 to Address: ED-EDIT
 DEFB L1007 - $; 08d offset $66 to Address: ED-LEFT
 DEFB L100C - $; 09d offset $6A to Address: ED-RIGHT

 DEFB L0FF3 - $; 10d offset $50 to Address: ED-DOWN
 DEFB L1059 - $; 11d offset $B5 to Address: ED-UP
 DEFB L1015 - $; 12d offset $70 to Address: ED-DELETE
 DEFB L1024 - $; 13d offset $7E to Address: ED-ENTER
 DEFB L1076 - $; 14d offset $CF to Address: ED-SYMBOL
 DEFB L107C - $; 15d offset $D4 to Address: ED-GRAPH

; ---------------
; Handle EDIT key
; ---------------
; The user has pressed SHIFT 1 to bring edit line down to bottom of screen.
; Alternatively the user wishes to clear the input buffer and start again.
; Alternatively ...

;; ED-EDIT
L0FA9: LD HL,($5C49) ; fetch E_PPC the last line number entered.
 ; Note. may not exist and may follow program.
 BIT 5,(IY+$37) ; test FLAGX - input mode ?
 JP NZ,L1097 ; jump forward to CLEAR-SP if not in editor.

 CALL L196E ; routine LINE-ADDR to find address of line
 ; or following line if it doesn't exist.
 CALL L1695 ; routine LINE-NO will get line number from
 ; address or previous line if at end-marker.
 LD A,D ; if there is no program then DE will
 OR E ; contain zero so test for this.
 JP Z,L1097 ; jump to CLEAR-SP if so.

; Note. at this point we have a validated line number, not just an
; approximation and it would be best to update E_PPC with the true
; cursor line value which would enable the line cursor to be suppressed
; in all situations - see shortly.

 PUSH HL ; save address of line.
 INC HL ; address low byte of length.
 LD C,(HL) ; transfer to C
 INC HL ; next to high byte
 LD B,(HL) ; transfer to B.
 LD HL,$000A ; an overhead of ten bytes
 ADD HL,BC ; is added to length.
 LD B,H ; transfer adjusted value
 LD C,L ; to BC register.
 CALL L1F05 ; routine TEST-ROOM checks free memory.
 CALL L1097 ; routine CLEAR-SP clears editing area.
 LD HL,($5C51) ; address CURCHL
 EX (SP),HL ; swap with line address on stack
 PUSH HL ; save line address underneath

 LD A,$FF ; select system channel 'R'
 CALL L1601 ; routine CHAN-OPEN opens it

 POP HL ; drop line address
 DEC HL ; make it point to first byte of line num.
 DEC (IY+$0F) ; decrease E_PPC_lo to suppress line cursor.
 ; Note. ineffective when E_PPC is one
 ; greater than last line of program perhaps
 ; as a result of a delete.
 ; credit. Paul Harrison 1982.

 CALL L1855 ; routine OUT-LINE outputs the BASIC line
 ; to the editing area.
 INC (IY+$0F) ; restore E_PPC_lo to the previous value.
 LD HL,($5C59) ; address E_LINE in editing area.
 INC HL ; advance

 INC HL ; past space
 INC HL ; and digit characters
 INC HL ; of line number.

 LD ($5C5B),HL ; update K_CUR to address start of BASIC.
 POP HL ; restore the address of CURCHL.
 CALL L1615 ; routine CHAN-FLAG sets flags for it.
 RET ; RETURN to ED-LOOP.

; -------------------
; Cursor down editing
; -------------------
; The BASIC lines are displayed at the top of the screen and the user
; wishes to move the cursor down one line in edit mode.
; With INPUT LINE, this key must be used instead of entering STOP.

;; ED-DOWN
L0FF3: BIT 5,(IY+$37) ; test FLAGX - Input Mode ?
 JR NZ,L1001 ; skip to ED-STOP if so

 LD HL,$5C49 ; address E_PPC - 'current line'
 CALL L190F ; routine LN-FETCH fetches number of next
 ; line or same if at end of program.
 JR L106E ; forward to ED-LIST to produce an
 ; automatic listing.

; ---

;; ED-STOP
L1001: LD (IY+$00),$10 ; set ERR_NR to 'STOP in INPUT' code
 JR L1024 ; forward to ED-ENTER to produce error.

; -------------------
; Cursor left editing
; -------------------
; This acts on the cursor in the lower section of the screen in both
; editing and input mode.

;; ED-LEFT
L1007: CALL L1031 ; routine ED-EDGE moves left if possible
 JR L1011 ; forward to ED-CUR to update K-CUR
 ; and return to ED-LOOP.

; --------------------
; Cursor right editing
; --------------------
; This acts on the cursor in the lower screen in both editing and input
; mode and moves it to the right.

;; ED-RIGHT
L100C: LD A,(HL) ; fetch addressed character.
 CP $0D ; is it carriage return ?
 RET Z ; return if so to ED-LOOP

 INC HL ; address next character

;; ED-CUR
L1011: LD ($5C5B),HL ; update K_CUR system variable
 RET ; return to ED-LOOP

; --------------
; DELETE editing
; --------------
; This acts on the lower screen and deletes the character to left of

; cursor. If control characters are present these are deleted first
; leaving the naked parameter (0-7) which appears as a '?' except in the
; case of chr$ 6 which is the comma control character. It is not mandatory
; to delete these second characters.

;; ED-DELETE
L1015: CALL L1031 ; routine ED-EDGE moves cursor to left.
 LD BC,$0001 ; of character to be deleted.
 JP L19E8 ; to RECLAIM-2 reclaim the character.

; --
; Ignore next 2 codes from key-input routine
; --
; Since AT and TAB cannot be entered this point is never reached
; from the keyboard. If inputting from a tape device or network then
; the control and two following characters are ignored and processing
; continues as if a carriage return had been received.
; Here, perhaps, another Spectrum has said print #15; AT 0,0; "This is yellow"
; and this one is interpreting input #15; a$.

;; ED-IGNORE
L101E: CALL L15D4 ; routine WAIT-KEY to ignore keystroke.
 CALL L15D4 ; routine WAIT-KEY to ignore next key.

; -------------
; Enter/newline
; -------------
; The enter key has been pressed to have BASIC line or input accepted.

;; ED-ENTER
L1024: POP HL ; discard address ED-LOOP
 POP HL ; drop address ED-ERROR

;; ED-END
L1026: POP HL ; the previous value of ERR_SP
 LD ($5C3D),HL ; is restored to ERR_SP system variable
 BIT 7,(IY+$00) ; is ERR_NR $FF (= 'OK') ?
 RET NZ ; return if so

 LD SP,HL ; else put error routine on stack
 RET ; and make an indirect jump to it.

; -----------------------------
; Move cursor left when editing
; -----------------------------
; This routine moves the cursor left. The complication is that it must
; not position the cursor between control codes and their parameters.
; It is further complicated in that it deals with TAB and AT characters
; which are never present from the keyboard.
; The method is to advance from the beginning of the line each time,
; jumping one, two, or three characters as necessary saving the original
; position at each jump in DE. Once it arrives at the cursor then the next
; legitimate leftmost position is in DE.

;; ED-EDGE
L1031: SCF ; carry flag must be set to call the nested
 CALL L1195 ; subroutine SET-DE.
 ; if input then DE=WORKSP
 ; if editing then DE=E_LINE
 SBC HL,DE ; subtract address from start of line
 ADD HL,DE ; and add back.
 INC HL ; adjust for carry.
 POP BC ; drop return address
 RET C ; return to ED-LOOP if already at left

 ; of line.

 PUSH BC ; resave return address - ED-LOOP.
 LD B,H ; transfer HL - cursor address
 LD C,L ; to BC register pair.
 ; at this point DE addresses start of line.

;; ED-EDGE-1
L103E: LD H,D ; transfer DE - leftmost pointer
 LD L,E ; to HL
 INC HL ; address next leftmost character to
 ; advance position each time.
 LD A,(DE) ; pick up previous in A
 AND $F0 ; lose the low bits
 CP $10 ; is it INK to TAB $10-$1F ?
 ; that is, is it followed by a parameter ?
 JR NZ,L1051 ; to ED-EDGE-2 if not
 ; HL has been incremented once

 INC HL ; address next as at least one parameter.

; in fact since 'tab' and 'at' cannot be entered the next section seems
; superfluous.
; The test will always fail and the jump to ED-EDGE-2 will be taken.

 LD A,(DE) ; reload leftmost character
 SUB $17 ; decimal 23 ('tab')
 ADC A,$00 ; will be 0 for 'tab' and 'at'.
 JR NZ,L1051 ; forward to ED-EDGE-2 if not
 ; HL has been incremented twice

 INC HL ; increment a third time for 'at'/'tab'

;; ED-EDGE-2
L1051: AND A ; prepare for true subtraction
 SBC HL,BC ; subtract cursor address from pointer
 ADD HL,BC ; and add back
 ; Note when HL matches the cursor position BC,
 ; there is no carry and the previous
 ; position is in DE.
 EX DE,HL ; transfer result to DE if looping again.
 ; transfer DE to HL to be used as K-CUR
 ; if exiting loop.
 JR C,L103E ; back to ED-EDGE-1 if cursor not matched.

 RET ; return.

; -----------------
; Cursor up editing
; -----------------
; The main screen displays part of the BASIC program and the user wishes
; to move up one line scrolling if necessary.
; This has no alternative use in input mode.

;; ED-UP
L1059: BIT 5,(IY+$37) ; test FLAGX - input mode ?
 RET NZ ; return if not in editor - to ED-LOOP.

 LD HL,($5C49) ; get current line from E_PPC
 CALL L196E ; routine LINE-ADDR gets address
 EX DE,HL ; and previous in DE
 CALL L1695 ; routine LINE-NO gets prev line number
 LD HL,$5C4A ; set HL to E_PPC_hi as next routine stores
 ; top first.

 CALL L191C ; routine LN-STORE loads DE value to HL
 ; high byte first - E_PPC_lo takes E

; this branch is also taken from ed-down.

;; ED-LIST
L106E: CALL L1795 ; routine AUTO-LIST lists to upper screen
 ; including adjusted current line.
 LD A,$00 ; select lower screen again
 JP L1601 ; exit via CHAN-OPEN to ED-LOOP

; --------------------------------
; Use of symbol and graphics codes
; --------------------------------
; These will not be encountered with the keyboard but would be handled
; otherwise as follows.
; As noted earlier, Vickers says there should have been an entry in
; the KEYS table for chr$ 6 which also pointed here.
; If, for simplicity, two Spectrums were both using #15 as a bi-directional
; channel connected to each other:-
; then when the other Spectrum has said PRINT #15; x, y
; input #15; i ; j would treat the comma control as a newline and the
; control would skip to input j.
; You can get round the missing chr$ 6 handler by sending multiple print
; items separated by a newline '.

; chr$14 would have the same functionality.

; This is chr$ 14.
;; ED-SYMBOL
L1076: BIT 7,(IY+$37) ; test FLAGX - is this INPUT LINE ?
 JR Z,L1024 ; back to ED-ENTER if not to treat as if
 ; enter had been pressed.
 ; else continue and add code to buffer.

; Next is chr$ 15
; Note that ADD-CHAR precedes the table so we can't offset to it directly.

;; ED-GRAPH
L107C: JP L0F81 ; jump back to ADD-CHAR

; --------------------
; Editor error routine
; --------------------
; If an error occurs while editing, or inputting, then ERR_SP
; points to the stack location holding address ED_ERROR.

;; ED-ERROR
L107F: BIT 4,(IY+$30) ; test FLAGS2 - is K channel in use ?
 JR Z,L1026 ; back to ED-END if not.

; but as long as we're editing lines or inputting from the keyboard, then
; we've run out of memory so give a short rasp.

 LD (IY+$00),$FF ; reset ERR_NR to 'OK'.
 LD D,$00 ; prepare for beeper.
 LD E,(IY-$02) ; use RASP value.
 LD HL,$1A90 ; set a duration.
 CALL L03B5 ; routine BEEPER emits a warning rasp.
 JP L0F30 ; to ED-AGAIN to re-stack address of
 ; this routine and make ERR_SP point to it.

; ---------------------
; Clear edit/work space

; ---------------------
; The editing area or workspace is cleared depending on context.
; This is called from ED-EDIT to clear workspace if edit key is
; used during input, to clear editing area if no program exists
; and to clear editing area prior to copying the edit line to it.
; It is also used by the error routine to clear the respective
; area depending on FLAGX.

;; CLEAR-SP
L1097: PUSH HL ; preserve HL
 CALL L1190 ; routine SET-HL
 ; if in edit HL = WORKSP-1, DE = E_LINE
 ; if in input HL = STKBOT, DE = WORKSP
 DEC HL ; adjust
 CALL L19E5 ; routine RECLAIM-1 reclaims space
 LD ($5C5B),HL ; set K_CUR to start of empty area
 LD (IY+$07),$00 ; set MODE to 'KLC'
 POP HL ; restore HL.
 RET ; return.

; ----------------------------
; THE 'KEYBOARD INPUT' ROUTINE
; ----------------------------
; This is the service routine for the input stream of the keyboard channel 'K'.

;; KEY-INPUT
L10A8: BIT 3,(IY+$02) ; test TV_FLAG - has a key been pressed in
 ; editor ?

 CALL NZ,L111D ; routine ED-COPY, if so, to reprint the lower
 ; screen at every keystroke/mode change.

 AND A ; clear carry flag - required exit condition.

 BIT 5,(IY+$01) ; test FLAGS - has a new key been pressed ?
 RET Z ; return if not. >>

 LD A,($5C08) ; system variable LASTK will hold last key -
 ; from the interrupt routine.

 RES 5,(IY+$01) ; update FLAGS - reset the new key flag.
 PUSH AF ; save the input character.

 BIT 5,(IY+$02) ; test TV_FLAG - clear lower screen ?

 CALL NZ,L0D6E ; routine CLS-LOWER if so.

 POP AF ; restore the character code.
 CP $20 ; if space or higher then
 JR NC,L111B ; forward to KEY-DONE2 and return with carry
 ; set to signal key-found.

 CP $10 ; with 16d INK and higher skip
 JR NC,L10FA ; forward to KEY-CONTR.

 CP $06 ; for 6 - 15d
 JR NC,L10DB ; skip forward to KEY-M-CL to handle Modes
 ; and CapsLock.

; that only leaves 0-5, the flash bright inverse switches.

 LD B,A ; save character in B
 AND $01 ; isolate the embedded parameter (0/1).
 LD C,A ; and store in C

 LD A,B ; re-fetch copy (0-5)
 RRA ; halve it 0, 1 or 2.
 ADD A,$12 ; add 18d gives 'flash', 'bright'
 ; and 'inverse'.
 JR L1105 ; forward to KEY-DATA with the
 ; parameter (0/1) in C.

; ---

; Now separate capslock 06 from modes 7-15.

;; KEY-M-CL
L10DB: JR NZ,L10E6 ; forward to KEY-MODE if not 06 (capslock)

 LD HL,$5C6A ; point to FLAGS2
 LD A,$08 ; value 00001000
 XOR (HL) ; toggle BIT 3 of FLAGS2 the capslock bit
 LD (HL),A ; and store result in FLAGS2 again.
 JR L10F4 ; forward to KEY-FLAG to signal no-key.

; ---

;; KEY-MODE
L10E6: CP $0E ; compare with chr 14d
 RET C ; return with carry set "key found" for
 ; codes 7 - 13d leaving 14d and 15d
 ; which are converted to mode codes.

 SUB $0D ; subtract 13d leaving 1 and 2
 ; 1 is 'E' mode, 2 is 'G' mode.
 LD HL,$5C41 ; address the MODE system variable.
 CP (HL) ; compare with existing value before
 LD (HL),A ; inserting the new value.
 JR NZ,L10F4 ; forward to KEY-FLAG if it has changed.

 LD (HL),$00 ; else make MODE zero - KLC mode
 ; Note. while in Extended/Graphics mode,
 ; the Extended Mode/Graphics key is pressed
 ; again to get out.

;; KEY-FLAG
L10F4: SET 3,(IY+$02) ; update TV_FLAG - show key state has changed
 CP A ; clear carry and reset zero flags -
 ; no actual key returned.
 RET ; make the return.

; ---

; now deal with colour controls - 16-23 ink, 24-31 paper

;; KEY-CONTR
L10FA: LD B,A ; make a copy of character.
 AND $07 ; mask to leave bits 0-7
 LD C,A ; and store in C.
 LD A,$10 ; initialize to 16d - INK.
 BIT 3,B ; was it paper ?
 JR NZ,L1105 ; forward to KEY-DATA with INK 16d and
 ; colour in C.

 INC A ; else change from INK to PAPER (17d) if so.

;; KEY-DATA
L1105: LD (IY-$2D),C ; put the colour (0-7)/state(0/1) in KDATA
 LD DE,L110D ; address: KEY-NEXT will be next input stream

 JR L1113 ; forward to KEY-CHAN to change it ...

; ---

; ... so that INPUT_AD directs control to here at next call to WAIT-KEY

;; KEY-NEXT
L110D: LD A,($5C0D) ; pick up the parameter stored in KDATA.
 LD DE,L10A8 ; address: KEY-INPUT will be next input stream
 ; continue to restore default channel and
 ; make a return with the control code.

;; KEY-CHAN
L1113: LD HL,($5C4F) ; address start of CHANNELS area using CHANS
 ; system variable.
 ; Note. One might have expected CURCHL to
 ; have been used.
 INC HL ; step over the
 INC HL ; output address
 LD (HL),E ; and update the input
 INC HL ; routine address for
 LD (HL),D ; the next call to WAIT-KEY.

;; KEY-DONE2
L111B: SCF ; set carry flag to show a key has been found
 RET ; and return.

; --------------------
; Lower screen copying
; --------------------
; This subroutine is called whenever the line in the editing area or
; input workspace is required to be printed to the lower screen.
; It is by calling this routine after any change that the cursor, for
; instance, appears to move to the left.
; Remember the edit line will contain characters and tokens
; e.g. "1000 LET a=1" is 8 characters.

;; ED-COPY
L111D: CALL L0D4D ; routine TEMPS sets temporary attributes.
 RES 3,(IY+$02) ; update TV_FLAG - signal no change in mode
 RES 5,(IY+$02) ; update TV_FLAG - signal don't clear lower
 ; screen.
 LD HL,($5C8A) ; fetch SPOSNL
 PUSH HL ; and save on stack.

 LD HL,($5C3D) ; fetch ERR_SP
 PUSH HL ; and save also
 LD HL,L1167 ; address: ED-FULL
 PUSH HL ; is pushed as the error routine
 LD ($5C3D),SP ; and ERR_SP made to point to it.

 LD HL,($5C82) ; fetch ECHO_E
 PUSH HL ; and push also

 SCF ; set carry flag to control SET-DE
 CALL L1195 ; call routine SET-DE
 ; if in input DE = WORKSP
 ; if in edit DE = E_LINE
 EX DE,HL ; start address to HL

 CALL L187D ; routine OUT-LINE2 outputs entire line up to
 ; carriage return including initial
 ; characterized line number when present.
 EX DE,HL ; transfer new address to DE

 CALL L18E1 ; routine OUT-CURS considers a
 ; terminating cursor.

 LD HL,($5C8A) ; fetch updated SPOSNL
 EX (SP),HL ; exchange with ECHO_E on stack
 EX DE,HL ; transfer ECHO_E to DE
 CALL L0D4D ; routine TEMPS to re-set attributes
 ; if altered.

; the lower screen was not cleared, at the outset, so if deleting then old
; text from a previous print may follow this line and requires blanking.

;; ED-BLANK
L1150: LD A,($5C8B) ; fetch SPOSNL_hi is current line
 SUB D ; compare with old
 JR C,L117C ; forward to ED-C-DONE if no blanking

 JR NZ,L115E ; forward to ED-SPACES if line has changed

 LD A,E ; old column to A
 SUB (IY+$50) ; subtract new in SPOSNL_lo
 JR NC,L117C ; forward to ED-C-DONE if no backfilling.

;; ED-SPACES
L115E: LD A,$20 ; prepare a space.
 PUSH DE ; save old line/column.
 CALL L09F4 ; routine PRINT-OUT prints a space over
 ; any text from previous print.
 ; Note. Since the blanking only occurs when
 ; using $09F4 to print to the lower screen,
 ; there is no need to vector via a RST 10
 ; and we can use this alternate set.
 POP DE ; restore the old line column.
 JR L1150 ; back to ED-BLANK until all old text blanked.

; -------------------------------
; THE 'EDITOR-FULL' ERROR ROUTINE
; -------------------------------
; This is the error routine addressed by ERR_SP. This is not for the out of
; memory situation as we're just printing. The pitch and duration are exactly
; the same as used by ED-ERROR from which this has been augmented. The
; situation is that the lower screen is full and a rasp is given to suggest
; that this is perhaps not the best idea you've had that day.

;; ED-FULL
L1167: LD D,$00 ; prepare to moan.
 LD E,(IY-$02) ; fetch RASP value.
 LD HL,$1A90 ; set duration.

 CALL L03B5 ; routine BEEPER.

 LD (IY+$00),$FF ; clear ERR_NR.
 LD DE,($5C8A) ; fetch SPOSNL.
 JR L117E ; forward to ED-C-END

; -------

; the exit point from line printing continues here.

;; ED-C-DONE
L117C: POP DE ; fetch new line/column.
 POP HL ; fetch the error address.

; the error path rejoins here.

;; ED-C-END
L117E: POP HL ; restore the old value of ERR_SP.
 LD ($5C3D),HL ; update the system variable ERR_SP

 POP BC ; old value of SPOSN_L
 PUSH DE ; save new value

 CALL L0DD9 ; routine CL-SET and PO-STORE
 ; update ECHO_E and SPOSN_L from BC

 POP HL ; restore new value
 LD ($5C82),HL ; and overwrite ECHO_E

 LD (IY+$26),$00 ; make error pointer X_PTR_hi out of bounds

 RET ; return

; ---
; Point to first and last locations of work space
; ---
; These two nested routines ensure that the appropriate pointers are
; selected for the editing area or workspace. The routines that call
; these routines are designed to work on either area.

; this routine is called once

;; SET-HL
L1190: LD HL,($5C61) ; fetch WORKSP to HL.
 DEC HL ; point to last location of editing area.
 AND A ; clear carry to limit exit points to first
 ; or last.

; this routine is called with carry set and exits at a conditional return.

;; SET-DE
L1195: LD DE,($5C59) ; fetch E_LINE to DE
 BIT 5,(IY+$37) ; test FLAGX - Input Mode ?
 RET Z ; return now if in editing mode

 LD DE,($5C61) ; fetch WORKSP to DE
 RET C ; return if carry set (entry = set-de)

 LD HL,($5C63) ; fetch STKBOT to HL as well
 RET ; and return (entry = set-hl (in input))

; -----------------------------------
; THE 'REMOVE FLOATING POINT' ROUTINE
; -----------------------------------
; When a BASIC LINE or the INPUT BUFFER is parsed any numbers will have
; an invisible chr 14d inserted after them and the 5-byte integer or
; floating point form inserted after that. Similar invisible value holders
; are also created after the numeric and string variables in a DEF FN list.
; This routine removes these 'compiled' numbers from the edit line or
; input workspace.

;; REMOVE-FP
L11A7: LD A,(HL) ; fetch character
 CP $0E ; is it the CHR$ 14 number marker ?
 LD BC,$0006 ; prepare to strip six bytes

 CALL Z,L19E8 ; routine RECLAIM-2 reclaims bytes if CHR$ 14.

 LD A,(HL) ; reload next (or same) character

 INC HL ; and advance address
 CP $0D ; end of line or input buffer ?
 JR NZ,L11A7 ; back to REMOVE-FP until entire line done.

 RET ; return.

; *********************************
; ** Part 6. EXECUTIVE ROUTINES **
; *********************************

; The memory.
;
; +---------+-----------+------------+--------------+-------------+--
; | BASIC | Display | Attributes | ZX Printer | System |
; | ROM | File | File | Buffer | Variables |
; +---------+-----------+------------+--------------+-------------+--
; ^ ^ ^ ^ ^ ^
; $0000 $4000 $5800 $5B00 $5C00 $5CB6 = CHANS
;
;
; --+----------+---+---------+-----------+---+------------+--+---+--
; | Channel |$80| BASIC | Variables |$80| Edit Line |NL|$80|
; | Info | | Program | Area | | or Command | | |
; --+----------+---+---------+-----------+---+------------+--+---+--
; ^ ^ ^ ^ ^
; CHANS PROG VARS E_LINE WORKSP
;
;
; ---5--> <---2--- <--3---
; --+-------+--+------------+-------+-------+---------+-------+-+---+------+
; | INPUT |NL| Temporary | Calc. | Spare | Machine | GOSUB |?|$3E| UDGs |
; | data | | Work Space | Stack | | Stack | Stack | | | |
; --+-------+--+------------+-------+-------+---------+-------+-+---+------+
; ^ ^ ^ ^ ^ ^ ^
; WORKSP STKBOT STKEND sp RAMTOP UDG P_RAMT
;

; -----------------
; THE 'NEW' COMMAND
; -----------------
; The NEW command is about to set all RAM below RAMTOP to zero and then
; re-initialize the system. All RAM above RAMTOP should, and will be,
; preserved.
; There is nowhere to store values in RAM or on the stack which becomes
; inoperable. Similarly PUSH and CALL instructions cannot be used to store
; values or section common code. The alternate register set is the only place
; available to store 3 persistent 16-bit system variables.

;; NEW
L11B7: DI ; Disable Interrupts - machine stack will be
 ; cleared.
 LD A,$FF ; Flag coming from NEW.
 LD DE,($5CB2) ; Fetch RAMTOP as top value.
 EXX ; Switch in alternate set.
 LD BC,($5CB4) ; Fetch P-RAMT differs on 16K/48K machines.
 LD DE,($5C38) ; Fetch RASP/PIP.
 LD HL,($5C7B) ; Fetch UDG differs on 16K/48K machines.
 EXX ; Switch back to main set and continue into...

; ----------------------
; THE 'START-NEW' BRANCH
; ----------------------

; This branch is taken from above and from RST 00h.
; The common code tests RAM and sets it to zero re-initializing all the
; non-zero system variables and channel information. The A register flags
; if coming from START or NEW.

;; START-NEW
L11CB: LD B,A ; Save the flag to control later branching.

 LD A,$07 ; Select a white border
 OUT ($FE),A ; and set it now by writing to a port.

 LD A,$3F ; Load the accumulator with last page in ROM.
 LD I,A ; Set the I register - this remains constant
 ; and can't be in the range $40 - $7F as 'snow'
 ; appears on the screen.

 NOP ; These seem unnecessary.
 NOP ;
 NOP ;
 NOP ;
 NOP ;
 NOP ;

; -----------------------
; THE 'RAM CHECK' SECTION
; -----------------------
; Typically, a Spectrum will have 16K or 48K of RAM and this code will test
; it all till it finds an unpopulated location or, less likely, a faulty
; location. Usually it stops when it reaches the top $FFFF, or in the case
; of NEW the supplied top value. The entire screen turns black with
; sometimes red stripes on black paper just visible.

;; ram-check
L11DA: LD H,D ; Transfer the top value to the HL register
 LD L,E ; pair.

;; RAM-FILL
L11DC: LD (HL),$02 ; Load memory with $02 - red ink on black paper.
 DEC HL ; Decrement memory address.
 CP H ; Have we reached ROM - $3F ?
 JR NZ,L11DC ; Back to RAM-FILL if not.

;; RAM-READ
L11E2: AND A ; Clear carry - prepare to subtract.
 SBC HL,DE ; subtract and add back setting
 ADD HL,DE ; carry when back at start.
 INC HL ; and increment for next iteration.
 JR NC,L11EF ; forward to RAM-DONE if we've got back to
 ; starting point with no errors.

 DEC (HL) ; decrement to 1.
 JR Z,L11EF ; forward to RAM-DONE if faulty.

 DEC (HL) ; decrement to zero.
 JR Z,L11E2 ; back to RAM-READ if zero flag was set.

;; RAM-DONE
L11EF: DEC HL ; step back to last valid location.
 EXX ; regardless of state, set up possibly
 ; stored system variables in case from NEW.
 LD ($5CB4),BC ; insert P-RAMT.
 LD ($5C38),DE ; insert RASP/PIP.
 LD ($5C7B),HL ; insert UDG.
 EXX ; switch in main set.

 INC B ; now test if we arrived here from NEW.
 JR Z,L1219 ; forward to RAM-SET if we did.

; This section applies to START only.

 LD ($5CB4),HL ; set P-RAMT to the highest working RAM
 ; address.
 LD DE,$3EAF ; address of last byte of 'U' bitmap in ROM.
 LD BC,$00A8 ; there are 21 user defined graphics.
 EX DE,HL ; switch pointers and make the UDGs a
 LDDR ; copy of the standard characters A - U.
 EX DE,HL ; switch the pointer to HL.
 INC HL ; update to start of 'A' in RAM.
 LD ($5C7B),HL ; make UDG system variable address the first
 ; bitmap.
 DEC HL ; point at RAMTOP again.

 LD BC,$0040 ; set the values of
 LD ($5C38),BC ; the PIP and RASP system variables.

; The NEW command path rejoins here.

;; RAM-SET
L1219: LD ($5CB2),HL ; set system variable RAMTOP to HL.

; New
; Note. this entry point is a disabled Warm Restart that was almost certainly
; once pointed to by the System Variable NMIADD. It would be essential that
; any NMI Handler would perform the tasks from here to the EI instruction
; below.

;; NMI_VECT
L121C:
 LD HL,$3C00 ; a strange place to set the pointer to the
 LD ($5C36),HL ; character set, CHARS - as no printing yet.

 LD HL,($5CB2) ; fetch RAMTOP to HL again as we've lost it.

 LD (HL),$3E ; top of user ram holds GOSUB end marker
 ; an impossible line number - see RETURN.
 ; no significance in the number $3E. It has
 ; been traditional since the ZX80.

 DEC HL ; followed by empty byte (not important).
 LD SP,HL ; set up the machine stack pointer.
 DEC HL ;
 DEC HL ;
 LD ($5C3D),HL ; ERR_SP is where the error pointer is
 ; at moment empty - will take address MAIN-4
 ; at the call preceding that address,
 ; although interrupts and calls will make use
 ; of this location in meantime.

 IM 1 ; select interrupt mode 1.

 LD IY,$5C3A ; set IY to ERR_NR. IY can reach all standard
 ; system variables but shadow ROM system
 ; variables will be mostly out of range.

 EI ; enable interrupts now that we have a stack.

; If, as suggested above, the NMI service routine pointed to this section of
; code then a decision would have to be made at this point to jump forward,
; in a Warm Restart scenario, to produce a report code, leaving any program

; intact.

 LD HL,$5CB6 ; The address of the channels - initially
 ; following system variables.
 LD ($5C4F),HL ; Set the CHANS system variable.

 LD DE,L15AF ; Address: init-chan in ROM.
 LD BC,$0015 ; There are 21 bytes of initial data in ROM.
 EX DE,HL ; swap the pointers.
 LDIR ; Copy the bytes to RAM.

 EX DE,HL ; Swap pointers. HL points to program area.
 DEC HL ; Decrement address.
 LD ($5C57),HL ; Set DATADD to location before program area.
 INC HL ; Increment again.

 LD ($5C53),HL ; Set PROG the location where BASIC starts.
 LD ($5C4B),HL ; Set VARS to same location with a
 LD (HL),$80 ; variables end-marker.
 INC HL ; Advance address.
 LD ($5C59),HL ; Set E_LINE, where the edit line
 ; will be created.
 ; Note. it is not strictly necessary to
 ; execute the next fifteen bytes of code
 ; as this will be done by the call to SET-MIN.
 ; --
 LD (HL),$0D ; initially just has a carriage return
 INC HL ; followed by
 LD (HL),$80 ; an end-marker.
 INC HL ; address the next location.
 LD ($5C61),HL ; set WORKSP - empty workspace.
 LD ($5C63),HL ; set STKBOT - bottom of the empty stack.
 LD ($5C65),HL ; set STKEND to the end of the empty stack.
 ; --
 LD A,$38 ; the colour system is set to white paper,
 ; black ink, no flash or bright.
 LD ($5C8D),A ; set ATTR_P permanent colour attributes.
 LD ($5C8F),A ; set ATTR_T temporary colour attributes.
 LD ($5C48),A ; set BORDCR the border colour/lower screen
 ; attributes.

 LD HL,$0523 ; The keyboard repeat and delay values are
 LD ($5C09),HL ; loaded to REPDEL and REPPER.

 DEC (IY-$3A) ; set KSTATE-0 to $FF - keyboard map available.
 DEC (IY-$36) ; set KSTATE-4 to $FF - keyboard map available.

 LD HL,L15C6 ; set source to ROM Address: init-strm
 LD DE,$5C10 ; set destination to system variable STRMS-FD
 LD BC,$000E ; copy the 14 bytes of initial 7 streams data
 LDIR ; from ROM to RAM.

 SET 1,(IY+$01) ; update FLAGS - signal printer in use.
 CALL L0EDF ; call routine CLEAR-PRB to initialize system
 ; variables associated with printer.
 ; The buffer is clear.

 LD (IY+$31),$02 ; set DF_SZ the lower screen display size to
 ; two lines
 CALL L0D6B ; call routine CLS to set up system
 ; variables associated with screen and clear
 ; the screen and set attributes.
 XOR A ; clear accumulator so that we can address
 LD DE,L1539 - 1 ; the message table directly.

 CALL L0C0A ; routine PO-MSG puts
 ; '(c) 1982 Sinclair Research Ltd'
 ; at bottom of display.
 SET 5,(IY+$02) ; update TV_FLAG - signal lower screen will
 ; require clearing.

 JR L12A9 ; forward to MAIN-1

; -------------------
; Main execution loop
; -------------------
;
;

;; MAIN-EXEC
L12A2: LD (IY+$31),$02 ; set DF_SZ lower screen display file size to
 ; two lines.
 CALL L1795 ; routine AUTO-LIST

;; MAIN-1
L12A9: CALL L16B0 ; routine SET-MIN clears work areas.

;; MAIN-2
L12AC: LD A,$00 ; select channel 'K' the keyboard

 CALL L1601 ; routine CHAN-OPEN opens it
 CALL L0F2C ; routine EDITOR is called.
 ; Note the above routine is where the Spectrum
 ; waits for user-interaction. Perhaps the
 ; most common input at this stage
 ; is LOAD "".

 CALL L1B17 ; routine LINE-SCAN scans the input.

 BIT 7,(IY+$00) ; test ERR_NR - will be $FF if syntax is OK.
 JR NZ,L12CF ; forward, if correct, to MAIN-3.

;

 BIT 4,(IY+$30) ; test FLAGS2 - K channel in use ?
 JR Z,L1303 ; forward to MAIN-4 if not.

;

 LD HL,($5C59) ; an editing error so address E_LINE.
 CALL L11A7 ; routine REMOVE-FP removes the hidden
 ; floating-point forms.
 LD (IY+$00),$FF ; system variable ERR_NR is reset to 'OK'.
 JR L12AC ; back to MAIN-2 to allow user to correct.

; ---

; the branch was here if syntax has passed test.

;; MAIN-3
L12CF: LD HL,($5C59) ; fetch the edit line address from E_LINE.
 LD ($5C5D),HL ; system variable CH_ADD is set to first
 ; character of edit line.
 ; Note. the above two instructions are a little
 ; inadequate.
 ; They are repeated with a subtle difference
 ; at the start of the next subroutine and are
 ; therefore not required above.

 CALL L19FB ; routine E-LINE-NO will fetch any line
 ; number to BC if this is a program line.

 LD A,B ; test if the number of
 OR C ; the line is non-zero.
 JP NZ,L155D ; jump forward to MAIN-ADD if so to add the
 ; line to the BASIC program.

; Has the user just pressed the ENTER key ?

 RST 18H ; GET-CHAR gets character addressed by CH_ADD.
 CP $0D ; is it a carriage return ?
 JR Z,L12A2 ; back to MAIN-EXEC if so for an automatic
 ; listing.

; this must be a direct command.

 BIT 0,(IY+$30) ; test FLAGS2 - clear the main screen ?

 CALL NZ,L0DAF ; routine CL-ALL, if so, e.g. after listing.

 CALL L0D6E ; routine CLS-LOWER anyway.

 LD A,$19 ; compute scroll count as 25 minus
 SUB (IY+$4F) ; value of S_POSN_hi.
 LD ($5C8C),A ; update SCR_CT system variable.
 SET 7,(IY+$01) ; update FLAGS - signal running program.
 LD (IY+$00),$FF ; set ERR_NR to 'OK'.
 LD (IY+$0A),$01 ; set NSPPC to one for first statement.
 CALL L1B8A ; call routine LINE-RUN to run the line.
 ; sysvar ERR_SP therefore addresses MAIN-4

; Examples of direct commands are RUN, CLS, LOAD "", PRINT USR 40000,
; LPRINT "A"; etc..
; If a user written machine-code program disables interrupts then it
; must enable them to pass the next step. We also jumped to here if the
; keyboard was not being used.

;; MAIN-4
L1303: HALT ; wait for interrupt the only routine that can
 ; set bit 5 of FLAGS.
 RES 5,(IY+$01) ; update bit 5 of FLAGS - signal no new key.

 BIT 1,(IY+$30) ; test FLAGS2 - is printer buffer clear ?
 CALL NZ,L0ECD ; call routine COPY-BUFF if not.
 ; Note. the programmer has neglected
 ; to set bit 1 of FLAGS first.

 LD A,($5C3A) ; fetch ERR_NR
 INC A ; increment to give true code.

; Now deal with a runtime error as opposed to an editing error.
; However if the error code is now zero then the OK message will be printed.

;; MAIN-G
L1313: PUSH AF ; save the error number.

 LD HL,$0000 ; prepare to clear some system variables.
 LD (IY+$37),H ; clear all the bits of FLAGX.
 LD (IY+$26),H ; blank X_PTR_hi to suppress error marker.
 LD ($5C0B),HL ; blank DEFADD to signal that no defined
 ; function is currently being evaluated.

 LD HL,$0001 ; explicit - inc hl would do.

 LD ($5C16),HL ; ensure STRMS-00 is keyboard.

 CALL L16B0 ; routine SET-MIN clears workspace etc.
 RES 5,(IY+$37) ; update FLAGX - signal in EDIT not INPUT mode.
 ; Note. all the bits were reset earlier.

 CALL L0D6E ; call routine CLS-LOWER.

 SET 5,(IY+$02) ; update TV_FLAG - signal lower screen
 ; requires clearing.

 POP AF ; bring back the true error number
 LD B,A ; and make a copy in B.
 CP $0A ; is it a print-ready digit ?
 JR C,L133C ; forward to MAIN-5 if so.

 ADD A,$07 ; add ASCII offset to letters.

;; MAIN-5
L133C: CALL L15EF ; call routine OUT-CODE to print the code.

 LD A,$20 ; followed by a space.
 RST 10H ; PRINT-A

 LD A,B ; fetch stored report code.
 LD DE,L1391 ; address: rpt-mesgs.

 CALL L0C0A ; call routine PO-MSG to print the message.

X1349: XOR A ; clear accumulator to directly
 LD DE,L1537 - 1 ; address the comma and space message.

 CALL L0C0A ; routine PO-MSG prints ', ' although it would
 ; be more succinct to use RST $10.

 LD BC,($5C45) ; fetch PPC the current line number.
 CALL L1A1B ; routine OUT-NUM-1 will print that

 LD A,$3A ; then a ':' character.
 RST 10H ; PRINT-A

 LD C,(IY+$0D) ; then SUBPPC for statement
 LD B,$00 ; limited to 127
 CALL L1A1B ; routine OUT-NUM-1 prints BC.

 CALL L1097 ; routine CLEAR-SP clears editing area which
 ; probably contained 'RUN'.

 LD A,($5C3A) ; fetch ERR_NR again
 INC A ; test for no error originally $FF.
 JR Z,L1386 ; forward to MAIN-9 if no error.

 CP $09 ; is code Report 9 STOP ?
 JR Z,L1373 ; forward to MAIN-6 if so

 CP $15 ; is code Report L Break ?
 JR NZ,L1376 ; forward to MAIN-7 if not

; Stop or Break was encountered so consider CONTINUE.

;; MAIN-6
L1373: INC (IY+$0D) ; increment SUBPPC to next statement.

;; MAIN-7

L1376: LD BC,$0003 ; prepare to copy 3 system variables to
 LD DE,$5C70 ; address OSPPC - statement for CONTINUE.
 ; also updating OLDPPC line number below.

 LD HL,$5C44 ; set source top to NSPPC next statement.
 BIT 7,(HL) ; did BREAK occur before the jump ?
 ; e.g. between GO TO and next statement.
 JR Z,L1384 ; skip forward to MAIN-8, if not, as set-up
 ; is correct.

 ADD HL,BC ; set source to SUBPPC number of current
 ; statement/line which will be repeated.

;; MAIN-8
L1384: LDDR ; copy PPC to OLDPPC and SUBPPC to OSPCC
 ; or NSPPC to OLDPPC and NEWPPC to OSPCC

;; MAIN-9
L1386: LD (IY+$0A),$FF ; update NSPPC - signal 'no jump'.
 RES 3,(IY+$01) ; update FLAGS - signal use 'K' mode for
 ; the first character in the editor and

 JP L12AC ; jump back to MAIN-2.

; ----------------------
; Canned report messages
; ----------------------
; The Error reports with the last byte inverted. The first entry
; is a dummy entry. The last, which begins with $7F, the Spectrum
; character for copyright symbol, is placed here for convenience
; as is the preceding comma and space.
; The report line must accommodate a 4-digit line number and a 3-digit
; statement number which limits the length of the message text to twenty
; characters.
; e.g. "B Integer out of range, 1000:127"

;; rpt-mesgs
L1391: DEFB $80
 DEFB 'O','K'+$80 ; 0
 DEFM "NEXT without FO"
 DEFB 'R'+$80 ; 1
 DEFM "Variable not foun"
 DEFB 'd'+$80 ; 2
 DEFM "Subscript wron"
 DEFB 'g'+$80 ; 3
 DEFM "Out of memor"
 DEFB 'y'+$80 ; 4
 DEFM "Out of scree"
 DEFB 'n'+$80 ; 5
 DEFM "Number too bi"
 DEFB 'g'+$80 ; 6
 DEFM "RETURN without GOSU"
 DEFB 'B'+$80 ; 7
 DEFM "End of fil"
 DEFB 'e'+$80 ; 8
 DEFM "STOP statemen"
 DEFB 't'+$80 ; 9
 DEFM "Invalid argumen"
 DEFB 't'+$80 ; A
 DEFM "Integer out of rang"
 DEFB 'e'+$80 ; B
 DEFM "Nonsense in BASI"
 DEFB 'C'+$80 ; C

 DEFM "BREAK - CONT repeat"
 DEFB 's'+$80 ; D
 DEFM "Out of DAT"
 DEFB 'A'+$80 ; E
 DEFM "Invalid file nam"
 DEFB 'e'+$80 ; F
 DEFM "No room for lin"
 DEFB 'e'+$80 ; G
 DEFM "STOP in INPU"
 DEFB 'T'+$80 ; H
 DEFM "FOR without NEX"
 DEFB 'T'+$80 ; I
 DEFM "Invalid I/O devic"
 DEFB 'e'+$80 ; J
 DEFM "Invalid colou"
 DEFB 'r'+$80 ; K
 DEFM "BREAK into progra"
 DEFB 'm'+$80 ; L
 DEFM "RAMTOP no goo"
 DEFB 'd'+$80 ; M
 DEFM "Statement los"
 DEFB 't'+$80 ; N
 DEFM "Invalid strea"
 DEFB 'm'+$80 ; O
 DEFM "FN without DE"
 DEFB 'F'+$80 ; P
 DEFM "Parameter erro"
 DEFB 'r'+$80 ; Q
 DEFM "Tape loading erro"
 DEFB 'r'+$80 ; R
;; comma-sp
L1537: DEFB ',',' '+$80 ; used in report line.
;; copyright
L1539: DEFB $7F ; copyright
 DEFM " 1982 Sinclair Research Lt"
 DEFB 'd'+$80

; -------------
; REPORT-G
; -------------
; Note ERR_SP points here during line entry which allows the
; normal 'Out of Memory' report to be augmented to the more
; precise 'No Room for line' report.

;; REPORT-G
; No Room for line
L1555: LD A,$10 ; i.e. 'G' -$30 -$07
 LD BC,$0000 ; this seems unnecessary.
 JP L1313 ; jump back to MAIN-G

; -----------------------------
; Handle addition of BASIC line
; -----------------------------
; Note this is not a subroutine but a branch of the main execution loop.
; System variable ERR_SP still points to editing error handler.
; A new line is added to the BASIC program at the appropriate place.
; An existing line with same number is deleted first.
; Entering an existing line number deletes that line.
; Entering a non-existent line allows the subsequent line to be edited next.

;; MAIN-ADD
L155D: LD ($5C49),BC ; set E_PPC to extracted line number.
 LD HL,($5C5D) ; fetch CH_ADD - points to location after the

 ; initial digits (set in E_LINE_NO).
 EX DE,HL ; save start of BASIC in DE.

 LD HL,L1555 ; Address: REPORT-G
 PUSH HL ; is pushed on stack and addressed by ERR_SP.
 ; the only error that can occur is
 ; 'Out of memory'.

 LD HL,($5C61) ; fetch WORKSP - end of line.
 SCF ; prepare for true subtraction.
 SBC HL,DE ; find length of BASIC and
 PUSH HL ; save it on stack.
 LD H,B ; transfer line number
 LD L,C ; to HL register.
 CALL L196E ; routine LINE-ADDR will see if
 ; a line with the same number exists.
 JR NZ,L157D ; forward if no existing line to MAIN-ADD1.

 CALL L19B8 ; routine NEXT-ONE finds the existing line.
 CALL L19E8 ; routine RECLAIM-2 reclaims it.

;; MAIN-ADD1
L157D: POP BC ; retrieve the length of the new line.
 LD A,C ; and test if carriage return only
 DEC A ; i.e. one byte long.
 OR B ; result would be zero.
 JR Z,L15AB ; forward to MAIN-ADD2 is so.

 PUSH BC ; save the length again.
 INC BC ; adjust for inclusion
 INC BC ; of line number (two bytes)
 INC BC ; and line length
 INC BC ; (two bytes).
 DEC HL ; HL points to location before the destination

 LD DE,($5C53) ; fetch the address of PROG
 PUSH DE ; and save it on the stack
 CALL L1655 ; routine MAKE-ROOM creates BC spaces in
 ; program area and updates pointers.
 POP HL ; restore old program pointer.
 LD ($5C53),HL ; and put back in PROG as it may have been
 ; altered by the POINTERS routine.

 POP BC ; retrieve BASIC length
 PUSH BC ; and save again.

 INC DE ; points to end of new area.
 LD HL,($5C61) ; set HL to WORKSP - location after edit line.
 DEC HL ; decrement to address end marker.
 DEC HL ; decrement to address carriage return.
 LDDR ; copy the BASIC line back to initial command.

 LD HL,($5C49) ; fetch E_PPC - line number.
 EX DE,HL ; swap it to DE, HL points to last of
 ; four locations.
 POP BC ; retrieve length of line.
 LD (HL),B ; high byte last.
 DEC HL ;
 LD (HL),C ; then low byte of length.
 DEC HL ;
 LD (HL),E ; then low byte of line number.
 DEC HL ;
 LD (HL),D ; then high byte range $0 - $27 (1-9999).

;; MAIN-ADD2
L15AB: POP AF ; drop the address of Report G
 JP L12A2 ; and back to MAIN-EXEC producing a listing
 ; and to reset ERR_SP in EDITOR.

; ---------------------------------
; THE 'INITIAL CHANNEL' INFORMATION
; ---------------------------------
; This initial channel information is copied from ROM to RAM, during
; initialization. It's new location is after the system variables and is
; addressed by the system variable CHANS which means that it can slide up and
; down in memory. The table is never searched, by this ROM, and the last
; character, which could be anything other than a comma, provides a
; convenient resting place for DATADD.

;; init-chan
L15AF: DEFW L09F4 ; PRINT-OUT
 DEFW L10A8 ; KEY-INPUT
 DEFB $4B ; 'K'
 DEFW L09F4 ; PRINT-OUT
 DEFW L15C4 ; REPORT-J
 DEFB $53 ; 'S'
 DEFW L0F81 ; ADD-CHAR
 DEFW L15C4 ; REPORT-J
 DEFB $52 ; 'R'
 DEFW L09F4 ; PRINT-OUT
 DEFW L15C4 ; REPORT-J
 DEFB $50 ; 'P'

 DEFB $80 ; End Marker

;; REPORT-J
L15C4: RST 08H ; ERROR-1
 DEFB $12 ; Error Report: Invalid I/O device

; -------------------------
; THE 'INITIAL STREAM' DATA
; -------------------------
; This is the initial stream data for the seven streams $FD - $03 that is
; copied from ROM to the STRMS system variables area during initialization.
; There are reserved locations there for another 12 streams. Each location
; contains an offset to the second byte of a channel. The first byte of a
; channel can't be used as that would result in an offset of zero for some
; and zero is used to denote that a stream is closed.

;; init-strm
L15C6: DEFB $01, $00 ; stream $FD offset to channel 'K'
 DEFB $06, $00 ; stream $FE offset to channel 'S'
 DEFB $0B, $00 ; stream $FF offset to channel 'R'

 DEFB $01, $00 ; stream $00 offset to channel 'K'
 DEFB $01, $00 ; stream $01 offset to channel 'K'
 DEFB $06, $00 ; stream $02 offset to channel 'S'
 DEFB $10, $00 ; stream $03 offset to channel 'P'

; ------------------------------
; THE 'INPUT CONTROL' SUBROUTINE
; ------------------------------
;

;; WAIT-KEY
L15D4: BIT 5,(IY+$02) ; test TV_FLAG - clear lower screen ?

 JR NZ,L15DE ; forward to WAIT-KEY1 if so.

 SET 3,(IY+$02) ; update TV_FLAG - signal reprint the edit
 ; line to the lower screen.

;; WAIT-KEY1
L15DE: CALL L15E6 ; routine INPUT-AD is called.

 RET C ; return with acceptable keys.

 JR Z,L15DE ; back to WAIT-KEY1 if no key is pressed
 ; or it has been handled within INPUT-AD.

; Note. When inputting from the keyboard all characters are returned with
; above conditions so this path is never taken.

;; REPORT-8
L15E4: RST 08H ; ERROR-1
 DEFB $07 ; Error Report: End of file

; ---------------------------
; THE 'INPUT ADDRESS' ROUTINE
; ---------------------------
; This routine fetches the address of the input stream from the current
; channel area using the system variable CURCHL.

;; INPUT-AD
L15E6: EXX ; switch in alternate set.
 PUSH HL ; save HL register
 LD HL,($5C51) ; fetch address of CURCHL - current channel.
 INC HL ; step over output routine
 INC HL ; to point to low byte of input routine.
 JR L15F7 ; forward to CALL-SUB.

; -------------------------
; THE 'CODE OUTPUT' ROUTINE
; -------------------------
; This routine is called on five occasions to print the ASCII equivalent of
; a value 0-9.

;; OUT-CODE
L15EF: LD E,$30 ; add 48 decimal to give the ASCII character
 ADD A,E ; '0' to '9' and continue into the main output
 ; routine.

; -------------------------
; THE 'MAIN OUTPUT' ROUTINE
; -------------------------
; PRINT-A-2 is a continuation of the RST 10 restart that prints any character.
; The routine prints to the current channel and the printing of control codes
; may alter that channel to divert subsequent RST 10 instructions to temporary
; routines. The normal channel is $09F4.

;; PRINT-A-2
L15F2: EXX ; switch in alternate set
 PUSH HL ; save HL register
 LD HL,($5C51) ; fetch CURCHL the current channel.

; input-ad rejoins here also.

;; CALL-SUB
L15F7: LD E,(HL) ; put the low byte in E.
 INC HL ; advance address.
 LD D,(HL) ; put the high byte to D.

 EX DE,HL ; transfer the stream to HL.
 CALL L162C ; use routine CALL-JUMP.
 ; in effect CALL (HL).

 POP HL ; restore saved HL register.
 EXX ; switch back to the main set and
 RET ; return.

; --------------------------
; THE 'OPEN CHANNEL' ROUTINE
; --------------------------
; This subroutine is used by the ROM to open a channel 'K', 'S', 'R' or 'P'.
; This is either for its own use or in response to a user's request, for
; example, when '#' is encountered with output - PRINT, LIST etc.
; or with input - INPUT, INKEY$ etc.
; It is entered with a system stream $FD - $FF, or a user stream $00 - $0F
; in the accumulator.

;; CHAN-OPEN
L1601: ADD A,A ; double the stream ($FF will become $FE etc.)
 ADD A,$16 ; add the offset to stream 0 from $5C00
 LD L,A ; result to L
 LD H,$5C ; now form the address in STRMS area.
 LD E,(HL) ; fetch low byte of CHANS offset
 INC HL ; address next
 LD D,(HL) ; fetch high byte of offset
 LD A,D ; test that the stream is open.
 OR E ; zero if closed.
 JR NZ,L1610 ; forward to CHAN-OP-1 if open.

;; REPORT-Oa
L160E: RST 08H ; ERROR-1
 DEFB $17 ; Error Report: Invalid stream

; continue here if stream was open. Note that the offset is from CHANS
; to the second byte of the channel.

;; CHAN-OP-1
L1610: DEC DE ; reduce offset so it points to the channel.
 LD HL,($5C4F) ; fetch CHANS the location of the base of
 ; the channel information area
 ADD HL,DE ; and add the offset to address the channel.
 ; and continue to set flags.

; -----------------
; Set channel flags
; -----------------
; This subroutine is used from ED-EDIT, str$ and read-in to reset the
; current channel when it has been temporarily altered.

;; CHAN-FLAG
L1615: LD ($5C51),HL ; set CURCHL system variable to the
 ; address in HL
 RES 4,(IY+$30) ; update FLAGS2 - signal K channel not in use.
 ; Note. provide a default for channel 'R'.
 INC HL ; advance past
 INC HL ; output routine.
 INC HL ; advance past
 INC HL ; input routine.
 LD C,(HL) ; pick up the letter.
 LD HL,L162D ; address: chn-cd-lu
 CALL L16DC ; routine INDEXER finds offset to a
 ; flag-setting routine.

 RET NC ; but if the letter wasn't found in the
 ; table just return now. - channel 'R'.

 LD D,$00 ; prepare to add
 LD E,(HL) ; offset to E
 ADD HL,DE ; add offset to location of offset to form
 ; address of routine

;; CALL-JUMP
L162C: JP (HL) ; jump to the routine

; Footnote. calling any location that holds JP (HL) is the equivalent to
; a pseudo Z80 instruction CALL (HL). The ROM uses the instruction above.

; --------------------------
; Channel code look-up table
; --------------------------
; This table is used by the routine above to find one of the three
; flag setting routines below it.
; A zero end-marker is required as channel 'R' is not present.

;; chn-cd-lu
L162D: DEFB 'K', L1634-$-1 ; offset $06 to CHAN-K
 DEFB 'S', L1642-$-1 ; offset $12 to CHAN-S
 DEFB 'P', L164D-$-1 ; offset $1B to CHAN-P

 DEFB $00 ; end marker.

; --------------
; Channel K flag
; --------------
; routine to set flags for lower screen/keyboard channel.

;; CHAN-K
L1634: SET 0,(IY+$02) ; update TV_FLAG - signal lower screen in use
 RES 5,(IY+$01) ; update FLAGS - signal no new key
 SET 4,(IY+$30) ; update FLAGS2 - signal K channel in use
 JR L1646 ; forward to CHAN-S-1 for indirect exit

; --------------
; Channel S flag
; --------------
; routine to set flags for upper screen channel.

;; CHAN-S
L1642: RES 0,(IY+$02) ; TV_FLAG - signal main screen in use

;; CHAN-S-1
L1646: RES 1,(IY+$01) ; update FLAGS - signal printer not in use
 JP L0D4D ; jump back to TEMPS and exit via that
 ; routine after setting temporary attributes.
; --------------
; Channel P flag
; --------------
; This routine sets a flag so that subsequent print related commands
; print to printer or update the relevant system variables.
; This status remains in force until reset by the routine above.

;; CHAN-P
L164D: SET 1,(IY+$01) ; update FLAGS - signal printer in use
 RET ; return

; --------------------------
; THE 'ONE SPACE' SUBROUTINE

; --------------------------
; This routine is called once only to create a single space
; in workspace by ADD-CHAR.

;; ONE-SPACE
L1652: LD BC,$0001 ; create space for a single character.

; ---------
; Make Room
; ---------
; This entry point is used to create BC spaces in various areas such as
; program area, variables area, workspace etc..
; The entire free RAM is available to each BASIC statement.
; On entry, HL addresses where the first location is to be created.
; Afterwards, HL will point to the location before this.

;; MAKE-ROOM
L1655: PUSH HL ; save the address pointer.
 CALL L1F05 ; routine TEST-ROOM checks if room
 ; exists and generates an error if not.
 POP HL ; restore the address pointer.
 CALL L1664 ; routine POINTERS updates the
 ; dynamic memory location pointers.
 ; DE now holds the old value of STKEND.
 LD HL,($5C65) ; fetch new STKEND the top destination.

 EX DE,HL ; HL now addresses the top of the area to
 ; be moved up - old STKEND.
 LDDR ; the program, variables, etc are moved up.
 RET ; return with new area ready to be populated.
 ; HL points to location before new area,
 ; and DE to last of new locations.

; ---
; Adjust pointers before making or reclaiming room
; ---
; This routine is called by MAKE-ROOM to adjust upwards and by RECLAIM to
; adjust downwards the pointers within dynamic memory.
; The fourteen pointers to dynamic memory, starting with VARS and ending
; with STKEND, are updated adding BC if they are higher than the position
; in HL.
; The system variables are in no particular order except that STKEND, the first
; free location after dynamic memory must be the last encountered.

;; POINTERS
L1664: PUSH AF ; preserve accumulator.
 PUSH HL ; put pos pointer on stack.
 LD HL,$5C4B ; address VARS the first of the
 LD A,$0E ; fourteen variables to consider.

;; PTR-NEXT
L166B: LD E,(HL) ; fetch the low byte of the system variable.
 INC HL ; advance address.
 LD D,(HL) ; fetch high byte of the system variable.
 EX (SP),HL ; swap pointer on stack with the variable
 ; pointer.
 AND A ; prepare to subtract.
 SBC HL,DE ; subtract variable address
 ADD HL,DE ; and add back
 EX (SP),HL ; swap pos with system variable pointer
 JR NC,L167F ; forward to PTR-DONE if var before pos

 PUSH DE ; save system variable address.
 EX DE,HL ; transfer to HL

 ADD HL,BC ; add the offset
 EX DE,HL ; back to DE
 LD (HL),D ; load high byte
 DEC HL ; move back
 LD (HL),E ; load low byte
 INC HL ; advance to high byte
 POP DE ; restore old system variable address.

;; PTR-DONE
L167F: INC HL ; address next system variable.
 DEC A ; decrease counter.
 JR NZ,L166B ; back to PTR-NEXT if more.
 EX DE,HL ; transfer old value of STKEND to HL.
 ; Note. this has always been updated.
 POP DE ; pop the address of the position.

 POP AF ; pop preserved accumulator.
 AND A ; clear carry flag preparing to subtract.

 SBC HL,DE ; subtract position from old stkend
 LD B,H ; to give number of data bytes
 LD C,L ; to be moved.
 INC BC ; increment as we also copy byte at old STKEND.
 ADD HL,DE ; recompute old stkend.
 EX DE,HL ; transfer to DE.
 RET ; return.

; -------------------
; Collect line number
; -------------------
; This routine extracts a line number, at an address that has previously
; been found using LINE-ADDR, and it is entered at LINE-NO. If it encounters
; the program 'end-marker' then the previous line is used and if that
; should also be unacceptable then zero is used as it must be a direct
; command. The program end-marker is the variables end-marker $80, or
; if variables exist, then the first character of any variable name.

;; LINE-ZERO
L168F: DEFB $00, $00 ; dummy line number used for direct commands

;; LINE-NO-A
L1691: EX DE,HL ; fetch the previous line to HL and set
 LD DE,L168F ; DE to LINE-ZERO should HL also fail.

; -> The Entry Point.

;; LINE-NO
L1695: LD A,(HL) ; fetch the high byte - max $2F
 AND $C0 ; mask off the invalid bits.
 JR NZ,L1691 ; to LINE-NO-A if an end-marker.

 LD D,(HL) ; reload the high byte.
 INC HL ; advance address.
 LD E,(HL) ; pick up the low byte.
 RET ; return from here.

; -------------------
; Handle reserve room
; -------------------
; This is a continuation of the restart BC-SPACES

;; RESERVE
L169E: LD HL,($5C63) ; STKBOT first location of calculator stack
 DEC HL ; make one less than new location
 CALL L1655 ; routine MAKE-ROOM creates the room.
 INC HL ; address the first new location
 INC HL ; advance to second
 POP BC ; restore old WORKSP
 LD ($5C61),BC ; system variable WORKSP was perhaps
 ; changed by POINTERS routine.
 POP BC ; restore count for return value.
 EX DE,HL ; switch. DE = location after first new space
 INC HL ; HL now location after new space
 RET ; return.

; ---------------------------
; Clear various editing areas
; ---------------------------
; This routine sets the editing area, workspace and calculator stack
; to their minimum configurations as at initialization and indeed this
; routine could have been relied on to perform that task.
; This routine uses HL only and returns with that register holding
; WORKSP/STKBOT/STKEND though no use is made of this. The routines also
; reset MEM to its usual place in the systems variable area should it
; have been relocated to a FOR-NEXT variable. The main entry point
; SET-MIN is called at the start of the MAIN-EXEC loop and prior to
; displaying an error.

;; SET-MIN
L16B0: LD HL,($5C59) ; fetch E_LINE
 LD (HL),$0D ; insert carriage return
 LD ($5C5B),HL ; make K_CUR keyboard cursor point there.
 INC HL ; next location
 LD (HL),$80 ; holds end-marker $80
 INC HL ; next location becomes
 LD ($5C61),HL ; start of WORKSP

; This entry point is used prior to input and prior to the execution,
; or parsing, of each statement.

;; SET-WORK
L16BF: LD HL,($5C61) ; fetch WORKSP value
 LD ($5C63),HL ; and place in STKBOT

; This entry point is used to move the stack back to its normal place
; after temporary relocation during line entry and also from ERROR-3

;; SET-STK
L16C5: LD HL,($5C63) ; fetch STKBOT value
 LD ($5C65),HL ; and place in STKEND.

 PUSH HL ; perhaps an obsolete entry point.
 LD HL,$5C92 ; normal location of MEM-0
 LD ($5C68),HL ; is restored to system variable MEM.
 POP HL ; saved value not required.
 RET ; return.

; ------------------
; Reclaim edit-line?
; ------------------
; This seems to be legacy code from the ZX80/ZX81 as it is
; not used in this ROM.
; That task, in fact, is performed here by the dual-area routine CLEAR-SP.
; This routine is designed to deal with something that is known to be in the
; edit buffer and not workspace.

; On entry, HL must point to the end of the something to be deleted.

;; REC-EDIT
L16D4: LD DE,($5C59) ; fetch start of edit line from E_LINE.
 JP L19E5 ; jump forward to RECLAIM-1.

; --------------------------
; The Table INDEXING routine
; --------------------------
; This routine is used to search two-byte hash tables for a character
; held in C, returning the address of the following offset byte.
; if it is known that the character is in the table e.g. for priorities,
; then the table requires no zero end-marker. If this is not known at the
; outset then a zero end-marker is required and carry is set to signal
; success.

;; INDEXER-1
L16DB: INC HL ; address the next pair of values.

; -> The Entry Point.

;; INDEXER
L16DC: LD A,(HL) ; fetch the first byte of pair
 AND A ; is it the end-marker ?
 RET Z ; return with carry reset if so.

 CP C ; is it the required character ?
 INC HL ; address next location.
 JR NZ,L16DB ; back to INDEXER-1 if no match.

 SCF ; else set the carry flag.
 RET ; return with carry set

; --------------------------------
; The Channel and Streams Routines
; --------------------------------
; A channel is an input/output route to a hardware device
; and is identified to the system by a single letter e.g. 'K' for
; the keyboard. A channel can have an input and output route
; associated with it in which case it is bi-directional like
; the keyboard. Others like the upper screen 'S' are output
; only and the input routine usually points to a report message.
; Channels 'K' and 'S' are system channels and it would be inappropriate
; to close the associated streams so a mechanism is provided to
; re-attach them. When the re-attachment is no longer required, then
; closing these streams resets them as at initialization.
; Early adverts said that the network and RS232 were in this ROM.
; Channels 'N' and 'B' are user channels and have been removed successfully
; if, as seems possible, they existed.
; Ironically the tape streamer is not accessed through streams and
; channels.
; Early demonstrations of the Spectrum showed a single microdrive being
; controlled by the main ROM.

; ---------------------
; THE 'CLOSE #' COMMAND
; ---------------------
; This command allows streams to be closed after use.
; Any temporary memory areas used by the stream would be reclaimed and
; finally flags set or reset if necessary.

;; CLOSE
L16E5: CALL L171E ; routine STR-DATA fetches parameter
 ; from calculator stack and gets the

 ; existing STRMS data pointer address in HL
 ; and stream offset from CHANS in BC.

 ; Note. this offset could be zero if the
 ; stream is already closed. A check for this
 ; should occur now and an error should be
 ; generated, for example,
 ; Report S 'Stream status closed'.

 CALL L1701 ; routine CLOSE-2 would perform any actions
 ; peculiar to that stream without disturbing
 ; data pointer to STRMS entry in HL.

 LD BC,$0000 ; the stream is to be blanked.
 LD DE,$A3E2 ; the number of bytes from stream 4, $5C1E,
 ; to $10000
 EX DE,HL ; transfer offset to HL, STRMS data pointer
 ; to DE.
 ADD HL,DE ; add the offset to the data pointer.
 JR C,L16FC ; forward to CLOSE-1 if a non-system stream.
 ; i.e. higher than 3.

; proceed with a negative result.

 LD BC,L15C6 + 14 ; prepare the address of the byte after
 ; the initial stream data in ROM. ($15D4)
 ADD HL,BC ; index into the data table with negative value.
 LD C,(HL) ; low byte to C
 INC HL ; address next.
 LD B,(HL) ; high byte to B.

; and for streams 0 - 3 just enter the initial data back into the STRMS entry
; streams 0 - 2 can't be closed as they are shared by the operating system.
; -> for streams 4 - 15 then blank the entry.

;; CLOSE-1
L16FC: EX DE,HL ; address of stream to HL.
 LD (HL),C ; place zero (or low byte).
 INC HL ; next address.
 LD (HL),B ; place zero (or high byte).
 RET ; return.

; ------------------------
; THE 'CLOSE-2' SUBROUTINE
; ------------------------
; There is not much point in coming here.
; The purpose was once to find the offset to a special closing routine,
; in this ROM and within 256 bytes of the close stream look up table that
; would reclaim any buffers associated with a stream. At least one has been
; removed.
; Any attempt to CLOSE streams $00 to $04, without first opening the stream,
; will lead to either a system restart or the production of a strange report.
; credit: Martin Wren-Hilton 1982.

;; CLOSE-2
L1701: PUSH HL ; * save address of stream data pointer
 ; in STRMS on the machine stack.
 LD HL,($5C4F) ; fetch CHANS address to HL
 ADD HL,BC ; add the offset to address the second
 ; byte of the output routine hopefully.
 INC HL ; step past
 INC HL ; the input routine.

; Note. When the Sinclair Interface1 is fitted then an instruction fetch

; on the next address pages this ROM out and the shadow ROM in.

;; ROM_TRAP
L1708: INC HL ; to address channel's letter
 LD C,(HL) ; pick it up in C.
 ; Note. but if stream is already closed we
 ; get the value $10 (the byte preceding 'K').

 EX DE,HL ; save the pointer to the letter in DE.

; Note. The string pointer is saved but not used!!

 LD HL,L1716 ; address: cl-str-lu in ROM.
 CALL L16DC ; routine INDEXER uses the code to get
 ; the 8-bit offset from the current point to
 ; the address of the closing routine in ROM.
 ; Note. it won't find $10 there!

 LD C,(HL) ; transfer the offset to C.
 LD B,$00 ; prepare to add.
 ADD HL,BC ; add offset to point to the address of the
 ; routine that closes the stream.
 ; (and presumably removes any buffers that
 ; are associated with it.)
 JP (HL) ; jump to that routine.

; --------------------------------
; THE 'CLOSE STREAM LOOK-UP' TABLE
; --------------------------------
; This table contains an entry for a letter found in the CHANS area.
; followed by an 8-bit displacement, from that byte's address in the
; table to the routine that performs any ancillary actions associated
; with closing the stream of that channel.
; The table doesn't require a zero end-marker as the letter has been
; picked up from a channel that has an open stream.

;; cl-str-lu
L1716: DEFB 'K', L171C-$-1 ; offset 5 to CLOSE-STR
 DEFB 'S', L171C-$-1 ; offset 3 to CLOSE-STR
 DEFB 'P', L171C-$-1 ; offset 1 to CLOSE-STR

; ------------------------------
; THE 'CLOSE STREAM' SUBROUTINES
; ------------------------------
; The close stream routines in fact have no ancillary actions to perform
; which is not surprising with regard to 'K' and 'S'.

;; CLOSE-STR
L171C: POP HL ; * now just restore the stream data pointer
 RET ; in STRMS and return.

; -----------
; Stream data
; -----------
; This routine finds the data entry in the STRMS area for the specified
; stream which is passed on the calculator stack. It returns with HL
; pointing to this system variable and BC holding a displacement from
; the CHANS area to the second byte of the stream's channel. If BC holds
; zero, then that signifies that the stream is closed.

;; STR-DATA
L171E: CALL L1E94 ; routine FIND-INT1 fetches parameter to A
 CP $10 ; is it less than 16d ?

 JR C,L1727 ; skip forward to STR-DATA1 if so.

;; REPORT-Ob
L1725: RST 08H ; ERROR-1
 DEFB $17 ; Error Report: Invalid stream

;; STR-DATA1
L1727: ADD A,$03 ; add the offset for 3 system streams.
 ; range 00 - 15d becomes 3 - 18d.
 RLCA ; double as there are two bytes per
 ; stream - now 06 - 36d
 LD HL,$5C10 ; address STRMS - the start of the streams
 ; data area in system variables.
 LD C,A ; transfer the low byte to A.
 LD B,$00 ; prepare to add offset.
 ADD HL,BC ; add to address the data entry in STRMS.

; the data entry itself contains an offset from CHANS to the address of the
; stream

 LD C,(HL) ; low byte of displacement to C.
 INC HL ; address next.
 LD B,(HL) ; high byte of displacement to B.
 DEC HL ; step back to leave HL pointing to STRMS
 ; data entry.
 RET ; return with CHANS displacement in BC
 ; and address of stream data entry in HL.

; --------------------
; Handle OPEN# command
; --------------------
; Command syntax example: OPEN #5,"s"
; On entry the channel code entry is on the calculator stack with the next
; value containing the stream identifier. They have to swapped.

;; OPEN
L1736: RST 28H ;; FP-CALC ;s,c.
 DEFB $01 ;;exchange ;c,s.
 DEFB $38 ;;end-calc

 CALL L171E ; routine STR-DATA fetches the stream off
 ; the stack and returns with the CHANS
 ; displacement in BC and HL addressing
 ; the STRMS data entry.
 LD A,B ; test for zero which
 OR C ; indicates the stream is closed.
 JR Z,L1756 ; skip forward to OPEN-1 if so.

; if it is a system channel then it can re-attached.

 EX DE,HL ; save STRMS address in DE.
 LD HL,($5C4F) ; fetch CHANS.
 ADD HL,BC ; add the offset to address the second
 ; byte of the channel.
 INC HL ; skip over the
 INC HL ; input routine.
 INC HL ; and address the letter.
 LD A,(HL) ; pick up the letter.
 EX DE,HL ; save letter pointer and bring back
 ; the STRMS pointer.

 CP $4B ; is it 'K' ?
 JR Z,L1756 ; forward to OPEN-1 if so

 CP $53 ; is it 'S' ?
 JR Z,L1756 ; forward to OPEN-1 if so

 CP $50 ; is it 'P' ?
 JR NZ,L1725 ; back to REPORT-Ob if not.
 ; to report 'Invalid stream'.

; continue if one of the upper-case letters was found.
; and rejoin here from above if stream was closed.

;; OPEN-1
L1756: CALL L175D ; routine OPEN-2 opens the stream.

; it now remains to update the STRMS variable.

 LD (HL),E ; insert or overwrite the low byte.
 INC HL ; address high byte in STRMS.
 LD (HL),D ; insert or overwrite the high byte.
 RET ; return.

; -----------------
; OPEN-2 Subroutine
; -----------------
; There is some point in coming here as, as well as once creating buffers,
; this routine also sets flags.

;; OPEN-2
L175D: PUSH HL ; * save the STRMS data entry pointer.
 CALL L2BF1 ; routine STK-FETCH now fetches the
 ; parameters of the channel string.
 ; start in DE, length in BC.

 LD A,B ; test that it is not
 OR C ; the null string.
 JR NZ,L1767 ; skip forward to OPEN-3 with 1 character
 ; or more!

;; REPORT-Fb
L1765: RST 08H ; ERROR-1
 DEFB $0E ; Error Report: Invalid file name

;; OPEN-3
L1767: PUSH BC ; save the length of the string.
 LD A,(DE) ; pick up the first character.
 ; Note. if the second character is used to
 ; distinguish between a binary or text
 ; channel then it will be simply a matter
 ; of setting bit 7 of FLAGX.
 AND $DF ; make it upper-case.
 LD C,A ; place it in C.
 LD HL,L177A ; address: op-str-lu is loaded.
 CALL L16DC ; routine INDEXER will search for letter.
 JR NC,L1765 ; back to REPORT-F if not found
 ; 'Invalid filename'

 LD C,(HL) ; fetch the displacement to opening routine.
 LD B,$00 ; prepare to add.
 ADD HL,BC ; now form address of opening routine.
 POP BC ; restore the length of string.
 JP (HL) ; now jump forward to the relevant routine.

; -------------------------
; OPEN stream look-up table
; -------------------------

; The open stream look-up table consists of matched pairs.
; The channel letter is followed by an 8-bit displacement to the
; associated stream-opening routine in this ROM.
; The table requires a zero end-marker as the letter has been
; provided by the user and not the operating system.

;; op-str-lu
L177A: DEFB 'K', L1781-$-1 ; $06 offset to OPEN-K
 DEFB 'S', L1785-$-1 ; $08 offset to OPEN-S
 DEFB 'P', L1789-$-1 ; $0A offset to OPEN-P

 DEFB $00 ; end-marker.

; ----------------------------
; The Stream Opening Routines.
; ----------------------------
; These routines would have opened any buffers associated with the stream
; before jumping forward to OPEN-END with the displacement value in E
; and perhaps a modified value in BC. The strange pathing does seem to
; provide for flexibility in this respect.
;
; There is no need to open the printer buffer as it is there already
; even if you are still saving up for a ZX Printer or have moved onto
; something bigger. In any case it would have to be created after
; the system variables but apart from that it is a simple task
; and all but one of the ROM routines can handle a buffer in that position.
; (PR-ALL-6 would require an extra 3 bytes of code).
; However it wouldn't be wise to have two streams attached to the ZX Printer
; as you can now, so one assumes that if PR_CC_hi was non-zero then
; the OPEN-P routine would have refused to attach a stream if another
; stream was attached.

; Something of significance is being passed to these ghost routines in the
; second character. Strings 'RB', 'RT' perhaps or a drive/station number.
; The routine would have to deal with that and exit to OPEN_END with BC
; containing $0001 or more likely there would be an exit within the routine.
; Anyway doesn't matter, these routines are long gone.

; -----------------
; OPEN-K Subroutine
; -----------------
; Open Keyboard stream.

;; OPEN-K
L1781: LD E,$01 ; 01 is offset to second byte of channel 'K'.
 JR L178B ; forward to OPEN-END

; -----------------
; OPEN-S Subroutine
; -----------------
; Open Screen stream.

;; OPEN-S
L1785: LD E,$06 ; 06 is offset to 2nd byte of channel 'S'
 JR L178B ; to OPEN-END

; -----------------
; OPEN-P Subroutine
; -----------------
; Open Printer stream.

;; OPEN-P
L1789: LD E,$10 ; 16d is offset to 2nd byte of channel 'P'

;; OPEN-END
L178B: DEC BC ; the stored length of 'K','S','P' or
 ; whatever is now tested. ??
 LD A,B ; test now if initial or residual length
 OR C ; is one character.
 JR NZ,L1765 ; to REPORT-Fb 'Invalid file name' if not.

 LD D,A ; load D with zero to form the displacement
 ; in the DE register.
 POP HL ; * restore the saved STRMS pointer.
 RET ; return to update STRMS entry thereby
 ; signaling stream is open.

; --
; Handle CAT, ERASE, FORMAT, MOVE commands
; --
; These just generate an error report as the ROM is 'incomplete'.
;
; Luckily this provides a mechanism for extending these in a shadow ROM
; but without the powerful mechanisms set up in this ROM.
; An instruction fetch on $0008 may page in a peripheral ROM,
; e.g. the Sinclair Interface 1 ROM, to handle these commands.
; However that wasn't the plan.
; Development of this ROM continued for another three months until the cost
; of replacing it and the manual became unfeasible.
; The ultimate power of channels and streams died at birth.

;; CAT-ETC
L1793: JR L1725 ; to REPORT-Ob

; -----------------
; Perform AUTO-LIST
; -----------------
; This produces an automatic listing in the upper screen.

;; AUTO-LIST
L1795: LD ($5C3F),SP ; save stack pointer in LIST_SP
 LD (IY+$02),$10 ; update TV_FLAG set bit 3
 CALL L0DAF ; routine CL-ALL.
 SET 0,(IY+$02) ; update TV_FLAG - signal lower screen in use

 LD B,(IY+$31) ; fetch DF_SZ to B.
 CALL L0E44 ; routine CL-LINE clears lower display
 ; preserving B.
 RES 0,(IY+$02) ; update TV_FLAG - signal main screen in use
 SET 0,(IY+$30) ; update FLAGS2 - signal will be necessary to
 ; clear main screen.
 LD HL,($5C49) ; fetch E_PPC current edit line to HL.
 LD DE,($5C6C) ; fetch S_TOP to DE, the current top line
 ; (initially zero)
 AND A ; prepare for true subtraction.
 SBC HL,DE ; subtract and
 ADD HL,DE ; add back.
 JR C,L17E1 ; to AUTO-L-2 if S_TOP higher than E_PPC
 ; to set S_TOP to E_PPC

 PUSH DE ; save the top line number.
 CALL L196E ; routine LINE-ADDR gets address of E_PPC.
 LD DE,$02C0 ; prepare known number of characters in
 ; the default upper screen.
 EX DE,HL ; offset to HL, program address to DE.
 SBC HL,DE ; subtract high value from low to obtain
 ; negated result used in addition.
 EX (SP),HL ; swap result with top line number on stack.

 CALL L196E ; routine LINE-ADDR gets address of that
 ; top line in HL and next line in DE.
 POP BC ; restore the result to balance stack.

;; AUTO-L-1
L17CE: PUSH BC ; save the result.
 CALL L19B8 ; routine NEXT-ONE gets address in HL of
 ; line after auto-line (in DE).
 POP BC ; restore result.
 ADD HL,BC ; compute back.
 JR C,L17E4 ; to AUTO-L-3 if line 'should' appear

 EX DE,HL ; address of next line to HL.
 LD D,(HL) ; get line
 INC HL ; number
 LD E,(HL) ; in DE.
 DEC HL ; adjust back to start.
 LD ($5C6C),DE ; update S_TOP.
 JR L17CE ; to AUTO-L-1 until estimate reached.

; ---

; the jump was to here if S_TOP was greater than E_PPC

;; AUTO-L-2
L17E1: LD ($5C6C),HL ; make S_TOP the same as E_PPC.

; continue here with valid starting point from above or good estimate
; from computation

;; AUTO-L-3
L17E4: LD HL,($5C6C) ; fetch S_TOP line number to HL.
 CALL L196E ; routine LINE-ADDR gets address in HL.
 ; address of next in DE.
 JR Z,L17ED ; to AUTO-L-4 if line exists.

 EX DE,HL ; else use address of next line.

;; AUTO-L-4
L17ED: CALL L1833 ; routine LIST-ALL >>>

; The return will be to here if no scrolling occurred

 RES 4,(IY+$02) ; update TV_FLAG - signal no auto listing.
 RET ; return.

; ------------
; Handle LLIST
; ------------
; A short form of LIST #3. The listing goes to stream 3 - default printer.

;; LLIST
L17F5: LD A,$03 ; the usual stream for ZX Printer
 JR L17FB ; forward to LIST-1

; -----------
; Handle LIST
; -----------
; List to any stream.
; Note. While a starting line can be specified it is
; not possible to specify an end line.
; Just listing a line makes it the current edit line.

;; LIST

L17F9: LD A,$02 ; default is stream 2 - the upper screen.

;; LIST-1
L17FB: LD (IY+$02),$00 ; the TV_FLAG is initialized with bit 0 reset
 ; indicating upper screen in use.
 CALL L2530 ; routine SYNTAX-Z - checking syntax ?
 CALL NZ,L1601 ; routine CHAN-OPEN if in run-time.

 RST 18H ; GET-CHAR
 CALL L2070 ; routine STR-ALTER will alter if '#'.
 JR C,L181F ; forward to LIST-4 not a '#' .

 RST 18H ; GET-CHAR
 CP $3B ; is it ';' ?
 JR Z,L1814 ; skip to LIST-2 if so.

 CP $2C ; is it ',' ?
 JR NZ,L181A ; forward to LIST-3 if neither separator.

; we have, say, LIST #15, and a number must follow the separator.

;; LIST-2
L1814: RST 20H ; NEXT-CHAR
 CALL L1C82 ; routine EXPT-1NUM
 JR L1822 ; forward to LIST-5

; ---

; the branch was here with just LIST #3 etc.

;; LIST-3
L181A: CALL L1CE6 ; routine USE-ZERO
 JR L1822 ; forward to LIST-5

; ---

; the branch was here with LIST

;; LIST-4
L181F: CALL L1CDE ; routine FETCH-NUM checks if a number
 ; follows else uses zero.

;; LIST-5
L1822: CALL L1BEE ; routine CHECK-END quits if syntax OK >>>

 CALL L1E99 ; routine FIND-INT2 fetches the number
 ; from the calculator stack in run-time.
 LD A,B ; fetch high byte of line number and
 AND $3F ; make less than $40 so that NEXT-ONE
 ; (from LINE-ADDR) doesn't lose context.
 ; Note. this is not satisfactory and the typo
 ; LIST 20000 will list an entirely different
 ; section than LIST 2000. Such typos are not
 ; available for checking if they are direct
 ; commands.

 LD H,A ; transfer the modified
 LD L,C ; line number to HL.
 LD ($5C49),HL ; update E_PPC to new line number.
 CALL L196E ; routine LINE-ADDR gets the address of the
 ; line.

; This routine is called from AUTO-LIST

;; LIST-ALL
L1833: LD E,$01 ; signal current line not yet printed

;; LIST-ALL-2
L1835: CALL L1855 ; routine OUT-LINE outputs a BASIC line
 ; using PRINT-OUT and makes an early return
 ; when no more lines to print. >>>

 RST 10H ; PRINT-A prints the carriage return (in A)

 BIT 4,(IY+$02) ; test TV_FLAG - automatic listing ?
 JR Z,L1835 ; back to LIST-ALL-2 if not
 ; (loop exit is via OUT-LINE)

; continue here if an automatic listing required.

 LD A,($5C6B) ; fetch DF_SZ lower display file size.
 SUB (IY+$4F) ; subtract S_POSN_hi ithe current line number.
 JR NZ,L1835 ; back to LIST-ALL-2 if upper screen not full.

 XOR E ; A contains zero, E contains one if the
 ; current edit line has not been printed
 ; or zero if it has (from OUT-LINE).
 RET Z ; return if the screen is full and the line
 ; has been printed.

; continue with automatic listings if the screen is full and the current
; edit line is missing. OUT-LINE will scroll automatically.

 PUSH HL ; save the pointer address.
 PUSH DE ; save the E flag.
 LD HL,$5C6C ; fetch S_TOP the rough estimate.
 CALL L190F ; routine LN-FETCH updates S_TOP with
 ; the number of the next line.
 POP DE ; restore the E flag.
 POP HL ; restore the address of the next line.
 JR L1835 ; back to LIST-ALL-2.

; ------------------------
; Print a whole BASIC line
; ------------------------
; This routine prints a whole BASIC line and it is called
; from LIST-ALL to output the line to current channel
; and from ED-EDIT to 'sprint' the line to the edit buffer.

;; OUT-LINE
L1855: LD BC,($5C49) ; fetch E_PPC the current line which may be
 ; unchecked and not exist.
 CALL L1980 ; routine CP-LINES finds match or line after.
 LD D,$3E ; prepare cursor '>' in D.
 JR Z,L1865 ; to OUT-LINE1 if matched or line after.

 LD DE,$0000 ; put zero in D, to suppress line cursor.
 RL E ; pick up carry in E if line before current
 ; leave E zero if same or after.

;; OUT-LINE1
L1865: LD (IY+$2D),E ; save flag in BREG which is spare.
 LD A,(HL) ; get high byte of line number.
 CP $40 ; is it too high ($2F is maximum possible) ?
 POP BC ; drop the return address and
 RET NC ; make an early return if so >>>

 PUSH BC ; save return address
 CALL L1A28 ; routine OUT-NUM-2 to print addressed number
 ; with leading space.
 INC HL ; skip low number byte.
 INC HL ; and the two
 INC HL ; length bytes.
 RES 0,(IY+$01) ; update FLAGS - signal leading space required.
 LD A,D ; fetch the cursor.
 AND A ; test for zero.
 JR Z,L1881 ; to OUT-LINE3 if zero.

 RST 10H ; PRINT-A prints '>' the current line cursor.

; this entry point is called from ED-COPY

;; OUT-LINE2
L187D: SET 0,(IY+$01) ; update FLAGS - suppress leading space.

;; OUT-LINE3
L1881: PUSH DE ; save flag E for a return value.
 EX DE,HL ; save HL address in DE.
 RES 2,(IY+$30) ; update FLAGS2 - signal NOT in QUOTES.

 LD HL,$5C3B ; point to FLAGS.
 RES 2,(HL) ; signal 'K' mode. (starts before keyword)
 BIT 5,(IY+$37) ; test FLAGX - input mode ?
 JR Z,L1894 ; forward to OUT-LINE4 if not.

 SET 2,(HL) ; signal 'L' mode. (used for input)

;; OUT-LINE4
L1894: LD HL,($5C5F) ; fetch X_PTR - possibly the error pointer
 ; address.
 AND A ; clear the carry flag.
 SBC HL,DE ; test if an error address has been reached.
 JR NZ,L18A1 ; forward to OUT-LINE5 if not.

 LD A,$3F ; load A with '?' the error marker.
 CALL L18C1 ; routine OUT-FLASH to print flashing marker.

;; OUT-LINE5
L18A1: CALL L18E1 ; routine OUT-CURS will print the cursor if
 ; this is the right position.
 EX DE,HL ; restore address pointer to HL.
 LD A,(HL) ; fetch the addressed character.
 CALL L18B6 ; routine NUMBER skips a hidden floating
 ; point number if present.
 INC HL ; now increment the pointer.
 CP $0D ; is character end-of-line ?
 JR Z,L18B4 ; to OUT-LINE6, if so, as line is finished.

 EX DE,HL ; save the pointer in DE.
 CALL L1937 ; routine OUT-CHAR to output character/token.

 JR L1894 ; back to OUT-LINE4 until entire line is done.

; ---

;; OUT-LINE6
L18B4: POP DE ; bring back the flag E, zero if current
 ; line printed else 1 if still to print.
 RET ; return with A holding $0D

; -------------------------
; Check for a number marker
; -------------------------
; this subroutine is called from two processes. while outputting BASIC lines
; and while searching statements within a BASIC line.
; during both, this routine will pass over an invisible number indicator
; and the five bytes floating-point number that follows it.
; Note that this causes floating point numbers to be stripped from
; the BASIC line when it is fetched to the edit buffer by OUT_LINE.
; the number marker also appears after the arguments of a DEF FN statement
; and may mask old 5-byte string parameters.

;; NUMBER
L18B6: CP $0E ; character fourteen ?
 RET NZ ; return if not.

 INC HL ; skip the character
 INC HL ; and five bytes
 INC HL ; following.
 INC HL ;
 INC HL ;
 INC HL ;
 LD A,(HL) ; fetch the following character
 RET ; for return value.

; --------------------------
; Print a flashing character
; --------------------------
; This subroutine is called from OUT-LINE to print a flashing error
; marker '?' or from the next routine to print a flashing cursor e.g. 'L'.
; However, this only gets called from OUT-LINE when printing the edit line
; or the input buffer to the lower screen so a direct call to $09F4 can
; be used, even though out-line outputs to other streams.
; In fact the alternate set is used for the whole routine.

;; OUT-FLASH
L18C1: EXX ; switch in alternate set

 LD HL,($5C8F) ; fetch L = ATTR_T, H = MASK-T
 PUSH HL ; save masks.
 RES 7,H ; reset flash mask bit so active.
 SET 7,L ; make attribute FLASH.
 LD ($5C8F),HL ; resave ATTR_T and MASK-T

 LD HL,$5C91 ; address P_FLAG
 LD D,(HL) ; fetch to D
 PUSH DE ; and save.
 LD (HL),$00 ; clear inverse, over, ink/paper 9

 CALL L09F4 ; routine PRINT-OUT outputs character
 ; without the need to vector via RST 10.

 POP HL ; pop P_FLAG to H.
 LD (IY+$57),H ; and restore system variable P_FLAG.
 POP HL ; restore temporary masks
 LD ($5C8F),HL ; and restore system variables ATTR_T/MASK_T

 EXX ; switch back to main set
 RET ; return

; ----------------
; Print the cursor
; ----------------
; This routine is called before any character is output while outputting

; a BASIC line or the input buffer. This includes listing to a printer
; or screen, copying a BASIC line to the edit buffer and printing the
; input buffer or edit buffer to the lower screen. It is only in the
; latter two cases that it has any relevance and in the last case it
; performs another very important function also.

;; OUT-CURS
L18E1: LD HL,($5C5B) ; fetch K_CUR the current cursor address
 AND A ; prepare for true subtraction.
 SBC HL,DE ; test against pointer address in DE and
 RET NZ ; return if not at exact position.

; the value of MODE, maintained by KEY-INPUT, is tested and if non-zero
; then this value 'E' or 'G' will take precedence.

 LD A,($5C41) ; fetch MODE 0='KLC', 1='E', 2='G'.
 RLC A ; double the value and set flags.
 JR Z,L18F3 ; to OUT-C-1 if still zero ('KLC').

 ADD A,$43 ; add 'C' - will become 'E' if originally 1
 ; or 'G' if originally 2.
 JR L1909 ; forward to OUT-C-2 to print.

; ---

; If mode was zero then, while printing a BASIC line, bit 2 of flags has been
; set if 'THEN' or ':' was encountered as a main character and reset otherwise.
; This is now used to determine if the 'K' cursor is to be printed but this
; transient state is also now transferred permanently to bit 3 of FLAGS
; to let the interrupt routine know how to decode the next key.

;; OUT-C-1
L18F3: LD HL,$5C3B ; Address FLAGS
 RES 3,(HL) ; signal 'K' mode initially.
 LD A,$4B ; prepare letter 'K'.
 BIT 2,(HL) ; test FLAGS - was the
 ; previous main character ':' or 'THEN' ?
 JR Z,L1909 ; forward to OUT-C-2 if so to print.

 SET 3,(HL) ; signal 'L' mode to interrupt routine.
 ; Note. transient bit has been made permanent.
 INC A ; augment from 'K' to 'L'.

 BIT 3,(IY+$30) ; test FLAGS2 - consider caps lock ?
 ; which is maintained by KEY-INPUT.
 JR Z,L1909 ; forward to OUT-C-2 if not set to print.

 LD A,$43 ; alter 'L' to 'C'.

;; OUT-C-2
L1909: PUSH DE ; save address pointer but OK as OUT-FLASH
 ; uses alternate set without RST 10.

 CALL L18C1 ; routine OUT-FLASH to print.

 POP DE ; restore and
 RET ; return.

; ----------------------------
; Get line number of next line
; ----------------------------
; These two subroutines are called while editing.
; This entry point is from ED-DOWN with HL addressing E_PPC
; to fetch the next line number.

; Also from AUTO-LIST with HL addressing S_TOP just to update S_TOP
; with the value of the next line number. It gets fetched but is discarded.
; These routines never get called while the editor is being used for input.

;; LN-FETCH
L190F: LD E,(HL) ; fetch low byte
 INC HL ; address next
 LD D,(HL) ; fetch high byte.
 PUSH HL ; save system variable hi pointer.
 EX DE,HL ; line number to HL,
 INC HL ; increment as a starting point.
 CALL L196E ; routine LINE-ADDR gets address in HL.
 CALL L1695 ; routine LINE-NO gets line number in DE.
 POP HL ; restore system variable hi pointer.

; This entry point is from the ED-UP with HL addressing E_PPC_hi

;; LN-STORE
L191C: BIT 5,(IY+$37) ; test FLAGX - input mode ?
 RET NZ ; return if so.
 ; Note. above already checked by ED-UP/ED-DOWN.

 LD (HL),D ; save high byte of line number.
 DEC HL ; address lower
 LD (HL),E ; save low byte of line number.
 RET ; return.

; ---
; Outputting numbers at start of BASIC line
; ---
; This routine entered at OUT-SP-NO is used to compute then output the first
; three digits of a 4-digit BASIC line printing a space if necessary.
; The line number, or residual part, is held in HL and the BC register
; holds a subtraction value -1000, -100 or -10.
; Note. for example line number 200 -
; space(out_char), 2(out_code), 0(out_char) final number always out-code.

;; OUT-SP-2
L1925: LD A,E ; will be space if OUT-CODE not yet called.
 ; or $FF if spaces are suppressed.
 ; else $30 ('0').
 ; (from the first instruction at OUT-CODE)
 ; this guy is just too clever.
 AND A ; test bit 7 of A.
 RET M ; return if $FF, as leading spaces not
 ; required. This is set when printing line
 ; number and statement in MAIN-5.

 JR L1937 ; forward to exit via OUT-CHAR.

; ---

; -> the single entry point.

;; OUT-SP-NO
L192A: XOR A ; initialize digit to 0

;; OUT-SP-1
L192B: ADD HL,BC ; add negative number to HL.
 INC A ; increment digit
 JR C,L192B ; back to OUT-SP-1 until no carry from
 ; the addition.

 SBC HL,BC ; cancel the last addition

 DEC A ; and decrement the digit.
 JR Z,L1925 ; back to OUT-SP-2 if it is zero.

 JP L15EF ; jump back to exit via OUT-CODE. ->

; -------------------------------------
; Outputting characters in a BASIC line
; -------------------------------------
; This subroutine ...

;; OUT-CHAR
L1937: CALL L2D1B ; routine NUMERIC tests if it is a digit ?
 JR NC,L196C ; to OUT-CH-3 to print digit without
 ; changing mode. Will be 'K' mode if digits
 ; are at beginning of edit line.

 CP $21 ; less than quote character ?
 JR C,L196C ; to OUT-CH-3 to output controls and space.

 RES 2,(IY+$01) ; initialize FLAGS to 'K' mode and leave
 ; unchanged if this character would precede
 ; a keyword.

 CP $CB ; is character 'THEN' token ?
 JR Z,L196C ; to OUT-CH-3 to output if so.

 CP $3A ; is it ':' ?
 JR NZ,L195A ; to OUT-CH-1 if not statement separator
 ; to change mode back to 'L'.

 BIT 5,(IY+$37) ; FLAGX - Input Mode ??
 JR NZ,L1968 ; to OUT-CH-2 if in input as no statements.
 ; Note. this check should seemingly be at
 ; the start. Commands seem inappropriate in
 ; INPUT mode and are rejected by the syntax
 ; checker anyway.
 ; unless INPUT LINE is being used.

 BIT 2,(IY+$30) ; test FLAGS2 - is the ':' within quotes ?
 JR Z,L196C ; to OUT-CH-3 if ':' is outside quoted text.

 JR L1968 ; to OUT-CH-2 as ':' is within quotes

; ---

;; OUT-CH-1
L195A: CP $22 ; is it quote character '"' ?
 JR NZ,L1968 ; to OUT-CH-2 with others to set 'L' mode.

 PUSH AF ; save character.
 LD A,($5C6A) ; fetch FLAGS2.
 XOR $04 ; toggle the quotes flag.
 LD ($5C6A),A ; update FLAGS2
 POP AF ; and restore character.

;; OUT-CH-2
L1968: SET 2,(IY+$01) ; update FLAGS - signal L mode if the cursor
 ; is next.

;; OUT-CH-3
L196C: RST 10H ; PRINT-A vectors the character to
 ; channel 'S', 'K', 'R' or 'P'.
 RET ; return.

; ---
; Get starting address of line, or line after
; ---
; This routine is used often to get the address, in HL, of a BASIC line
; number supplied in HL, or failing that the address of the following line
; and the address of the previous line in DE.

;; LINE-ADDR
L196E: PUSH HL ; save line number in HL register
 LD HL,($5C53) ; fetch start of program from PROG
 LD D,H ; transfer address to
 LD E,L ; the DE register pair.

;; LINE-AD-1
L1974: POP BC ; restore the line number to BC
 CALL L1980 ; routine CP-LINES compares with that
 ; addressed by HL
 RET NC ; return if line has been passed or matched.
 ; if NZ, address of previous is in DE

 PUSH BC ; save the current line number
 CALL L19B8 ; routine NEXT-ONE finds address of next
 ; line number in DE, previous in HL.
 EX DE,HL ; switch so next in HL
 JR L1974 ; back to LINE-AD-1 for another comparison

; --------------------
; Compare line numbers
; --------------------
; This routine compares a line number supplied in BC with an addressed
; line number pointed to by HL.

;; CP-LINES
L1980: LD A,(HL) ; Load the high byte of line number and
 CP B ; compare with that of supplied line number.
 RET NZ ; return if yet to match (carry will be set).

 INC HL ; address low byte of
 LD A,(HL) ; number and pick up in A.
 DEC HL ; step back to first position.
 CP C ; now compare.
 RET ; zero set if exact match.
 ; carry set if yet to match.
 ; no carry indicates a match or
 ; next available BASIC line or
 ; program end marker.

; -------------------
; Find each statement
; -------------------
; The single entry point EACH-STMT is used to
; 1) To find the D'th statement in a line.
; 2) To find a token in held E.

;; not-used
L1988: INC HL ;
 INC HL ;
 INC HL ;

; -> entry point.

;; EACH-STMT
L198B: LD ($5C5D),HL ; save HL in CH_ADD

 LD C,$00 ; initialize quotes flag

;; EACH-S-1
L1990: DEC D ; decrease statement count
 RET Z ; return if zero

 RST 20H ; NEXT-CHAR
 CP E ; is it the search token ?
 JR NZ,L199A ; forward to EACH-S-3 if not

 AND A ; clear carry
 RET ; return signalling success.

; ---

;; EACH-S-2
L1998: INC HL ; next address
 LD A,(HL) ; next character

;; EACH-S-3
L199A: CALL L18B6 ; routine NUMBER skips if number marker
 LD ($5C5D),HL ; save in CH_ADD
 CP $22 ; is it quotes '"' ?
 JR NZ,L19A5 ; to EACH-S-4 if not

 DEC C ; toggle bit 0 of C

;; EACH-S-4
L19A5: CP $3A ; is it ':'
 JR Z,L19AD ; to EACH-S-5

 CP $CB ; 'THEN'
 JR NZ,L19B1 ; to EACH-S-6

;; EACH-S-5
L19AD: BIT 0,C ; is it in quotes
 JR Z,L1990 ; to EACH-S-1 if not

;; EACH-S-6
L19B1: CP $0D ; end of line ?
 JR NZ,L1998 ; to EACH-S-2

 DEC D ; decrease the statement counter
 ; which should be zero else
 ; 'Statement Lost'.
 SCF ; set carry flag - not found
 RET ; return

; ---
; Storage of variables. For full details - see chapter 24.
; ZX Spectrum BASIC Programming by Steven Vickers 1982.
; It is bits 7-5 of the first character of a variable that allow
; the six types to be distinguished. Bits 4-0 are the reduced letter.
; So any variable name is higher that $3F and can be distinguished
; also from the variables area end-marker $80.
;
; 76543210 meaning brief outline of format.
; -------- ------------------------ -----------------------
; 010 string variable. 2 byte length + contents.
; 110 string array. 2 byte length + contents.
; 100 array of numbers. 2 byte length + contents.
; 011 simple numeric variable. 5 bytes.
; 101 variable length named numeric. 5 bytes.

; 111 for-next loop variable. 18 bytes.
; 10000000 the variables area end-marker.
;
; Note. any of the above seven will serve as a program end-marker.
;
; ---

; ------------
; Get next one
; ------------
; This versatile routine is used to find the address of the next line
; in the program area or the next variable in the variables area.
; The reason one routine is made to handle two apparently unrelated tasks
; is that it can be called indiscriminately when merging a line or a
; variable.

;; NEXT-ONE
L19B8: PUSH HL ; save the pointer address.
 LD A,(HL) ; get first byte.
 CP $40 ; compare with upper limit for line numbers.
 JR C,L19D5 ; forward to NEXT-O-3 if within BASIC area.

; the continuation here is for the next variable unless the supplied
; line number was erroneously over 16383. see RESTORE command.

 BIT 5,A ; is it a string or an array variable ?
 JR Z,L19D6 ; forward to NEXT-O-4 to compute length.

 ADD A,A ; test bit 6 for single-character variables.
 JP M,L19C7 ; forward to NEXT-O-1 if so

 CCF ; clear the carry for long-named variables.
 ; it remains set for for-next loop variables.

;; NEXT-O-1
L19C7: LD BC,$0005 ; set BC to 5 for floating point number
 JR NC,L19CE ; forward to NEXT-O-2 if not a for/next
 ; variable.

 LD C,$12 ; set BC to eighteen locations.
 ; value, limit, step, line and statement.

; now deal with long-named variables

;; NEXT-O-2
L19CE: RLA ; test if character inverted. carry will also
 ; be set for single character variables
 INC HL ; address next location.
 LD A,(HL) ; and load character.
 JR NC,L19CE ; back to NEXT-O-2 if not inverted bit.
 ; forward immediately with single character
 ; variable names.

 JR L19DB ; forward to NEXT-O-5 to add length of
 ; floating point number(s etc.).

; ---

; this branch is for line numbers.

;; NEXT-O-3
L19D5: INC HL ; increment pointer to low byte of line no.

; strings and arrays rejoin here

;; NEXT-O-4
L19D6: INC HL ; increment to address the length low byte.
 LD C,(HL) ; transfer to C and
 INC HL ; point to high byte of length.
 LD B,(HL) ; transfer that to B
 INC HL ; point to start of BASIC/variable contents.

; the three types of numeric variables rejoin here

;; NEXT-O-5
L19DB: ADD HL,BC ; add the length to give address of next
 ; line/variable in HL.
 POP DE ; restore previous address to DE.

; ------------------
; Difference routine
; ------------------
; This routine terminates the above routine and is also called from the
; start of the next routine to calculate the length to reclaim.

;; DIFFER
L19DD: AND A ; prepare for true subtraction.
 SBC HL,DE ; subtract the two pointers.
 LD B,H ; transfer result
 LD C,L ; to BC register pair.
 ADD HL,DE ; add back
 EX DE,HL ; and switch pointers
 RET ; return values are the length of area in BC,
 ; low pointer (previous) in HL,
 ; high pointer (next) in DE.

; -----------------------
; Handle reclaiming space
; -----------------------
;

;; RECLAIM-1
L19E5: CALL L19DD ; routine DIFFER immediately above

;; RECLAIM-2
L19E8: PUSH BC ;

 LD A,B ;
 CPL ;
 LD B,A ;
 LD A,C ;
 CPL ;
 LD C,A ;
 INC BC ;

 CALL L1664 ; routine POINTERS
 EX DE,HL ;
 POP HL ;

 ADD HL,DE ;
 PUSH DE ;
 LDIR ; copy bytes

 POP HL ;
 RET ;

; --
; Read line number of line in editing area

; --
; This routine reads a line number in the editing area returning the number
; in the BC register or zero if no digits exist before commands.
; It is called from LINE-SCAN to check the syntax of the digits.
; It is called from MAIN-3 to extract the line number in preparation for
; inclusion of the line in the BASIC program area.
;
; Interestingly the calculator stack is moved from its normal place at the
; end of dynamic memory to an adequate area within the system variables area.
; This ensures that in a low memory situation, that valid line numbers can
; be extracted without raising an error and that memory can be reclaimed
; by deleting lines. If the stack was in its normal place then a situation
; arises whereby the Spectrum becomes locked with no means of reclaiming space.

;; E-LINE-NO
L19FB: LD HL,($5C59) ; load HL from system variable E_LINE.

 DEC HL ; decrease so that NEXT_CHAR can be used
 ; without skipping the first digit.

 LD ($5C5D),HL ; store in the system variable CH_ADD.

 RST 20H ; NEXT-CHAR skips any noise and white-space
 ; to point exactly at the first digit.

 LD HL,$5C92 ; use MEM-0 as a temporary calculator stack
 ; an overhead of three locations are needed.
 LD ($5C65),HL ; set new STKEND.

 CALL L2D3B ; routine INT-TO-FP will read digits till
 ; a non-digit found.
 CALL L2DA2 ; routine FP-TO-BC will retrieve number
 ; from stack at membot.
 JR C,L1A15 ; forward to E-L-1 if overflow i.e. > 65535.
 ; 'Nonsense in BASIC'

 LD HL,$D8F0 ; load HL with value -9999
 ADD HL,BC ; add to line number in BC

;; E-L-1
L1A15: JP C,L1C8A ; to REPORT-C 'Nonsense in BASIC' if over.
 ; Note. As ERR_SP points to ED_ERROR
 ; the report is never produced although
 ; the RST $08 will update X_PTR leading to
 ; the error marker being displayed when
 ; the ED_LOOP is reiterated.
 ; in fact, since it is immediately
 ; cancelled, any report will do.

; a line in the range 0 - 9999 has been entered.

 JP L16C5 ; jump back to SET-STK to set the calculator
 ; stack back to its normal place and exit
 ; from there.

; ---------------------------------
; Report and line number outputting
; ---------------------------------
; Entry point OUT-NUM-1 is used by the Error Reporting code to print
; the line number and later the statement number held in BC.
; If the statement was part of a direct command then -2 is used as a
; dummy line number so that zero will be printed in the report.
; This routine is also used to print the exponent of E-format numbers.
;

; Entry point OUT-NUM-2 is used from OUT-LINE to output the line number
; addressed by HL with leading spaces if necessary.

;; OUT-NUM-1
L1A1B: PUSH DE ; save the
 PUSH HL ; registers.
 XOR A ; set A to zero.
 BIT 7,B ; is the line number minus two ?
 JR NZ,L1A42 ; forward to OUT-NUM-4 if so to print zero
 ; for a direct command.

 LD H,B ; transfer the
 LD L,C ; number to HL.
 LD E,$FF ; signal 'no leading zeros'.
 JR L1A30 ; forward to continue at OUT-NUM-3

; ---

; from OUT-LINE - HL addresses line number.

;; OUT-NUM-2
L1A28: PUSH DE ; save flags
 LD D,(HL) ; high byte to D
 INC HL ; address next
 LD E,(HL) ; low byte to E
 PUSH HL ; save pointer
 EX DE,HL ; transfer number to HL
 LD E,$20 ; signal 'output leading spaces'

;; OUT-NUM-3
L1A30: LD BC,$FC18 ; value -1000
 CALL L192A ; routine OUT-SP-NO outputs space or number
 LD BC,$FF9C ; value -100
 CALL L192A ; routine OUT-SP-NO
 LD C,$F6 ; value -10 (B is still $FF)
 CALL L192A ; routine OUT-SP-NO
 LD A,L ; remainder to A.

;; OUT-NUM-4
L1A42: CALL L15EF ; routine OUT-CODE for final digit.
 ; else report code zero wouldn't get
 ; printed.
 POP HL ; restore the
 POP DE ; registers and
 RET ; return.

;***
;** Part 7. BASIC LINE AND COMMAND INTERPRETATION **
;***

; ----------------
; The offset table
; ----------------
; The BASIC interpreter has found a command code $CE - $FF
; which is then reduced to range $00 - $31 and added to the base address
; of this table to give the address of an offset which, when added to
; the offset therein, gives the location in the following parameter table
; where a list of class codes, separators and addresses relevant to the
; command exists.

;; offst-tbl
L1A48: DEFB L1AF9 - $; B1 offset to Address: P-DEF-FN
 DEFB L1B14 - $; CB offset to Address: P-CAT

 DEFB L1B06 - $; BC offset to Address: P-FORMAT
 DEFB L1B0A - $; BF offset to Address: P-MOVE
 DEFB L1B10 - $; C4 offset to Address: P-ERASE
 DEFB L1AFC - $; AF offset to Address: P-OPEN
 DEFB L1B02 - $; B4 offset to Address: P-CLOSE
 DEFB L1AE2 - $; 93 offset to Address: P-MERGE
 DEFB L1AE1 - $; 91 offset to Address: P-VERIFY
 DEFB L1AE3 - $; 92 offset to Address: P-BEEP
 DEFB L1AE7 - $; 95 offset to Address: P-CIRCLE
 DEFB L1AEB - $; 98 offset to Address: P-INK
 DEFB L1AEC - $; 98 offset to Address: P-PAPER
 DEFB L1AED - $; 98 offset to Address: P-FLASH
 DEFB L1AEE - $; 98 offset to Address: P-BRIGHT
 DEFB L1AEF - $; 98 offset to Address: P-INVERSE
 DEFB L1AF0 - $; 98 offset to Address: P-OVER
 DEFB L1AF1 - $; 98 offset to Address: P-OUT
 DEFB L1AD9 - $; 7F offset to Address: P-LPRINT
 DEFB L1ADC - $; 81 offset to Address: P-LLIST
 DEFB L1A8A - $; 2E offset to Address: P-STOP
 DEFB L1AC9 - $; 6C offset to Address: P-READ
 DEFB L1ACC - $; 6E offset to Address: P-DATA
 DEFB L1ACF - $; 70 offset to Address: P-RESTORE
 DEFB L1AA8 - $; 48 offset to Address: P-NEW
 DEFB L1AF5 - $; 94 offset to Address: P-BORDER
 DEFB L1AB8 - $; 56 offset to Address: P-CONT
 DEFB L1AA2 - $; 3F offset to Address: P-DIM
 DEFB L1AA5 - $; 41 offset to Address: P-REM
 DEFB L1A90 - $; 2B offset to Address: P-FOR
 DEFB L1A7D - $; 17 offset to Address: P-GO-TO
 DEFB L1A86 - $; 1F offset to Address: P-GO-SUB
 DEFB L1A9F - $; 37 offset to Address: P-INPUT
 DEFB L1AE0 - $; 77 offset to Address: P-LOAD
 DEFB L1AAE - $; 44 offset to Address: P-LIST
 DEFB L1A7A - $; 0F offset to Address: P-LET
 DEFB L1AC5 - $; 59 offset to Address: P-PAUSE
 DEFB L1A98 - $; 2B offset to Address: P-NEXT
 DEFB L1AB1 - $; 43 offset to Address: P-POKE
 DEFB L1A9C - $; 2D offset to Address: P-PRINT
 DEFB L1AC1 - $; 51 offset to Address: P-PLOT
 DEFB L1AAB - $; 3A offset to Address: P-RUN
 DEFB L1ADF - $; 6D offset to Address: P-SAVE
 DEFB L1AB5 - $; 42 offset to Address: P-RANDOM
 DEFB L1A81 - $; 0D offset to Address: P-IF
 DEFB L1ABE - $; 49 offset to Address: P-CLS
 DEFB L1AD2 - $; 5C offset to Address: P-DRAW
 DEFB L1ABB - $; 44 offset to Address: P-CLEAR
 DEFB L1A8D - $; 15 offset to Address: P-RETURN
 DEFB L1AD6 - $; 5D offset to Address: P-COPY

; -------------------------------
; The parameter or "Syntax" table
; -------------------------------
; For each command there exists a variable list of parameters.
; If the character is greater than a space it is a required separator.
; If less, then it is a command class in the range 00 - 0B.
; Note that classes 00, 03 and 05 will fetch the addresses from this table.
; Some classes e.g. 07 and 0B have the same address in all invocations
; and the command is re-computed from the low-byte of the parameter address.
; Some e.g. 02 are only called once so a call to the command is made from
; within the class routine rather than holding the address within the table.
; Some class routines check syntax entirely and some leave this task for the
; command itself.
; Others for example CIRCLE (x,y,z) check the first part (x,y) using the

; class routine and the final part (,z) within the command.
; The last few commands appear to have been added in a rush but their syntax
; is rather simple e.g. MOVE "M1","M2"

;; P-LET
L1A7A: DEFB $01 ; Class-01 - A variable is required.
 DEFB $3D ; Separator: '='
 DEFB $02 ; Class-02 - An expression, numeric or string,
 ; must follow.

;; P-GO-TO
L1A7D: DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1E67 ; Address: $1E67; Address: GO-TO

;; P-IF
L1A81: DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $CB ; Separator: 'THEN'
 DEFB $05 ; Class-05 - Variable syntax checked
 ; by routine.
 DEFW L1CF0 ; Address: $1CF0; Address: IF

;; P-GO-SUB
L1A86: DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1EED ; Address: $1EED; Address: GO-SUB

;; P-STOP
L1A8A: DEFB $00 ; Class-00 - No further operands.
 DEFW L1CEE ; Address: $1CEE; Address: STOP

;; P-RETURN
L1A8D: DEFB $00 ; Class-00 - No further operands.
 DEFW L1F23 ; Address: $1F23; Address: RETURN

;; P-FOR
L1A90: DEFB $04 ; Class-04 - A single character variable must
 ; follow.
 DEFB $3D ; Separator: '='
 DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $CC ; Separator: 'TO'
 DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $05 ; Class-05 - Variable syntax checked
 ; by routine.
 DEFW L1D03 ; Address: $1D03; Address: FOR

;; P-NEXT
L1A98: DEFB $04 ; Class-04 - A single character variable must
 ; follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1DAB ; Address: $1DAB; Address: NEXT

;; P-PRINT
L1A9C: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L1FCD ; Address: $1FCD; Address: PRINT

;; P-INPUT
L1A9F: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L2089 ; Address: $2089; Address: INPUT

;; P-DIM
L1AA2: DEFB $05 ; Class-05 - Variable syntax checked entirely

 ; by routine.
 DEFW L2C02 ; Address: $2C02; Address: DIM

;; P-REM
L1AA5: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L1BB2 ; Address: $1BB2; Address: REM

;; P-NEW
L1AA8: DEFB $00 ; Class-00 - No further operands.
 DEFW L11B7 ; Address: $11B7; Address: NEW

;; P-RUN
L1AAB: DEFB $03 ; Class-03 - A numeric expression may follow
 ; else default to zero.
 DEFW L1EA1 ; Address: $1EA1; Address: RUN

;; P-LIST
L1AAE: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L17F9 ; Address: $17F9; Address: LIST

;; P-POKE
L1AB1: DEFB $08 ; Class-08 - Two comma-separated numeric
 ; expressions required.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1E80 ; Address: $1E80; Address: POKE

;; P-RANDOM
L1AB5: DEFB $03 ; Class-03 - A numeric expression may follow
 ; else default to zero.
 DEFW L1E4F ; Address: $1E4F; Address: RANDOMIZE

;; P-CONT
L1AB8: DEFB $00 ; Class-00 - No further operands.
 DEFW L1E5F ; Address: $1E5F; Address: CONTINUE

;; P-CLEAR
L1ABB: DEFB $03 ; Class-03 - A numeric expression may follow
 ; else default to zero.
 DEFW L1EAC ; Address: $1EAC; Address: CLEAR

;; P-CLS
L1ABE: DEFB $00 ; Class-00 - No further operands.
 DEFW L0D6B ; Address: $0D6B; Address: CLS

;; P-PLOT
L1AC1: DEFB $09 ; Class-09 - Two comma-separated numeric
 ; expressions required with optional colour
 ; items.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L22DC ; Address: $22DC; Address: PLOT

;; P-PAUSE
L1AC5: DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1F3A ; Address: $1F3A; Address: PAUSE

;; P-READ
L1AC9: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L1DED ; Address: $1DED; Address: READ

;; P-DATA

L1ACC: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L1E27 ; Address: $1E27; Address: DATA

;; P-RESTORE
L1ACF: DEFB $03 ; Class-03 - A numeric expression may follow
 ; else default to zero.
 DEFW L1E42 ; Address: $1E42; Address: RESTORE

;; P-DRAW
L1AD2: DEFB $09 ; Class-09 - Two comma-separated numeric
 ; expressions required with optional colour
 ; items.
 DEFB $05 ; Class-05 - Variable syntax checked
 ; by routine.
 DEFW L2382 ; Address: $2382; Address: DRAW

;; P-COPY
L1AD6: DEFB $00 ; Class-00 - No further operands.
 DEFW L0EAC ; Address: $0EAC; Address: COPY

;; P-LPRINT
L1AD9: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L1FC9 ; Address: $1FC9; Address: LPRINT

;; P-LLIST
L1ADC: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L17F5 ; Address: $17F5; Address: LLIST

;; P-SAVE
L1ADF: DEFB $0B ; Class-0B - Offset address converted to tape
 ; command.

;; P-LOAD
L1AE0: DEFB $0B ; Class-0B - Offset address converted to tape
 ; command.

;; P-VERIFY
L1AE1: DEFB $0B ; Class-0B - Offset address converted to tape
 ; command.

;; P-MERGE
L1AE2: DEFB $0B ; Class-0B - Offset address converted to tape
 ; command.

;; P-BEEP
L1AE3: DEFB $08 ; Class-08 - Two comma-separated numeric
 ; expressions required.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L03F8 ; Address: $03F8; Address: BEEP

;; P-CIRCLE
L1AE7: DEFB $09 ; Class-09 - Two comma-separated numeric
 ; expressions required with optional colour
 ; items.
 DEFB $05 ; Class-05 - Variable syntax checked
 ; by routine.
 DEFW L2320 ; Address: $2320; Address: CIRCLE

;; P-INK
L1AEB: DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

;; P-PAPER
L1AEC: DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

;; P-FLASH
L1AED: DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

;; P-BRIGHT
L1AEE: DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

;; P-INVERSE
L1AEF: DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

;; P-OVER
L1AF0: DEFB $07 ; Class-07 - Offset address is converted to
 ; colour code.

;; P-OUT
L1AF1: DEFB $08 ; Class-08 - Two comma-separated numeric
 ; expressions required.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1E7A ; Address: $1E7A; Address: OUT

;; P-BORDER
L1AF5: DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L2294 ; Address: $2294; Address: BORDER

;; P-DEF-FN
L1AF9: DEFB $05 ; Class-05 - Variable syntax checked entirely
 ; by routine.
 DEFW L1F60 ; Address: $1F60; Address: DEF-FN

;; P-OPEN
L1AFC: DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $2C ; Separator: ',' see Footnote *
 DEFB $0A ; Class-0A - A string expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1736 ; Address: $1736; Address: OPEN

;; P-CLOSE
L1B02: DEFB $06 ; Class-06 - A numeric expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L16E5 ; Address: $16E5; Address: CLOSE

;; P-FORMAT
L1B06: DEFB $0A ; Class-0A - A string expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1793 ; Address: $1793; Address: CAT-ETC

;; P-MOVE
L1B0A: DEFB $0A ; Class-0A - A string expression must follow.
 DEFB $2C ; Separator: ','
 DEFB $0A ; Class-0A - A string expression must follow.
 DEFB $00 ; Class-00 - No further operands.
 DEFW L1793 ; Address: $1793; Address: CAT-ETC

;; P-ERASE
L1B10: DEFB $0A ; Class-0A - A string expression must follow.
 DEFB $00 ; Class-00 - No further operands.

 DEFW L1793 ; Address: $1793; Address: CAT-ETC

;; P-CAT
L1B14: DEFB $00 ; Class-00 - No further operands.
 DEFW L1793 ; Address: $1793; Address: CAT-ETC

; * Note that a comma is required as a separator with the OPEN command
; but the Interface 1 programmers relaxed this allowing ';' as an
; alternative for their channels creating a confusing mixture of
; allowable syntax as it is this ROM which opens or re-opens the
; normal channels.

; -------------------------------
; Main parser (BASIC interpreter)
; -------------------------------
; This routine is called once from MAIN-2 when the BASIC line is to
; be entered or re-entered into the Program area and the syntax
; requires checking.

;; LINE-SCAN
L1B17: RES 7,(IY+$01) ; update FLAGS - signal checking syntax
 CALL L19FB ; routine E-LINE-NO >>
 ; fetches the line number if in range.

 XOR A ; clear the accumulator.
 LD ($5C47),A ; set statement number SUBPPC to zero.
 DEC A ; set accumulator to $FF.
 LD ($5C3A),A ; set ERR_NR to 'OK' - 1.
 JR L1B29 ; forward to continue at STMT-L-1.

; --------------
; Statement loop
; --------------
;
;

;; STMT-LOOP
L1B28: RST 20H ; NEXT-CHAR

; -> the entry point from above or LINE-RUN
;; STMT-L-1
L1B29: CALL L16BF ; routine SET-WORK clears workspace etc.

 INC (IY+$0D) ; increment statement number SUBPPC
 JP M,L1C8A ; to REPORT-C to raise
 ; 'Nonsense in BASIC' if over 127.

 RST 18H ; GET-CHAR

 LD B,$00 ; set B to zero for later indexing.
 ; early so any other reason ???

 CP $0D ; is character carriage return ?
 ; i.e. an empty statement.
 JR Z,L1BB3 ; forward to LINE-END if so.

 CP $3A ; is it statement end marker ':' ?
 ; i.e. another type of empty statement.
 JR Z,L1B28 ; back to STMT-LOOP if so.

 LD HL,L1B76 ; address: STMT-RET
 PUSH HL ; is now pushed as a return address
 LD C,A ; transfer the current character to C.

; advance CH_ADD to a position after command and test if it is a command.

 RST 20H ; NEXT-CHAR to advance pointer
 LD A,C ; restore current character
 SUB $CE ; subtract 'DEF FN' - first command
 JP C,L1C8A ; jump to REPORT-C if less than a command
 ; raising
 ; 'Nonsense in BASIC'

 LD C,A ; put the valid command code back in C.
 ; register B is zero.
 LD HL,L1A48 ; address: offst-tbl
 ADD HL,BC ; index into table with one of 50 commands.
 LD C,(HL) ; pick up displacement to syntax table entry.
 ADD HL,BC ; add to address the relevant entry.
 JR L1B55 ; forward to continue at GET-PARAM

; ----------------------
; The main scanning loop
; ----------------------
; not documented properly
;

;; SCAN-LOOP
L1B52: LD HL,($5C74) ; fetch temporary address from T_ADDR
 ; during subsequent loops.

; -> the initial entry point with HL addressing start of syntax table entry.

;; GET-PARAM
L1B55: LD A,(HL) ; pick up the parameter.
 INC HL ; address next one.
 LD ($5C74),HL ; save pointer in system variable T_ADDR

 LD BC,L1B52 ; address: SCAN-LOOP
 PUSH BC ; is now pushed on stack as looping address.
 LD C,A ; store parameter in C.
 CP $20 ; is it greater than ' ' ?
 JR NC,L1B6F ; forward to SEPARATOR to check that correct
 ; separator appears in statement if so.

 LD HL,L1C01 ; address: class-tbl.
 LD B,$00 ; prepare to index into the class table.
 ADD HL,BC ; index to find displacement to routine.
 LD C,(HL) ; displacement to BC
 ADD HL,BC ; add to address the CLASS routine.
 PUSH HL ; push the address on the stack.

 RST 18H ; GET-CHAR - HL points to place in statement.

 DEC B ; reset the zero flag - the initial state
 ; for all class routines.

 RET ; and make an indirect jump to routine
 ; and then SCAN-LOOP (also on stack).

; Note. one of the class routines will eventually drop the return address
; off the stack breaking out of the above seemingly endless loop.

; ----------------
; Verify separator
; ----------------
; This routine is called once to verify that the mandatory separator
; present in the parameter table is also present in the correct

; location following the command. For example, the 'THEN' token after
; the 'IF' token and expression.

;; SEPARATOR
L1B6F: RST 18H ; GET-CHAR
 CP C ; does it match the character in C ?
 JP NZ,L1C8A ; jump forward to REPORT-C if not
 ; 'Nonsense in BASIC'.

 RST 20H ; NEXT-CHAR advance to next character
 RET ; return.

; ------------------------------
; Come here after interpretation
; ------------------------------
;
;

;; STMT-RET
L1B76: CALL L1F54 ; routine BREAK-KEY is tested after every
 ; statement.
 JR C,L1B7D ; step forward to STMT-R-1 if not pressed.

;; REPORT-L
L1B7B: RST 08H ; ERROR-1
 DEFB $14 ; Error Report: BREAK into program

;; STMT-R-1
L1B7D: BIT 7,(IY+$0A) ; test NSPPC - will be set if $FF -
 ; no jump to be made.
 JR NZ,L1BF4 ; forward to STMT-NEXT if a program line.

 LD HL,($5C42) ; fetch line number from NEWPPC
 BIT 7,H ; will be set if minus two - direct command(s)
 JR Z,L1B9E ; forward to LINE-NEW if a jump is to be
 ; made to a new program line/statement.

; --------------------
; Run a direct command
; --------------------
; A direct command is to be run or, if continuing from above,
; the next statement of a direct command is to be considered.

;; LINE-RUN
L1B8A: LD HL,$FFFE ; The dummy value minus two
 LD ($5C45),HL ; is set/reset as line number in PPC.
 LD HL,($5C61) ; point to end of line + 1 - WORKSP.
 DEC HL ; now point to $80 end-marker.
 LD DE,($5C59) ; address the start of line E_LINE.
 DEC DE ; now location before - for GET-CHAR.
 LD A,($5C44) ; load statement to A from NSPPC.
 JR L1BD1 ; forward to NEXT-LINE.

; ------------------------------
; Find start address of new line
; ------------------------------
; The branch was to here if a jump is to made to a new line number
; and statement.
; That is the previous statement was a GO TO, GO SUB, RUN, RETURN, NEXT etc..

;; LINE-NEW
L1B9E: CALL L196E ; routine LINE-ADDR gets address of line
 ; returning zero flag set if line found.
 LD A,($5C44) ; fetch new statement from NSPPC

 JR Z,L1BBF ; forward to LINE-USE if line matched.

; continue as must be a direct command.

 AND A ; test statement which should be zero
 JR NZ,L1BEC ; forward to REPORT-N if not.
 ; 'Statement lost'

;

 LD B,A ; save statement in B. ?
 LD A,(HL) ; fetch high byte of line number.
 AND $C0 ; test if using direct command
 ; a program line is less than $3F
 LD A,B ; retrieve statement.
 ; (we can assume it is zero).
 JR Z,L1BBF ; forward to LINE-USE if was a program line

; Alternatively a direct statement has finished correctly.

;; REPORT-0
L1BB0: RST 08H ; ERROR-1
 DEFB $FF ; Error Report: OK

; ------------------
; Handle REM command
; ------------------
; The REM command routine.
; The return address STMT-RET is dropped and the rest of line ignored.

;; REM
L1BB2: POP BC ; drop return address STMT-RET and
 ; continue ignoring rest of line.

; ------------
; End of line?
; ------------
;
;

;; LINE-END
L1BB3: CALL L2530 ; routine SYNTAX-Z (UNSTACK-Z?)
 RET Z ; return if checking syntax.

 LD HL,($5C55) ; fetch NXTLIN to HL.
 LD A,$C0 ; test against the
 AND (HL) ; system limit $3F.
 RET NZ ; return if more as must be
 ; end of program.
 ; (or direct command)

 XOR A ; set statement to zero.

; and continue to set up the next following line and then consider this new one.

; ---------------------
; General line checking
; ---------------------
; The branch was here from LINE-NEW if BASIC is branching.
; or a continuation from above if dealing with a new sequential line.
; First make statement zero number one leaving others unaffected.

;; LINE-USE
L1BBF: CP $01 ; will set carry if zero.

 ADC A,$00 ; add in any carry.

 LD D,(HL) ; high byte of line number to D.
 INC HL ; advance pointer.
 LD E,(HL) ; low byte of line number to E.
 LD ($5C45),DE ; set system variable PPC.

 INC HL ; advance pointer.
 LD E,(HL) ; low byte of line length to E.
 INC HL ; advance pointer.
 LD D,(HL) ; high byte of line length to D.

 EX DE,HL ; swap pointer to DE before
 ADD HL,DE ; adding to address the end of line.
 INC HL ; advance to start of next line.

; -----------------------------
; Update NEXT LINE but consider
; previous line or edit line.
; -----------------------------
; The pointer will be the next line if continuing from above or to
; edit line end-marker ($80) if from LINE-RUN.

;; NEXT-LINE
L1BD1: LD ($5C55),HL ; store pointer in system variable NXTLIN

 EX DE,HL ; bring back pointer to previous or edit line
 LD ($5C5D),HL ; and update CH_ADD with character address.

 LD D,A ; store statement in D.
 LD E,$00 ; set E to zero to suppress token searching
 ; if EACH-STMT is to be called.
 LD (IY+$0A),$FF ; set statement NSPPC to $FF signalling
 ; no jump to be made.
 DEC D ; decrement and test statement
 LD (IY+$0D),D ; set SUBPPC to decremented statement number.
 JP Z,L1B28 ; to STMT-LOOP if result zero as statement is
 ; at start of line and address is known.

 INC D ; else restore statement.
 CALL L198B ; routine EACH-STMT finds the D'th statement
 ; address as E does not contain a token.
 JR Z,L1BF4 ; forward to STMT-NEXT if address found.

;; REPORT-N
L1BEC: RST 08H ; ERROR-1
 DEFB $16 ; Error Report: Statement lost

; -----------------
; End of statement?
; -----------------
; This combination of routines is called from 20 places when
; the end of a statement should have been reached and all preceding
; syntax is in order.

;; CHECK-END
L1BEE: CALL L2530 ; routine SYNTAX-Z
 RET NZ ; return immediately in runtime

 POP BC ; drop address of calling routine.
 POP BC ; drop address STMT-RET.
 ; and continue to find next statement.

; --------------------

; Go to next statement
; --------------------
; Acceptable characters at this point are carriage return and ':'.
; If so go to next statement which in the first case will be on next line.

;; STMT-NEXT
L1BF4: RST 18H ; GET-CHAR - ignoring white space etc.

 CP $0D ; is it carriage return ?
 JR Z,L1BB3 ; back to LINE-END if so.

 CP $3A ; is it ':' ?
 JP Z,L1B28 ; jump back to STMT-LOOP to consider
 ; further statements

 JP L1C8A ; jump to REPORT-C with any other character
 ; 'Nonsense in BASIC'.

; Note. the two-byte sequence 'rst 08; defb $0b' could replace the above jp.

; -------------------
; Command class table
; -------------------
;

;; class-tbl
L1C01: DEFB L1C10 - $; 0F offset to Address: CLASS-00
 DEFB L1C1F - $; 1D offset to Address: CLASS-01
 DEFB L1C4E - $; 4B offset to Address: CLASS-02
 DEFB L1C0D - $; 09 offset to Address: CLASS-03
 DEFB L1C6C - $; 67 offset to Address: CLASS-04
 DEFB L1C11 - $; 0B offset to Address: CLASS-05
 DEFB L1C82 - $; 7B offset to Address: CLASS-06
 DEFB L1C96 - $; 8E offset to Address: CLASS-07
 DEFB L1C7A - $; 71 offset to Address: CLASS-08
 DEFB L1CBE - $; B4 offset to Address: CLASS-09
 DEFB L1C8C - $; 81 offset to Address: CLASS-0A
 DEFB L1CDB - $; CF offset to Address: CLASS-0B

; --------------------------------
; Command classes---00, 03, and 05
; --------------------------------
; class-03 e.g. RUN or RUN 200 ; optional operand
; class-00 e.g. CONTINUE ; no operand
; class-05 e.g. PRINT ; variable syntax checked by routine

;; CLASS-03
L1C0D: CALL L1CDE ; routine FETCH-NUM

;; CLASS-00

L1C10: CP A ; reset zero flag.

; if entering here then all class routines are entered with zero reset.

;; CLASS-05
L1C11: POP BC ; drop address SCAN-LOOP.
 CALL Z,L1BEE ; if zero set then call routine CHECK-END >>>
 ; as should be no further characters.

 EX DE,HL ; save HL to DE.
 LD HL,($5C74) ; fetch T_ADDR
 LD C,(HL) ; fetch low byte of routine

 INC HL ; address next.
 LD B,(HL) ; fetch high byte of routine.
 EX DE,HL ; restore HL from DE
 PUSH BC ; push the address
 RET ; and make an indirect jump to the command.

; --------------------------------
; Command classes---01, 02, and 04
; --------------------------------
; class-01 e.g. LET A = 2*3 ; a variable is reqd

; This class routine is also called from INPUT and READ to find the
; destination variable for an assignment.

;; CLASS-01
L1C1F: CALL L28B2 ; routine LOOK-VARS returns carry set if not
 ; found in runtime.

; ----------------------
; Variable in assignment
; ----------------------
;
;

;; VAR-A-1
L1C22: LD (IY+$37),$00 ; set FLAGX to zero
 JR NC,L1C30 ; forward to VAR-A-2 if found or checking
 ; syntax.

 SET 1,(IY+$37) ; FLAGX - Signal a new variable
 JR NZ,L1C46 ; to VAR-A-3 if not assigning to an array
 ; e.g. LET a$(3,3) = "X"

;; REPORT-2
L1C2E: RST 08H ; ERROR-1
 DEFB $01 ; Error Report: Variable not found

;; VAR-A-2
L1C30: CALL Z,L2996 ; routine STK-VAR considers a subscript/slice
 BIT 6,(IY+$01) ; test FLAGS - Numeric or string result ?
 JR NZ,L1C46 ; to VAR-A-3 if numeric

 XOR A ; default to array/slice - to be retained.
 CALL L2530 ; routine SYNTAX-Z
 CALL NZ,L2BF1 ; routine STK-FETCH is called in runtime
 ; may overwrite A with 1.
 LD HL,$5C71 ; address system variable FLAGX
 OR (HL) ; set bit 0 if simple variable to be reclaimed
 LD (HL),A ; update FLAGX
 EX DE,HL ; start of string/subscript to DE

;; VAR-A-3
L1C46: LD ($5C72),BC ; update STRLEN
 LD ($5C4D),HL ; and DEST of assigned string.
 RET ; return.

; ---
; class-02 e.g. LET a = 1 + 1 ; an expression must follow

;; CLASS-02
L1C4E: POP BC ; drop return address SCAN-LOOP
 CALL L1C56 ; routine VAL-FET-1 is called to check
 ; expression and assign result in runtime
 CALL L1BEE ; routine CHECK-END checks nothing else

 ; is present in statement.
 RET ; Return

; -------------
; Fetch a value
; -------------
;
;

;; VAL-FET-1
L1C56: LD A,($5C3B) ; initial FLAGS to A

;; VAL-FET-2
L1C59: PUSH AF ; save A briefly
 CALL L24FB ; routine SCANNING evaluates expression.
 POP AF ; restore A
 LD D,(IY+$01) ; post-SCANNING FLAGS to D
 XOR D ; xor the two sets of flags
 AND $40 ; pick up bit 6 of xored FLAGS should be zero
 JR NZ,L1C8A ; forward to REPORT-C if not zero
 ; 'Nonsense in BASIC' - results don't agree.

 BIT 7,D ; test FLAGS - is syntax being checked ?
 JP NZ,L2AFF ; jump forward to LET to make the assignment
 ; in runtime.

 RET ; but return from here if checking syntax.

; ------------------
; Command class---04
; ------------------
; class-04 e.g. FOR i ; a single character variable must follow

;; CLASS-04
L1C6C: CALL L28B2 ; routine LOOK-VARS
 PUSH AF ; preserve flags.
 LD A,C ; fetch type - should be 011xxxxx
 OR $9F ; combine with 10011111.
 INC A ; test if now $FF by incrementing.
 JR NZ,L1C8A ; forward to REPORT-C if result not zero.

 POP AF ; else restore flags.
 JR L1C22 ; back to VAR-A-1

; --------------------------------
; Expect numeric/string expression
; --------------------------------
; This routine is used to get the two coordinates of STRING$, ATTR and POINT.
; It is also called from PRINT-ITEM to get the two numeric expressions that
; follow the AT (in PRINT AT, INPUT AT).

;; NEXT-2NUM
L1C79: RST 20H ; NEXT-CHAR advance past 'AT' or '('.

; --------
; class-08 e.g. POKE 65535,2 ; two numeric expressions separated by comma
;; CLASS-08
;; EXPT-2NUM
L1C7A: CALL L1C82 ; routine EXPT-1NUM is called for first
 ; numeric expression
 CP $2C ; is character ',' ?
 JR NZ,L1C8A ; to REPORT-C if not required separator.
 ; 'Nonsense in BASIC'.

 RST 20H ; NEXT-CHAR

; ->
; class-06 e.g. GOTO a*1000 ; a numeric expression must follow
;; CLASS-06
;; EXPT-1NUM
L1C82: CALL L24FB ; routine SCANNING
 BIT 6,(IY+$01) ; test FLAGS - Numeric or string result ?
 RET NZ ; return if result is numeric.

;; REPORT-C
L1C8A: RST 08H ; ERROR-1
 DEFB $0B ; Error Report: Nonsense in BASIC

; ---
; class-0A e.g. ERASE "????" ; a string expression must follow.
; ; these only occur in unimplemented commands
; ; although the routine expt-exp is called
; ; from SAVE-ETC

;; CLASS-0A
;; EXPT-EXP
L1C8C: CALL L24FB ; routine SCANNING
 BIT 6,(IY+$01) ; test FLAGS - Numeric or string result ?
 RET Z ; return if string result.

 JR L1C8A ; back to REPORT-C if numeric.

; ---------------------
; Set permanent colours
; class 07
; ---------------------
; class-07 e.g. PAPER 6 ; a single class for a collection of
; ; similar commands. Clever.
;
; Note. these commands should ensure that current channel is 'S'

;; CLASS-07
L1C96: BIT 7,(IY+$01) ; test FLAGS - checking syntax only ?
 ; Note. there is a subroutine to do this.
 RES 0,(IY+$02) ; update TV_FLAG - signal main screen in use
 CALL NZ,L0D4D ; routine TEMPS is called in runtime.
 POP AF ; drop return address SCAN-LOOP
 LD A,($5C74) ; T_ADDR_lo to accumulator.
 ; points to '$07' entry + 1
 ; e.g. for INK points to $EC now

; Note if you move alter the syntax table next line may have to be altered.

; Note. For ZASM assembler replace following expression with SUB $13.

L1CA5: SUB L1AEB-$D8 % 256 ; convert $EB to $D8 ('INK') etc.
 ; (is SUB $13 in standard ROM)

 CALL L21FC ; routine CO-TEMP-4
 CALL L1BEE ; routine CHECK-END check that nothing else
 ; in statement.

; return here in runtime.

 LD HL,($5C8F) ; pick up ATTR_T and MASK_T
 LD ($5C8D),HL ; and store in ATTR_P and MASK_P
 LD HL,$5C91 ; point to P_FLAG.

 LD A,(HL) ; pick up in A
 RLCA ; rotate to left
 XOR (HL) ; combine with HL
 AND $AA ; 10101010
 XOR (HL) ; only permanent bits affected
 LD (HL),A ; reload into P_FLAG.
 RET ; return.

; ------------------
; Command class---09
; ------------------
; e.g. PLOT PAPER 0; 128,88 ; two coordinates preceded by optional
; ; embedded colour items.
;
; Note. this command should ensure that current channel is actually 'S'.

;; CLASS-09
L1CBE: CALL L2530 ; routine SYNTAX-Z
 JR Z,L1CD6 ; forward to CL-09-1 if checking syntax.

 RES 0,(IY+$02) ; update TV_FLAG - signal main screen in use
 CALL L0D4D ; routine TEMPS is called.
 LD HL,$5C90 ; point to MASK_T
 LD A,(HL) ; fetch mask to accumulator.
 OR $F8 ; or with 11111000 paper/bright/flash 8
 LD (HL),A ; mask back to MASK_T system variable.
 RES 6,(IY+$57) ; reset P_FLAG - signal NOT PAPER 9 ?

 RST 18H ; GET-CHAR

;; CL-09-1
L1CD6: CALL L21E2 ; routine CO-TEMP-2 deals with any embedded
 ; colour items.
 JR L1C7A ; exit via EXPT-2NUM to check for x,y.

; Note. if either of the numeric expressions contain STR$ then the flag setting
; above will be undone when the channel flags are reset during STR$.
; e.g.
; 10 BORDER 3 : PLOT VAL STR$ 128, VAL STR$ 100
; credit John Elliott.

; ------------------
; Command class---0B
; ------------------
; Again a single class for four commands.
; This command just jumps back to SAVE-ETC to handle the four tape commands.
; The routine itself works out which command has called it by examining the
; address in T_ADDR_lo. Note therefore that the syntax table has to be
; located where these and other sequential command addresses are not split
; over a page boundary.

;; CLASS-0B
L1CDB: JP L0605 ; jump way back to SAVE-ETC

; --------------
; Fetch a number
; --------------
; This routine is called from CLASS-03 when a command may be followed by
; an optional numeric expression e.g. RUN. If the end of statement has
; been reached then zero is used as the default.
; Also called from LIST-4.

;; FETCH-NUM
L1CDE: CP $0D ; is character a carriage return ?

 JR Z,L1CE6 ; forward to USE-ZERO if so

 CP $3A ; is it ':' ?
 JR NZ,L1C82 ; forward to EXPT-1NUM if not.
 ; else continue and use zero.

; ----------------
; Use zero routine
; ----------------
; This routine is called four times to place the value zero on the
; calculator stack as a default value in runtime.

;; USE-ZERO
L1CE6: CALL L2530 ; routine SYNTAX-Z (UNSTACK-Z?)
 RET Z ;

 RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero ;0.
 DEFB $38 ;;end-calc

 RET ; return.

; -------------------
; Handle STOP command
; -------------------
; Command Syntax: STOP
; One of the shortest and least used commands. As with 'OK' not an error.

;; REPORT-9
;; STOP
L1CEE: RST 08H ; ERROR-1
 DEFB $08 ; Error Report: STOP statement

; -----------------
; Handle IF command
; -----------------
; e.g. IF score>100 THEN PRINT "You Win"
; The parser has already checked the expression the result of which is on
; the calculator stack. The presence of the 'THEN' separator has also been
; checked and CH-ADD points to the command after THEN.
;

;; IF
L1CF0: POP BC ; drop return address - STMT-RET
 CALL L2530 ; routine SYNTAX-Z
 JR Z,L1D00 ; forward to IF-1 if checking syntax
 ; to check syntax of PRINT "You Win"

 RST 28H ;; FP-CALC score>100 (1=TRUE 0=FALSE)
 DEFB $02 ;;delete .
 DEFB $38 ;;end-calc

 EX DE,HL ; make HL point to deleted value
 CALL L34E9 ; routine TEST-ZERO
 JP C,L1BB3 ; jump to LINE-END if FALSE (0)

;; IF-1
L1D00: JP L1B29 ; to STMT-L-1, if true (1) to execute command
 ; after 'THEN' token.

; ------------------
; Handle FOR command
; ------------------

; e.g. FOR i = 0 TO 1 STEP 0.1
; Using the syntax tables, the parser has already checked for a start and
; limit value and also for the intervening separator.
; the two values v,l are on the calculator stack.
; CLASS-04 has also checked the variable and the name is in STRLEN_lo.
; The routine begins by checking for an optional STEP.

;; FOR
L1D03: CP $CD ; is there a 'STEP' ?
 JR NZ,L1D10 ; to F-USE-1 if not to use 1 as default.

 RST 20H ; NEXT-CHAR
 CALL L1C82 ; routine EXPT-1NUM
 CALL L1BEE ; routine CHECK-END
 JR L1D16 ; to F-REORDER

; ---

;; F-USE-1
L1D10: CALL L1BEE ; routine CHECK-END

 RST 28H ;; FP-CALC v,l.
 DEFB $A1 ;;stk-one v,l,1=s.
 DEFB $38 ;;end-calc

;; F-REORDER
L1D16: RST 28H ;; FP-CALC v,l,s.
 DEFB $C0 ;;st-mem-0 v,l,s.
 DEFB $02 ;;delete v,l.
 DEFB $01 ;;exchange l,v.
 DEFB $E0 ;;get-mem-0 l,v,s.
 DEFB $01 ;;exchange l,s,v.
 DEFB $38 ;;end-calc

 CALL L2AFF ; routine LET assigns the initial value v to
 ; the variable altering type if necessary.
 LD ($5C68),HL ; The system variable MEM is made to point to
 ; the variable instead of its normal
 ; location MEMBOT
 DEC HL ; point to single-character name
 LD A,(HL) ; fetch name
 SET 7,(HL) ; set bit 7 at location
 LD BC,$0006 ; add six to HL
 ADD HL,BC ; to address where limit should be.
 RLCA ; test bit 7 of original name.
 JR C,L1D34 ; forward to F-L-S if already a FOR/NEXT
 ; variable

 LD C,$0D ; otherwise an additional 13 bytes are needed.
 ; 5 for each value, two for line number and
 ; 1 byte for looping statement.
 CALL L1655 ; routine MAKE-ROOM creates them.
 INC HL ; make HL address limit.

;; F-L-S
L1D34: PUSH HL ; save position.

 RST 28H ;; FP-CALC l,s.
 DEFB $02 ;;delete l.
 DEFB $02 ;;delete .
 DEFB $38 ;;end-calc
 ; DE points to STKEND, l.

 POP HL ; restore variable position
 EX DE,HL ; swap pointers
 LD C,$0A ; ten bytes to move
 LDIR ; Copy 'deleted' values to variable.
 LD HL,($5C45) ; Load with current line number from PPC
 EX DE,HL ; exchange pointers.
 LD (HL),E ; save the looping line
 INC HL ; in the next
 LD (HL),D ; two locations.
 LD D,(IY+$0D) ; fetch statement from SUBPPC system variable.
 INC D ; increment statement.
 INC HL ; and pointer
 LD (HL),D ; and store the looping statement.
 ;
 CALL L1DDA ; routine NEXT-LOOP considers an initial
 RET NC ; iteration. Return to STMT-RET if a loop is
 ; possible to execute next statement.

; no loop is possible so execution continues after the matching 'NEXT'

 LD B,(IY+$38) ; get single-character name from STRLEN_lo
 LD HL,($5C45) ; get the current line from PPC
 LD ($5C42),HL ; and store it in NEWPPC
 LD A,($5C47) ; fetch current statement from SUBPPC
 NEG ; Negate as counter decrements from zero
 ; initially and we are in the middle of a
 ; line.
 LD D,A ; Store result in D.
 LD HL,($5C5D) ; get current address from CH_ADD
 LD E,$F3 ; search will be for token 'NEXT'

;; F-LOOP
L1D64: PUSH BC ; save variable name.
 LD BC,($5C55) ; fetch NXTLIN
 CALL L1D86 ; routine LOOK-PROG searches for 'NEXT' token.
 LD ($5C55),BC ; update NXTLIN
 POP BC ; and fetch the letter
 JR C,L1D84 ; forward to REPORT-I if the end of program
 ; was reached by LOOK-PROG.
 ; 'FOR without NEXT'

 RST 20H ; NEXT-CHAR fetches character after NEXT
 OR $20 ; ensure it is upper-case.
 CP B ; compare with FOR variable name
 JR Z,L1D7C ; forward to F-FOUND if it matches.

; but if no match i.e. nested FOR/NEXT loops then continue search.

 RST 20H ; NEXT-CHAR
 JR L1D64 ; back to F-LOOP

; ---

;; F-FOUND
L1D7C: RST 20H ; NEXT-CHAR
 LD A,$01 ; subtract the negated counter from 1
 SUB D ; to give the statement after the NEXT
 LD ($5C44),A ; set system variable NSPPC
 RET ; return to STMT-RET to branch to new
 ; line and statement. ->
; ---

;; REPORT-I

L1D84: RST 08H ; ERROR-1
 DEFB $11 ; Error Report: FOR without NEXT

; ---------
; LOOK-PROG
; ---------
; Find DATA, DEF FN or NEXT.
; This routine searches the program area for one of the above three keywords.
; On entry, HL points to start of search area.
; The token is in E, and D holds a statement count, decremented from zero.

;; LOOK-PROG
L1D86: LD A,(HL) ; fetch current character
 CP $3A ; is it ':' a statement separator ?
 JR Z,L1DA3 ; forward to LOOK-P-2 if so.

; The starting point was PROG - 1 or the end of a line.

;; LOOK-P-1
L1D8B: INC HL ; increment pointer to address
 LD A,(HL) ; the high byte of line number
 AND $C0 ; test for program end marker $80 or a
 ; variable
 SCF ; Set Carry Flag
 RET NZ ; return with carry set if at end
 ; of program. ->

 LD B,(HL) ; high byte of line number to B
 INC HL ;
 LD C,(HL) ; low byte to C.
 LD ($5C42),BC ; set system variable NEWPPC.
 INC HL ;
 LD C,(HL) ; low byte of line length to C.
 INC HL ;
 LD B,(HL) ; high byte to B.
 PUSH HL ; save address
 ADD HL,BC ; add length to position.
 LD B,H ; and save result
 LD C,L ; in BC.
 POP HL ; restore address.
 LD D,$00 ; initialize statement counter to zero.

;; LOOK-P-2
L1DA3: PUSH BC ; save address of next line
 CALL L198B ; routine EACH-STMT searches current line.
 POP BC ; restore address.
 RET NC ; return if match was found. ->

 JR L1D8B ; back to LOOK-P-1 for next line.

; -------------------
; Handle NEXT command
; -------------------
; e.g. NEXT i
; The parameter tables have already evaluated the presence of a variable

;; NEXT
L1DAB: BIT 1,(IY+$37) ; test FLAGX - handling a new variable ?
 JP NZ,L1C2E ; jump back to REPORT-2 if so
 ; 'Variable not found'

; now test if found variable is a simple variable uninitialized by a FOR.

 LD HL,($5C4D) ; load address of variable from DEST

 BIT 7,(HL) ; is it correct type ?
 JR Z,L1DD8 ; forward to REPORT-1 if not
 ; 'NEXT without FOR'

 INC HL ; step past variable name
 LD ($5C68),HL ; and set MEM to point to three 5-byte values
 ; value, limit, step.

 RST 28H ;; FP-CALC add step and re-store
 DEFB $E0 ;;get-mem-0 v.
 DEFB $E2 ;;get-mem-2 v,s.
 DEFB $0F ;;addition v+s.
 DEFB $C0 ;;st-mem-0 v+s.
 DEFB $02 ;;delete .
 DEFB $38 ;;end-calc

 CALL L1DDA ; routine NEXT-LOOP tests against limit.
 RET C ; return if no more iterations possible.

 LD HL,($5C68) ; find start of variable contents from MEM.
 LD DE,$000F ; add 3*5 to
 ADD HL,DE ; address the looping line number
 LD E,(HL) ; low byte to E
 INC HL ;
 LD D,(HL) ; high byte to D
 INC HL ; address looping statement
 LD H,(HL) ; and store in H
 EX DE,HL ; swap registers
 JP L1E73 ; exit via GO-TO-2 to execute another loop.

; ---

;; REPORT-1
L1DD8: RST 08H ; ERROR-1
 DEFB $00 ; Error Report: NEXT without FOR

; -----------------
; Perform NEXT loop
; -----------------
; This routine is called from the FOR command to test for an initial
; iteration and from the NEXT command to test for all subsequent iterations.
; the system variable MEM addresses the variable's contents which, in the
; latter case, have had the step, possibly negative, added to the value.

;; NEXT-LOOP
L1DDA: RST 28H ;; FP-CALC
 DEFB $E1 ;;get-mem-1 l.
 DEFB $E0 ;;get-mem-0 l,v.
 DEFB $E2 ;;get-mem-2 l,v,s.
 DEFB $36 ;;less-0 l,v,(1/0) negative step ?
 DEFB $00 ;;jump-true l,v.(1/0)

 DEFB $02 ;;to L1DE2, NEXT-1 if step negative

 DEFB $01 ;;exchange v,l.

;; NEXT-1
L1DE2: DEFB $03 ;;subtract l-v OR v-l.
 DEFB $37 ;;greater-0 (1/0)
 DEFB $00 ;;jump-true .

 DEFB $04 ;;to L1DE9, NEXT-2 if no more iterations.

 DEFB $38 ;;end-calc .

 AND A ; clear carry flag signalling another loop.
 RET ; return

; ---

;; NEXT-2
L1DE9: DEFB $38 ;;end-calc .

 SCF ; set carry flag signalling looping exhausted.
 RET ; return

; -------------------
; Handle READ command
; -------------------
; e.g. READ a, b$, c$(1000 TO 3000)
; A list of comma-separated variables is assigned from a list of
; comma-separated expressions.
; As it moves along the first list, the character address CH_ADD is stored
; in X_PTR while CH_ADD is used to read the second list.

;; READ-3
L1DEC: RST 20H ; NEXT-CHAR

; -> Entry point.
;; READ
L1DED: CALL L1C1F ; routine CLASS-01 checks variable.
 CALL L2530 ; routine SYNTAX-Z
 JR Z,L1E1E ; forward to READ-2 if checking syntax

 RST 18H ; GET-CHAR
 LD ($5C5F),HL ; save character position in X_PTR.
 LD HL,($5C57) ; load HL with Data Address DATADD, which is
 ; the start of the program or the address
 ; after the last expression that was read or
 ; the address of the line number of the
 ; last RESTORE command.
 LD A,(HL) ; fetch character
 CP $2C ; is it a comma ?
 JR Z,L1E0A ; forward to READ-1 if so.

; else all data in this statement has been read so look for next DATA token

 LD E,$E4 ; token 'DATA'
 CALL L1D86 ; routine LOOK-PROG
 JR NC,L1E0A ; forward to READ-1 if DATA found

; else report the error.

;; REPORT-E
L1E08: RST 08H ; ERROR-1
 DEFB $0D ; Error Report: Out of DATA

;; READ-1
L1E0A: CALL L0077 ; routine TEMP-PTR1 advances updating CH_ADD
 ; with new DATADD position.
 CALL L1C56 ; routine VAL-FET-1 assigns value to variable
 ; checking type match and adjusting CH_ADD.

 RST 18H ; GET-CHAR fetches adjusted character position
 LD ($5C57),HL ; store back in DATADD

 LD HL,($5C5F) ; fetch X_PTR the original READ CH_ADD
 LD (IY+$26),$00 ; now nullify X_PTR_hi
 CALL L0078 ; routine TEMP-PTR2 restores READ CH_ADD

;; READ-2
L1E1E: RST 18H ; GET-CHAR
 CP $2C ; is it ',' indicating more variables to read ?
 JR Z,L1DEC ; back to READ-3 if so

 CALL L1BEE ; routine CHECK-END
 RET ; return from here in runtime to STMT-RET.

; -------------------
; Handle DATA command
; -------------------
; In runtime this 'command' is passed by but the syntax is checked when such
; a statement is found while parsing a line.
; e.g. DATA 1, 2, "text", score-1, a$(location, room, object), FN r(49),
; wages - tax, TRUE, The meaning of life

;; DATA
L1E27: CALL L2530 ; routine SYNTAX-Z to check status
 JR NZ,L1E37 ; forward to DATA-2 if in runtime

;; DATA-1
L1E2C: CALL L24FB ; routine SCANNING to check syntax of
 ; expression
 CP $2C ; is it a comma ?
 CALL NZ,L1BEE ; routine CHECK-END checks that statement
 ; is complete. Will make an early exit if
 ; so. >>>
 RST 20H ; NEXT-CHAR
 JR L1E2C ; back to DATA-1

; ---

;; DATA-2
L1E37: LD A,$E4 ; set token to 'DATA' and continue into
 ; the PASS-BY routine.

; ----------------------------------
; Check statement for DATA or DEF FN
; ----------------------------------
; This routine is used to backtrack to a command token and then
; forward to the next statement in runtime.

;; PASS-BY
L1E39: LD B,A ; Give BC enough space to find token.
 CPDR ; Compare decrement and repeat. (Only use).
 ; Work backwards till keyword is found which
 ; is start of statement before any quotes.
 ; HL points to location before keyword.
 LD DE,$0200 ; count 1+1 statements, dummy value in E to
 ; inhibit searching for a token.
 JP L198B ; to EACH-STMT to find next statement

; ---
; A General Note on Invalid Line Numbers.
; =======================================
; One of the revolutionary concepts of Sinclair BASIC was that it supported
; virtual line numbers. That is the destination of a GO TO, RESTORE etc. need
; not exist. It could be a point before or after an actual line number.
; Zero suffices for a before but the after should logically be infinity.

; Since the maximum actual line limit is 9999 then the system limit, 16383
; when variables kick in, would serve fine as a virtual end point.
; However, ironically, only the LOAD command gets it right. It will not
; autostart a program that has been saved with a line higher than 16383.
; All the other commands deal with the limit unsatisfactorily.
; LIST, RUN, GO TO, GO SUB and RESTORE have problems and the latter may
; crash the machine when supplied with an inappropriate virtual line number.
; This is puzzling as very careful consideration must have been given to
; this point when the new variable types were allocated their masks and also
; when the routine NEXT-ONE was successfully re-written to reflect this.
; An enigma.
; ---

; ----------------------
; Handle RESTORE command
; ----------------------
; The restore command sets the system variable for the data address to
; point to the location before the supplied line number or first line
; thereafter.
; This alters the position where subsequent READ commands look for data.
; Note. If supplied with inappropriate high numbers the system may crash
; in the LINE-ADDR routine as it will pass the program/variables end-marker
; and then lose control of what it is looking for - variable or line number.
; - observation, Steven Vickers, 1984, Pitman.

;; RESTORE
L1E42: CALL L1E99 ; routine FIND-INT2 puts integer in BC.
 ; Note. B should be checked against limit $3F
 ; and an error generated if higher.

; this entry point is used from RUN command with BC holding zero

;; REST-RUN
L1E45: LD H,B ; transfer the line
 LD L,C ; number to the HL register.
 CALL L196E ; routine LINE-ADDR to fetch the address.
 DEC HL ; point to the location before the line.
 LD ($5C57),HL ; update system variable DATADD.
 RET ; return to STMT-RET (or RUN)

; ------------------------
; Handle RANDOMIZE command
; ------------------------
; This command sets the SEED for the RND function to a fixed value.
; With the parameter zero, a random start point is used depending on
; how long the computer has been switched on.

;; RANDOMIZE
L1E4F: CALL L1E99 ; routine FIND-INT2 puts parameter in BC.
 LD A,B ; test this
 OR C ; for zero.
 JR NZ,L1E5A ; forward to RAND-1 if not zero.

 LD BC,($5C78) ; use the lower two bytes at FRAMES1.

;; RAND-1
L1E5A: LD ($5C76),BC ; place in SEED system variable.
 RET ; return to STMT-RET

; -----------------------
; Handle CONTINUE command
; -----------------------
; The CONTINUE command transfers the OLD (but incremented) values of
; line number and statement to the equivalent "NEW VALUE" system variables

; by using the last part of GO TO and exits indirectly to STMT-RET.

;; CONTINUE
L1E5F: LD HL,($5C6E) ; fetch OLDPPC line number.
 LD D,(IY+$36) ; fetch OSPPC statement.
 JR L1E73 ; forward to GO-TO-2

; --------------------
; Handle GO TO command
; --------------------
; The GO TO command routine is also called by GO SUB and RUN routines
; to evaluate the parameters of both commands.
; It updates the system variables used to fetch the next line/statement.
; It is at STMT-RET that the actual change in control takes place.
; Unlike some BASICs the line number need not exist.
; Note. the high byte of the line number is incorrectly compared with $F0
; instead of $3F. This leads to commands with operands greater than 32767
; being considered as having been run from the editing area and the
; error report 'Statement Lost' is given instead of 'OK'.
; - Steven Vickers, 1984.

;; GO-TO
L1E67: CALL L1E99 ; routine FIND-INT2 puts operand in BC
 LD H,B ; transfer line
 LD L,C ; number to HL.
 LD D,$00 ; set statement to 0 - first.
 LD A,H ; compare high byte only
 CP $F0 ; to $F0 i.e. 61439 in full.
 JR NC,L1E9F ; forward to REPORT-B if above.

; This call entry point is used to update the system variables e.g. by RETURN.

;; GO-TO-2
L1E73: LD ($5C42),HL ; save line number in NEWPPC
 LD (IY+$0A),D ; and statement in NSPPC
 RET ; to STMT-RET (or GO-SUB command)

; ------------------
; Handle OUT command
; ------------------
; Syntax has been checked and the two comma-separated values are on the
; calculator stack.

;; OUT
L1E7A: CALL L1E85 ; routine TWO-PARAM fetches values
 ; to BC and A.
 OUT (C),A ; perform the operation.
 RET ; return to STMT-RET.

; -------------------
; Handle POKE command
; -------------------
; This routine alters a single byte in the 64K address space.
; Happily no check is made as to whether ROM or RAM is addressed.
; Sinclair BASIC requires no poking of system variables.

;; POKE
L1E80: CALL L1E85 ; routine TWO-PARAM fetches values
 ; to BC and A.
 LD (BC),A ; load memory location with A.
 RET ; return to STMT-RET.

; ------------------------------------
; Fetch two parameters from calculator stack

; ------------------------------------
; This routine fetches a byte and word from the calculator stack
; producing an error if either is out of range.

;; TWO-PARAM
L1E85: CALL L2DD5 ; routine FP-TO-A
 JR C,L1E9F ; forward to REPORT-B if overflow occurred

 JR Z,L1E8E ; forward to TWO-P-1 if positive

 NEG ; negative numbers are made positive

;; TWO-P-1
L1E8E: PUSH AF ; save the value
 CALL L1E99 ; routine FIND-INT2 gets integer to BC
 POP AF ; restore the value
 RET ; return

; -------------
; Find integers
; -------------
; The first of these routines fetches a 8-bit integer (range 0-255) from the
; calculator stack to the accumulator and is used for colours, streams,
; durations and coordinates.
; The second routine fetches 16-bit integers to the BC register pair
; and is used to fetch command and function arguments involving line numbers
; or memory addresses and also array subscripts and tab arguments.
; ->

;; FIND-INT1
L1E94: CALL L2DD5 ; routine FP-TO-A
 JR L1E9C ; forward to FIND-I-1 for common exit routine.

; ---

; ->

;; FIND-INT2
L1E99: CALL L2DA2 ; routine FP-TO-BC

;; FIND-I-1
L1E9C: JR C,L1E9F ; to REPORT-Bb with overflow.

 RET Z ; return if positive.

;; REPORT-Bb
L1E9F: RST 08H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

; ------------------
; Handle RUN command
; ------------------
; This command runs a program starting at an optional line.
; It performs a 'RESTORE 0' then CLEAR

;; RUN
L1EA1: CALL L1E67 ; routine GO-TO puts line number in
 ; system variables.
 LD BC,$0000 ; prepare to set DATADD to first line.
 CALL L1E45 ; routine REST-RUN does the 'restore'.
 ; Note BC still holds zero.
 JR L1EAF ; forward to CLEAR-RUN to clear variables
 ; without disturbing RAMTOP and

 ; exit indirectly to STMT-RET

; --------------------
; Handle CLEAR command
; --------------------
; This command reclaims the space used by the variables.
; It also clears the screen and the GO SUB stack.
; With an integer expression, it sets the uppermost memory
; address within the BASIC system.
; "Contrary to the manual, CLEAR doesn't execute a RESTORE" -
; Steven Vickers, Pitman Pocket Guide to the Spectrum, 1984.

;; CLEAR
L1EAC: CALL L1E99 ; routine FIND-INT2 fetches to BC.

;; CLEAR-RUN
L1EAF: LD A,B ; test for
 OR C ; zero.
 JR NZ,L1EB7 ; skip to CLEAR-1 if not zero.

 LD BC,($5CB2) ; use the existing value of RAMTOP if zero.

;; CLEAR-1
L1EB7: PUSH BC ; save ramtop value.

 LD DE,($5C4B) ; fetch VARS
 LD HL,($5C59) ; fetch E_LINE
 DEC HL ; adjust to point at variables end-marker.
 CALL L19E5 ; routine RECLAIM-1 reclaims the space used by
 ; the variables.

 CALL L0D6B ; routine CLS to clear screen.

 LD HL,($5C65) ; fetch STKEND the start of free memory.
 LD DE,$0032 ; allow for another 50 bytes.
 ADD HL,DE ; add the overhead to HL.

 POP DE ; restore the ramtop value.
 SBC HL,DE ; if HL is greater than the value then jump
 JR NC,L1EDA ; forward to REPORT-M
 ; 'RAMTOP no good'

 LD HL,($5CB4) ; now P-RAMT ($7FFF on 16K RAM machine)
 AND A ; exact this time.
 SBC HL,DE ; new ramtop must be lower or the same.
 JR NC,L1EDC ; skip to CLEAR-2 if in actual RAM.

;; REPORT-M
L1EDA: RST 08H ; ERROR-1
 DEFB $15 ; Error Report: RAMTOP no good

;; CLEAR-2
L1EDC: EX DE,HL ; transfer ramtop value to HL.
 LD ($5CB2),HL ; update system variable RAMTOP.
 POP DE ; pop the return address STMT-RET.
 POP BC ; pop the Error Address.
 LD (HL),$3E ; now put the GO SUB end-marker at RAMTOP.
 DEC HL ; leave a location beneath it.
 LD SP,HL ; initialize the machine stack pointer.
 PUSH BC ; push the error address.
 LD ($5C3D),SP ; make ERR_SP point to location.
 EX DE,HL ; put STMT-RET in HL.
 JP (HL) ; and go there directly.

; ---------------------
; Handle GO SUB command
; ---------------------
; The GO SUB command diverts BASIC control to a new line number
; in a very similar manner to GO TO but
; the current line number and current statement + 1
; are placed on the GO SUB stack as a RETURN point.

;; GO-SUB
L1EED: POP DE ; drop the address STMT-RET
 LD H,(IY+$0D) ; fetch statement from SUBPPC and
 INC H ; increment it
 EX (SP),HL ; swap - error address to HL,
 ; H (statement) at top of stack,
 ; L (unimportant) beneath.
 INC SP ; adjust to overwrite unimportant byte
 LD BC,($5C45) ; fetch the current line number from PPC
 PUSH BC ; and PUSH onto GO SUB stack.
 ; the empty machine-stack can be rebuilt
 PUSH HL ; push the error address.
 LD ($5C3D),SP ; make system variable ERR_SP point to it.
 PUSH DE ; push the address STMT-RET.
 CALL L1E67 ; call routine GO-TO to update the system
 ; variables NEWPPC and NSPPC.
 ; then make an indirect exit to STMT-RET via
 LD BC,$0014 ; a 20-byte overhead memory check.

; ----------------------
; Check available memory
; ----------------------
; This routine is used on many occasions when extending a dynamic area
; upwards or the GO SUB stack downwards.

;; TEST-ROOM
L1F05: LD HL,($5C65) ; fetch STKEND
 ADD HL,BC ; add the supplied test value
 JR C,L1F15 ; forward to REPORT-4 if over $FFFF

 EX DE,HL ; was less so transfer to DE
 LD HL,$0050 ; test against another 80 bytes
 ADD HL,DE ; anyway
 JR C,L1F15 ; forward to REPORT-4 if this passes $FFFF

 SBC HL,SP ; if less than the machine stack pointer
 RET C ; then return - OK.

;; REPORT-4
L1F15: LD L,$03 ; prepare 'Out of Memory'
 JP L0055 ; jump back to ERROR-3 at $0055
 ; Note. this error can't be trapped at $0008

; ------------------------------
; THE 'FREE MEMORY' USER ROUTINE
; ------------------------------
; This routine is not used by the ROM but allows users to evaluate
; approximate free memory with PRINT 65536 - USR 7962.

;; free-mem
L1F1A: LD BC,$0000 ; allow no overhead.

 CALL L1F05 ; routine TEST-ROOM.

 LD B,H ; transfer the result
 LD C,L ; to the BC register.

 RET ; the USR function returns value of BC.

; --------------------
; THE 'RETURN' COMMAND
; --------------------
; As with any command, there are two values on the machine stack at the time
; it is invoked. The machine stack is below the GOSUB stack. Both grow
; downwards, the machine stack by two bytes, the GOSUB stack by 3 bytes.
; The highest location is a statement byte followed by a two-byte line number.

;; RETURN
L1F23: POP BC ; drop the address STMT-RET.
 POP HL ; now the error address.
 POP DE ; now a possible BASIC return line.
 LD A,D ; the high byte $00 - $27 is
 CP $3E ; compared with the traditional end-marker $3E.
 JR Z,L1F36 ; forward to REPORT-7 with a match.
 ; 'RETURN without GOSUB'

; It was not the end-marker so a single statement byte remains at the base of
; the calculator stack. It can't be popped off.

 DEC SP ; adjust stack pointer to create room for two
 ; bytes.
 EX (SP),HL ; statement to H, error address to base of
 ; new machine stack.
 EX DE,HL ; statement to D, BASIC line number to HL.
 LD ($5C3D),SP ; adjust ERR_SP to point to new stack pointer
 PUSH BC ; now re-stack the address STMT-RET
 JP L1E73 ; to GO-TO-2 to update statement and line
 ; system variables and exit indirectly to the
 ; address just pushed on stack.

; ---

;; REPORT-7
L1F36: PUSH DE ; replace the end-marker.
 PUSH HL ; now restore the error address
 ; as will be required in a few clock cycles.

 RST 08H ; ERROR-1
 DEFB $06 ; Error Report: RETURN without GOSUB

; --------------------
; Handle PAUSE command
; --------------------
; The pause command takes as its parameter the number of interrupts
; for which to wait. PAUSE 50 pauses for about a second.
; PAUSE 0 pauses indefinitely.
; Both forms can be finished by pressing a key.

;; PAUSE
L1F3A: CALL L1E99 ; routine FIND-INT2 puts value in BC

;; PAUSE-1
L1F3D: HALT ; wait for interrupt.
 DEC BC ; decrease counter.
 LD A,B ; test if
 OR C ; result is zero.
 JR Z,L1F4F ; forward to PAUSE-END if so.

 LD A,B ; test if
 AND C ; now $FFFF
 INC A ; that is, initially zero.

 JR NZ,L1F49 ; skip forward to PAUSE-2 if not.

 INC BC ; restore counter to zero.

;; PAUSE-2
L1F49: BIT 5,(IY+$01) ; test FLAGS - has a new key been pressed ?
 JR Z,L1F3D ; back to PAUSE-1 if not.

;; PAUSE-END
L1F4F: RES 5,(IY+$01) ; update FLAGS - signal no new key
 RET ; and return.

; -------------------
; Check for BREAK key
; -------------------
; This routine is called from COPY-LINE, when interrupts are disabled,
; to test if BREAK (SHIFT - SPACE) is being pressed.
; It is also called at STMT-RET after every statement.

;; BREAK-KEY
L1F54: LD A,$7F ; Input address: $7FFE
 IN A,($FE) ; read lower right keys
 RRA ; rotate bit 0 - SPACE
 RET C ; return if not reset

 LD A,$FE ; Input address: $FEFE
 IN A,($FE) ; read lower left keys
 RRA ; rotate bit 0 - SHIFT
 RET ; carry will be set if not pressed.
 ; return with no carry if both keys
 ; pressed.

; ---------------------
; Handle DEF FN command
; ---------------------
; e.g. DEF FN r$(a$,a) = a$(a TO)
; this 'command' is ignored in runtime but has its syntax checked
; during line-entry.

;; DEF-FN
L1F60: CALL L2530 ; routine SYNTAX-Z
 JR Z,L1F6A ; forward to DEF-FN-1 if parsing

 LD A,$CE ; else load A with 'DEF FN' and
 JP L1E39 ; jump back to PASS-BY

; ---

; continue here if checking syntax.

;; DEF-FN-1
L1F6A: SET 6,(IY+$01) ; set FLAGS - Assume numeric result
 CALL L2C8D ; call routine ALPHA
 JR NC,L1F89 ; if not then to DEF-FN-4 to jump to
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 CP $24 ; is it '$' ?
 JR NZ,L1F7D ; to DEF-FN-2 if not as numeric.

 RES 6,(IY+$01) ; set FLAGS - Signal string result

 RST 20H ; get NEXT-CHAR

;; DEF-FN-2
L1F7D: CP $28 ; is it '(' ?
 JR NZ,L1FBD ; to DEF-FN-7 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 CP $29 ; is it ')' ?
 JR Z,L1FA6 ; to DEF-FN-6 if null argument

;; DEF-FN-3
L1F86: CALL L2C8D ; routine ALPHA checks that it is the expected
 ; alphabetic character.

;; DEF-FN-4
L1F89: JP NC,L1C8A ; to REPORT-C if not
 ; 'Nonsense in BASIC'.

 EX DE,HL ; save pointer in DE

 RST 20H ; NEXT-CHAR re-initializes HL from CH_ADD
 ; and advances.
 CP $24 ; '$' ? is it a string argument.
 JR NZ,L1F94 ; forward to DEF-FN-5 if not.

 EX DE,HL ; save pointer to '$' in DE

 RST 20H ; NEXT-CHAR re-initializes HL and advances

;; DEF-FN-5
L1F94: EX DE,HL ; bring back pointer.
 LD BC,$0006 ; the function requires six hidden bytes for
 ; each parameter passed.
 ; The first byte will be $0E
 ; then 5-byte numeric value
 ; or 5-byte string pointer.

 CALL L1655 ; routine MAKE-ROOM creates space in program
 ; area.

 INC HL ; adjust HL (set by LDDR)
 INC HL ; to point to first location.
 LD (HL),$0E ; insert the 'hidden' marker.

; Note. these invisible storage locations hold nothing meaningful for the
; moment. They will be used every time the corresponding function is
; evaluated in runtime.
; Now consider the following character fetched earlier.

 CP $2C ; is it ',' ? (more than one parameter)
 JR NZ,L1FA6 ; to DEF-FN-6 if not

 RST 20H ; else NEXT-CHAR
 JR L1F86 ; and back to DEF-FN-3

; ---

;; DEF-FN-6
L1FA6: CP $29 ; should close with a ')'
 JR NZ,L1FBD ; to DEF-FN-7 if not
 ; 'Nonsense in BASIC'

 RST 20H ; get NEXT-CHAR
 CP $3D ; is it '=' ?
 JR NZ,L1FBD ; to DEF-FN-7 if not 'Nonsense...'

 RST 20H ; address NEXT-CHAR
 LD A,($5C3B) ; get FLAGS which has been set above
 PUSH AF ; and preserve

 CALL L24FB ; routine SCANNING checks syntax of expression
 ; and also sets flags.

 POP AF ; restore previous flags
 XOR (IY+$01) ; xor with FLAGS - bit 6 should be same
 ; therefore will be reset.
 AND $40 ; isolate bit 6.

;; DEF-FN-7
L1FBD: JP NZ,L1C8A ; jump back to REPORT-C if the expected result
 ; is not the same type.
 ; 'Nonsense in BASIC'

 CALL L1BEE ; routine CHECK-END will return early if
 ; at end of statement and move onto next
 ; else produce error report. >>>

 ; There will be no return to here.

; -------------------------------
; Returning early from subroutine
; -------------------------------
; All routines are capable of being run in two modes - syntax checking mode
; and runtime mode. This routine is called often to allow a routine to return
; early if checking syntax.

;; UNSTACK-Z
L1FC3: CALL L2530 ; routine SYNTAX-Z sets zero flag if syntax
 ; is being checked.

 POP HL ; drop the return address.
 RET Z ; return to previous call in chain if checking
 ; syntax.

 JP (HL) ; jump to return address as BASIC program is
 ; actually running.

; ---------------------
; Handle LPRINT command
; ---------------------
; A simple form of 'PRINT #3' although it can output to 16 streams.
; Probably for compatibility with other BASICs particularly ZX81 BASIC.
; An extra UDG might have been better.

;; LPRINT
L1FC9: LD A,$03 ; the printer channel
 JR L1FCF ; forward to PRINT-1

; ---------------------
; Handle PRINT commands
; ---------------------
; The Spectrum's main stream output command.
; The default stream is stream 2 which is normally the upper screen
; of the computer. However the stream can be altered in range 0 - 15.

;; PRINT
L1FCD: LD A,$02 ; the stream for the upper screen.

; The LPRINT command joins here.

;; PRINT-1
L1FCF: CALL L2530 ; routine SYNTAX-Z checks if program running
 CALL NZ,L1601 ; routine CHAN-OPEN if so
 CALL L0D4D ; routine TEMPS sets temporary colours.
 CALL L1FDF ; routine PRINT-2 - the actual item
 CALL L1BEE ; routine CHECK-END gives error if not at end
 ; of statement
 RET ; and return >>>

; ------------------------------------
; this subroutine is called from above
; and also from INPUT.

;; PRINT-2
L1FDF: RST 18H ; GET-CHAR gets printable character
 CALL L2045 ; routine PR-END-Z checks if more printing
 JR Z,L1FF2 ; to PRINT-4 if not e.g. just 'PRINT :'

; This tight loop deals with combinations of positional controls and
; print items. An early return can be made from within the loop
; if the end of a print sequence is reached.

;; PRINT-3
L1FE5: CALL L204E ; routine PR-POSN-1 returns zero if more
 ; but returns early at this point if
 ; at end of statement!
 ;
 JR Z,L1FE5 ; to PRINT-3 if consecutive positioners

 CALL L1FFC ; routine PR-ITEM-1 deals with strings etc.
 CALL L204E ; routine PR-POSN-1 for more position codes
 JR Z,L1FE5 ; loop back to PRINT-3 if so

;; PRINT-4
L1FF2: CP $29 ; return now if this is ')' from input-item.
 ; (see INPUT.)
 RET Z ; or continue and print carriage return in
 ; runtime

; ---------------------
; Print carriage return
; ---------------------
; This routine which continues from above prints a carriage return
; in run-time. It is also called once from PRINT-POSN.

;; PRINT-CR
L1FF5: CALL L1FC3 ; routine UNSTACK-Z

 LD A,$0D ; prepare a carriage return

 RST 10H ; PRINT-A
 RET ; return

; -----------
; Print items
; -----------
; This routine deals with print items as in
; PRINT AT 10,0;"The value of A is ";a

; It returns once a single item has been dealt with as it is part
; of a tight loop that considers sequences of positional and print items

;; PR-ITEM-1
L1FFC: RST 18H ; GET-CHAR
 CP $AC ; is character 'AT' ?
 JR NZ,L200E ; forward to PR-ITEM-2 if not.

 CALL L1C79 ; routine NEXT-2NUM check for two comma
 ; separated numbers placing them on the
 ; calculator stack in runtime.
 CALL L1FC3 ; routine UNSTACK-Z quits if checking syntax.

 CALL L2307 ; routine STK-TO-BC get the numbers in B and C.
 LD A,$16 ; prepare the 'at' control.
 JR L201E ; forward to PR-AT-TAB to print the sequence.

; ---

;; PR-ITEM-2
L200E: CP $AD ; is character 'TAB' ?
 JR NZ,L2024 ; to PR-ITEM-3 if not

 RST 20H ; NEXT-CHAR to address next character
 CALL L1C82 ; routine EXPT-1NUM
 CALL L1FC3 ; routine UNSTACK-Z quits if checking syntax.

 CALL L1E99 ; routine FIND-INT2 puts integer in BC.
 LD A,$17 ; prepare the 'tab' control.

;; PR-AT-TAB
L201E: RST 10H ; PRINT-A outputs the control

 LD A,C ; first value to A
 RST 10H ; PRINT-A outputs it.

 LD A,B ; second value
 RST 10H ; PRINT-A

 RET ; return - item finished >>>

; ---

; Now consider paper 2; #2; a$

;; PR-ITEM-3
L2024: CALL L21F2 ; routine CO-TEMP-3 will print any colour
 RET NC ; items - return if success.

 CALL L2070 ; routine STR-ALTER considers new stream
 RET NC ; return if altered.

 CALL L24FB ; routine SCANNING now to evaluate expression
 CALL L1FC3 ; routine UNSTACK-Z if not runtime.

 BIT 6,(IY+$01) ; test FLAGS - Numeric or string result ?
 CALL Z,L2BF1 ; routine STK-FETCH if string.
 ; note no flags affected.
 JP NZ,L2DE3 ; to PRINT-FP to print if numeric >>>

; It was a string expression - start in DE, length in BC
; Now enter a loop to print it

;; PR-STRING
L203C: LD A,B ; this tests if the
 OR C ; length is zero and sets flag accordingly.
 DEC BC ; this doesn't but decrements counter.
 RET Z ; return if zero.

 LD A,(DE) ; fetch character.
 INC DE ; address next location.

 RST 10H ; PRINT-A.

 JR L203C ; loop back to PR-STRING.

; ---------------
; End of printing
; ---------------
; This subroutine returns zero if no further printing is required
; in the current statement.
; The first terminator is found in escaped input items only,
; the others in print_items.

;; PR-END-Z
L2045: CP $29 ; is character a ')' ?
 RET Z ; return if so - e.g. INPUT (p$); a$

;; PR-ST-END
L2048: CP $0D ; is it a carriage return ?
 RET Z ; return also - e.g. PRINT a

 CP $3A ; is character a ':' ?
 RET ; return - zero flag will be set if so.
 ; e.g. PRINT a :

; --------------
; Print position
; --------------
; This routine considers a single positional character ';', ',', '''

;; PR-POSN-1
L204E: RST 18H ; GET-CHAR
 CP $3B ; is it ';' ?
 ; i.e. print from last position.
 JR Z,L2067 ; forward to PR-POSN-3 if so.
 ; i.e. do nothing.

 CP $2C ; is it ',' ?
 ; i.e. print at next tabstop.
 JR NZ,L2061 ; forward to PR-POSN-2 if anything else.

 CALL L2530 ; routine SYNTAX-Z
 JR Z,L2067 ; forward to PR-POSN-3 if checking syntax.

 LD A,$06 ; prepare the 'comma' control character.

 RST 10H ; PRINT-A outputs to current channel in
 ; run-time.

 JR L2067 ; skip to PR-POSN-3.

; ---

; check for newline.

;; PR-POSN-2

L2061: CP $27 ; is character a "'" ? (newline)
 RET NZ ; return if no match >>>

 CALL L1FF5 ; routine PRINT-CR outputs a carriage return
 ; in runtime only.

;; PR-POSN-3
L2067: RST 20H ; NEXT-CHAR to A.
 CALL L2045 ; routine PR-END-Z checks if at end.
 JR NZ,L206E ; to PR-POSN-4 if not.

 POP BC ; drop return address if at end.

;; PR-POSN-4
L206E: CP A ; reset the zero flag.
 RET ; and return to loop or quit.

; ------------
; Alter stream
; ------------
; This routine is called from PRINT ITEMS above, and also LIST as in
; LIST #15

;; STR-ALTER
L2070: CP $23 ; is character '#' ?
 SCF ; set carry flag.
 RET NZ ; return if no match.

 RST 20H ; NEXT-CHAR
 CALL L1C82 ; routine EXPT-1NUM gets stream number
 AND A ; prepare to exit early with carry reset
 CALL L1FC3 ; routine UNSTACK-Z exits early if parsing
 CALL L1E94 ; routine FIND-INT1 gets number off stack
 CP $10 ; must be range 0 - 15 decimal.
 JP NC,L160E ; jump back to REPORT-Oa if not
 ; 'Invalid stream'.

 CALL L1601 ; routine CHAN-OPEN
 AND A ; clear carry - signal item dealt with.
 RET ; return

; --------------------
; Handle INPUT command
; --------------------
; This command
;

;; INPUT
L2089: CALL L2530 ; routine SYNTAX-Z to check if in runtime.
 JR Z,L2096 ; forward to INPUT-1 if checking syntax.

 LD A,$01 ; select channel 'K' the keyboard for input.
 CALL L1601 ; routine CHAN-OPEN opens the channel and sets
 ; bit 0 of TV_FLAG.
 CALL L0D6E ; routine CLS-LOWER clears the lower screen
 ; and sets DF_SZ to two and TV_FLAG to $01.

;; INPUT-1
L2096: LD (IY+$02),$01 ; update TV_FLAG - signal lower screen in use
 ; ensuring that the correct set of system
 ; variables are updated and that the border
 ; colour is used.

; Note. The Complete Spectrum ROM Disassembly incorrectly names DF-SZ as the
; system variable that is updated above and if, as some have done, you make
; this unnecessary alteration then there will be two blank lines between the
; lower screen and the upper screen areas which will also scroll wrongly.

 CALL L20C1 ; routine IN-ITEM-1 to handle the input.

 CALL L1BEE ; routine CHECK-END will make an early exit
 ; if checking syntax. >>>

; keyboard input has been made and it remains to adjust the upper
; screen in case the lower two lines have been extended upwards.

 LD BC,($5C88) ; fetch S_POSN current line/column of
 ; the upper screen.
 LD A,($5C6B) ; fetch DF_SZ the display file size of
 ; the lower screen.
 CP B ; test that lower screen does not overlap
 JR C,L20AD ; forward to INPUT-2 if not.

; the two screens overlap so adjust upper screen.

 LD C,$21 ; set column of upper screen to leftmost.
 LD B,A ; and line to one above lower screen.
 ; continue forward to update upper screen
 ; print position.

;; INPUT-2
L20AD: LD ($5C88),BC ; set S_POSN update upper screen line/column.
 LD A,$19 ; subtract from twenty five
 SUB B ; the new line number.
 LD ($5C8C),A ; and place result in SCR_CT - scroll count.
 RES 0,(IY+$02) ; update TV_FLAG - signal main screen in use.
 CALL L0DD9 ; routine CL-SET sets the print position
 ; system variables for the upper screen.
 JP L0D6E ; jump back to CLS-LOWER and make
 ; an indirect exit >>.

; ---------------------
; INPUT ITEM subroutine
; ---------------------
; This subroutine deals with the input items and print items.
; from the current input channel.
; It is only called from the above INPUT routine but was obviously
; once called from somewhere else in another context.

;; IN-ITEM-1
L20C1: CALL L204E ; routine PR-POSN-1 deals with a single
 ; position item at each call.
 JR Z,L20C1 ; back to IN-ITEM-1 until no more in a
 ; sequence.

 CP $28 ; is character '(' ?
 JR NZ,L20D8 ; forward to IN-ITEM-2 if not.

; any variables within braces will be treated as part, or all, of the prompt
; instead of being used as destination variables.

 RST 20H ; NEXT-CHAR
 CALL L1FDF ; routine PRINT-2 to output the dynamic
 ; prompt.

 RST 18H ; GET-CHAR
 CP $29 ; is character a matching ')' ?

 JP NZ,L1C8A ; jump back to REPORT-C if not.
 ; 'Nonsense in BASIC'.

 RST 20H ; NEXT-CHAR
 JP L21B2 ; forward to IN-NEXT-2

; ---

;; IN-ITEM-2
L20D8: CP $CA ; is the character the token 'LINE' ?
 JR NZ,L20ED ; forward to IN-ITEM-3 if not.

 RST 20H ; NEXT-CHAR - variable must come next.
 CALL L1C1F ; routine CLASS-01 returns destination
 ; address of variable to be assigned.
 ; or generates an error if no variable
 ; at this position.

 SET 7,(IY+$37) ; update FLAGX - signal handling INPUT LINE
 BIT 6,(IY+$01) ; test FLAGS - numeric or string result ?
 JP NZ,L1C8A ; jump back to REPORT-C if not string
 ; 'Nonsense in BASIC'.

 JR L20FA ; forward to IN-PROMPT to set up workspace.

; ---

; the jump was here for other variables.

;; IN-ITEM-3
L20ED: CALL L2C8D ; routine ALPHA checks if character is
 ; a suitable variable name.
 JP NC,L21AF ; forward to IN-NEXT-1 if not

 CALL L1C1F ; routine CLASS-01 returns destination
 ; address of variable to be assigned.
 RES 7,(IY+$37) ; update FLAGX - signal not INPUT LINE.

;; IN-PROMPT
L20FA: CALL L2530 ; routine SYNTAX-Z
 JP Z,L21B2 ; forward to IN-NEXT-2 if checking syntax.

 CALL L16BF ; routine SET-WORK clears workspace.
 LD HL,$5C71 ; point to system variable FLAGX
 RES 6,(HL) ; signal string result.
 SET 5,(HL) ; signal in Input Mode for editor.
 LD BC,$0001 ; initialize space required to one for
 ; the carriage return.
 BIT 7,(HL) ; test FLAGX - INPUT LINE in use ?
 JR NZ,L211C ; forward to IN-PR-2 if so as that is
 ; all the space that is required.

 LD A,($5C3B) ; load accumulator from FLAGS
 AND $40 ; mask to test BIT 6 of FLAGS and clear
 ; the other bits in A.
 ; numeric result expected ?
 JR NZ,L211A ; forward to IN-PR-1 if so

 LD C,$03 ; increase space to three bytes for the
 ; pair of surrounding quotes.

;; IN-PR-1
L211A: OR (HL) ; if numeric result, set bit 6 of FLAGX.
 LD (HL),A ; and update system variable

;; IN-PR-2
L211C: RST 30H ; BC-SPACES opens 1 or 3 bytes in workspace
 LD (HL),$0D ; insert carriage return at last new location.
 LD A,C ; fetch the length, one or three.
 RRCA ; lose bit 0.
 RRCA ; test if quotes required.
 JR NC,L2129 ; forward to IN-PR-3 if not.

 LD A,$22 ; load the '"' character
 LD (DE),A ; place quote in first new location at DE.
 DEC HL ; decrease HL - from carriage return.
 LD (HL),A ; and place a quote in second location.

;; IN-PR-3
L2129: LD ($5C5B),HL ; set keyboard cursor K_CUR to HL
 BIT 7,(IY+$37) ; test FLAGX - is this INPUT LINE ??
 JR NZ,L215E ; forward to IN-VAR-3 if so as input will
 ; be accepted without checking its syntax.

 LD HL,($5C5D) ; fetch CH_ADD
 PUSH HL ; and save on stack.
 LD HL,($5C3D) ; fetch ERR_SP
 PUSH HL ; and save on stack

;; IN-VAR-1
L213A: LD HL,L213A ; address: IN-VAR-1 - this address
 PUSH HL ; is saved on stack to handle errors.
 BIT 4,(IY+$30) ; test FLAGS2 - is K channel in use ?
 JR Z,L2148 ; forward to IN-VAR-2 if not using the
 ; keyboard for input. (??)

 LD ($5C3D),SP ; set ERR_SP to point to IN-VAR-1 on stack.

;; IN-VAR-2
L2148: LD HL,($5C61) ; set HL to WORKSP - start of workspace.
 CALL L11A7 ; routine REMOVE-FP removes floating point
 ; forms when looping in error condition.
 LD (IY+$00),$FF ; set ERR_NR to 'OK' cancelling the error.
 ; but X_PTR causes flashing error marker
 ; to be displayed at each call to the editor.
 CALL L0F2C ; routine EDITOR allows input to be entered
 ; or corrected if this is second time around.

; if we pass to next then there are no system errors

 RES 7,(IY+$01) ; update FLAGS - signal checking syntax
 CALL L21B9 ; routine IN-ASSIGN checks syntax using
 ; the VAL-FET-2 and powerful SCANNING routines.
 ; any syntax error and its back to IN-VAR-1.
 ; but with the flashing error marker showing
 ; where the error is.
 ; Note. the syntax of string input has to be
 ; checked as the user may have removed the
 ; bounding quotes or escaped them as with
 ; "hat" + "stand" for example.
; proceed if syntax passed.

 JR L2161 ; jump forward to IN-VAR-4

; ---

; the jump was to here when using INPUT LINE.

;; IN-VAR-3
L215E: CALL L0F2C ; routine EDITOR is called for input

; when ENTER received rejoin other route but with no syntax check.

; INPUT and INPUT LINE converge here.

;; IN-VAR-4
L2161: LD (IY+$22),$00 ; set K_CUR_hi to a low value so that the cursor
 ; no longer appears in the input line.

 CALL L21D6 ; routine IN-CHAN-K tests if the keyboard
 ; is being used for input.
 JR NZ,L2174 ; forward to IN-VAR-5 if using another input
 ; channel.

; continue here if using the keyboard.

 CALL L111D ; routine ED-COPY overprints the edit line
 ; to the lower screen. The only visible
 ; affect is that the cursor disappears.
 ; if you're inputting more than one item in
 ; a statement then that becomes apparent.

 LD BC,($5C82) ; fetch line and column from ECHO_E
 CALL L0DD9 ; routine CL-SET sets S-POSNL to those
 ; values.

; if using another input channel rejoin here.

;; IN-VAR-5
L2174: LD HL,$5C71 ; point HL to FLAGX
 RES 5,(HL) ; signal not in input mode
 BIT 7,(HL) ; is this INPUT LINE ?
 RES 7,(HL) ; cancel the bit anyway.
 JR NZ,L219B ; forward to IN-VAR-6 if INPUT LINE.

 POP HL ; drop the looping address
 POP HL ; drop the address of previous
 ; error handler.
 LD ($5C3D),HL ; set ERR_SP to point to it.
 POP HL ; drop original CH_ADD which points to
 ; INPUT command in BASIC line.
 LD ($5C5F),HL ; save in X_PTR while input is assigned.
 SET 7,(IY+$01) ; update FLAGS - Signal running program
 CALL L21B9 ; routine IN-ASSIGN is called again
 ; this time the variable will be assigned
 ; the input value without error.
 ; Note. the previous example now
 ; becomes "hatstand"

 LD HL,($5C5F) ; fetch stored CH_ADD value from X_PTR.
 LD (IY+$26),$00 ; set X_PTR_hi so that iy is no longer relevant.
 LD ($5C5D),HL ; put restored value back in CH_ADD
 JR L21B2 ; forward to IN-NEXT-2 to see if anything
 ; more in the INPUT list.

; ---

; the jump was to here with INPUT LINE only

;; IN-VAR-6
L219B: LD HL,($5C63) ; STKBOT points to the end of the input.
 LD DE,($5C61) ; WORKSP points to the beginning.

 SCF ; prepare for true subtraction.
 SBC HL,DE ; subtract to get length
 LD B,H ; transfer it to
 LD C,L ; the BC register pair.
 CALL L2AB2 ; routine STK-STO-$ stores parameters on
 ; the calculator stack.
 CALL L2AFF ; routine LET assigns it to destination.
 JR L21B2 ; forward to IN-NEXT-2 as print items
 ; not allowed with INPUT LINE.
 ; Note. that "hat" + "stand" will, for
 ; example, be unchanged as also would
 ; 'PRINT "Iris was here"'.

; ---

; the jump was to here when ALPHA found more items while looking for
; a variable name.

;; IN-NEXT-1
L21AF: CALL L1FFC ; routine PR-ITEM-1 considers further items.

;; IN-NEXT-2
L21B2: CALL L204E ; routine PR-POSN-1 handles a position item.
 JP Z,L20C1 ; jump back to IN-ITEM-1 if the zero flag
 ; indicates more items are present.

 RET ; return.

; ---------------------------
; INPUT ASSIGNMENT Subroutine
; ---------------------------
; This subroutine is called twice from the INPUT command when normal
; keyboard input is assigned. On the first occasion syntax is checked
; using SCANNING. The final call with the syntax flag reset is to make
; the assignment.

;; IN-ASSIGN
L21B9: LD HL,($5C61) ; fetch WORKSP start of input
 LD ($5C5D),HL ; set CH_ADD to first character

 RST 18H ; GET-CHAR ignoring leading white-space.
 CP $E2 ; is it 'STOP'
 JR Z,L21D0 ; forward to IN-STOP if so.

 LD A,($5C71) ; load accumulator from FLAGX
 CALL L1C59 ; routine VAL-FET-2 makes assignment
 ; or goes through the motions if checking
 ; syntax. SCANNING is used.

 RST 18H ; GET-CHAR
 CP $0D ; is it carriage return ?
 RET Z ; return if so
 ; either syntax is OK
 ; or assignment has been made.

; if another character was found then raise an error.
; User doesn't see report but the flashing error marker
; appears in the lower screen.

;; REPORT-Cb
L21CE: RST 08H ; ERROR-1
 DEFB $0B ; Error Report: Nonsense in BASIC

;; IN-STOP

L21D0: CALL L2530 ; routine SYNTAX-Z (UNSTACK-Z?)
 RET Z ; return if checking syntax
 ; as user wouldn't see error report.
 ; but generate visible error report
 ; on second invocation.

;; REPORT-H
L21D4: RST 08H ; ERROR-1
 DEFB $10 ; Error Report: STOP in INPUT

; -----------------------------------
; THE 'TEST FOR CHANNEL K' SUBROUTINE
; -----------------------------------
; This subroutine is called once from the keyboard INPUT command to check if
; the input routine in use is the one for the keyboard.

;; IN-CHAN-K
L21D6: LD HL,($5C51) ; fetch address of current channel CURCHL
 INC HL ;
 INC HL ; advance past
 INC HL ; input and
 INC HL ; output streams
 LD A,(HL) ; fetch the channel identifier.
 CP $4B ; test for 'K'
 RET ; return with zero set if keyboard is use.

; --------------------
; Colour Item Routines
; --------------------
;
; These routines have 3 entry points -
; 1) CO-TEMP-2 to handle a series of embedded Graphic colour items.
; 2) CO-TEMP-3 to handle a single embedded print colour item.
; 3) CO TEMP-4 to handle a colour command such as FLASH 1
;
; "Due to a bug, if you bring in a peripheral channel and later use a colour
; statement, colour controls will be sent to it by mistake." - Steven Vickers
; Pitman Pocket Guide, 1984.
;
; To be fair, this only applies if the last channel was other than 'K', 'S'
; or 'P', which are all that are supported by this ROM, but if that last
; channel was a microdrive file, network channel etc. then
; PAPER 6; CLS will not turn the screen yellow and
; CIRCLE INK 2; 128,88,50 will not draw a red circle.
;
; This bug does not apply to embedded PRINT items as it is quite permissible
; to mix stream altering commands and colour items.
; The fix therefore would be to ensure that CLASS-07 and CLASS-09 make
; channel 'S' the current channel when not checking syntax.
; ---

;; CO-TEMP-1
L21E1: RST 20H ; NEXT-CHAR

; -> Entry point from CLASS-09. Embedded Graphic colour items.
; e.g. PLOT INK 2; PAPER 8; 128,88
; Loops till all colour items output, finally addressing the coordinates.

;; CO-TEMP-2
L21E2: CALL L21F2 ; routine CO-TEMP-3 to output colour control.
 RET C ; return if nothing more to output. ->

 RST 18H ; GET-CHAR

 CP $2C ; is it ',' separator ?
 JR Z,L21E1 ; back if so to CO-TEMP-1

 CP $3B ; is it ';' separator ?
 JR Z,L21E1 ; back to CO-TEMP-1 for more.

 JP L1C8A ; to REPORT-C (REPORT-Cb is within range)
 ; 'Nonsense in BASIC'

; -------------------
; CO-TEMP-3
; -------------------
; -> this routine evaluates and outputs a colour control and parameter.
; It is called from above and also from PR-ITEM-3 to handle a single embedded
; print item e.g. PRINT PAPER 6; "Hi". In the latter case, the looping for
; multiple items is within the PR-ITEM routine.
; It is quite permissible to send these to any stream.

;; CO-TEMP-3
L21F2: CP $D9 ; is it 'INK' ?
 RET C ; return if less.

 CP $DF ; compare with 'OUT'
 CCF ; Complement Carry Flag
 RET C ; return if greater than 'OVER', $DE.

 PUSH AF ; save the colour token.

 RST 20H ; address NEXT-CHAR
 POP AF ; restore token and continue.

; -> this entry point used by CLASS-07. e.g. the command PAPER 6.

;; CO-TEMP-4
L21FC: SUB $C9 ; reduce to control character $10 (INK)
 ; thru $15 (OVER).
 PUSH AF ; save control.
 CALL L1C82 ; routine EXPT-1NUM stacks addressed
 ; parameter on calculator stack.
 POP AF ; restore control.
 AND A ; clear carry

 CALL L1FC3 ; routine UNSTACK-Z returns if checking syntax.

 PUSH AF ; save again
 CALL L1E94 ; routine FIND-INT1 fetches parameter to A.
 LD D,A ; transfer now to D
 POP AF ; restore control.

 RST 10H ; PRINT-A outputs the control to current
 ; channel.
 LD A,D ; transfer parameter to A.

 RST 10H ; PRINT-A outputs parameter.
 RET ; return. ->

; ---
;
; {fl}{br}{ paper }{ ink } The temporary colour attributes
; ___ ___ ___ ___ ___ ___ ___ ___ system variable.
; ATTR_T | | | | | | | | |
; | | | | | | | | |
; 23695 |___|___|___|___|___|___|___|___|
; 7 6 5 4 3 2 1 0

;
;
; {fl}{br}{ paper }{ ink } The temporary mask used for
; ___ ___ ___ ___ ___ ___ ___ ___ transparent colours. Any bit
; MASK_T | | | | | | | | | that is 1 shows that the
; | | | | | | | | | corresponding attribute is
; 23696 |___|___|___|___|___|___|___|___| taken not from ATTR-T but from
; 7 6 5 4 3 2 1 0 what is already on the screen.
;
;
; {paper9 }{ ink9 }{ inv1 }{ over1} The print flags. Even bits are
; ___ ___ ___ ___ ___ ___ ___ ___ temporary flags. The odd bits
; P_FLAG | | | | | | | | | are the permanent flags.
; | p | t | p | t | p | t | p | t |
; 23697 |___|___|___|___|___|___|___|___|
; 7 6 5 4 3 2 1 0
;
; ---

; ------------------------------------
; The colour system variable handler.
; ------------------------------------
; This is an exit branch from PO-1-OPER, PO-2-OPER
; A holds control $10 (INK) to $15 (OVER)
; D holds parameter 0-9 for ink/paper 0,1 or 8 for bright/flash,
; 0 or 1 for over/inverse.

;; CO-TEMP-5
L2211: SUB $11 ; reduce range $FF-$04
 ADC A,$00 ; add in carry if INK
 JR Z,L2234 ; forward to CO-TEMP-7 with INK and PAPER.

 SUB $02 ; reduce range $FF-$02
 ADC A,$00 ; add carry if FLASH
 JR Z,L2273 ; forward to CO-TEMP-C with FLASH and BRIGHT.

 CP $01 ; is it 'INVERSE' ?
 LD A,D ; fetch parameter for INVERSE/OVER
 LD B,$01 ; prepare OVER mask setting bit 0.
 JR NZ,L2228 ; forward to CO-TEMP-6 if OVER

 RLCA ; shift bit 0
 RLCA ; to bit 2
 LD B,$04 ; set bit 2 of mask for inverse.

;; CO-TEMP-6
L2228: LD C,A ; save the A
 LD A,D ; re-fetch parameter
 CP $02 ; is it less than 2
 JR NC,L2244 ; to REPORT-K if not 0 or 1.
 ; 'Invalid colour'.

 LD A,C ; restore A
 LD HL,$5C91 ; address system variable P_FLAG
 JR L226C ; forward to exit via routine CO-CHANGE

; ---

; the branch was here with INK/PAPER and carry set for INK.

;; CO-TEMP-7
L2234: LD A,D ; fetch parameter
 LD B,$07 ; set ink mask 00000111
 JR C,L223E ; forward to CO-TEMP-8 with INK

 RLCA ; shift bits 0-2
 RLCA ; to
 RLCA ; bits 3-5
 LD B,$38 ; set paper mask 00111000

; both paper and ink rejoin here

;; CO-TEMP-8
L223E: LD C,A ; value to C
 LD A,D ; fetch parameter
 CP $0A ; is it less than 10d ?
 JR C,L2246 ; forward to CO-TEMP-9 if so.

; ink 10 etc. is not allowed.

;; REPORT-K
L2244: RST 08H ; ERROR-1
 DEFB $13 ; Error Report: Invalid colour

;; CO-TEMP-9
L2246: LD HL,$5C8F ; address system variable ATTR_T initially.
 CP $08 ; compare with 8
 JR C,L2258 ; forward to CO-TEMP-B with 0-7.

 LD A,(HL) ; fetch temporary attribute as no change.
 JR Z,L2257 ; forward to CO-TEMP-A with INK/PAPER 8

; it is either ink 9 or paper 9 (contrasting)

 OR B ; or with mask to make white
 CPL ; make black and change other to dark
 AND $24 ; 00100100
 JR Z,L2257 ; forward to CO-TEMP-A if black and
 ; originally light.

 LD A,B ; else just use the mask (white)

;; CO-TEMP-A
L2257: LD C,A ; save A in C

;; CO-TEMP-B
L2258: LD A,C ; load colour to A
 CALL L226C ; routine CO-CHANGE addressing ATTR-T

 LD A,$07 ; put 7 in accumulator
 CP D ; compare with parameter
 SBC A,A ; $00 if 0-7, $FF if 8
 CALL L226C ; routine CO-CHANGE addressing MASK-T
 ; mask returned in A.

; now consider P-FLAG.

 RLCA ; 01110000 or 00001110
 RLCA ; 11100000 or 00011100
 AND $50 ; 01000000 or 00010000 (AND 01010000)
 LD B,A ; transfer to mask
 LD A,$08 ; load A with 8
 CP D ; compare with parameter
 SBC A,A ; $FF if was 9, $00 if 0-8
 ; continue while addressing P-FLAG
 ; setting bit 4 if ink 9
 ; setting bit 6 if paper 9

; -----------------------
; Handle change of colour
; -----------------------
; This routine addresses a system variable ATTR_T, MASK_T or P-FLAG in HL.
; colour value in A, mask in B.

;; CO-CHANGE
L226C: XOR (HL) ; impress bits specified
 AND B ; by mask
 XOR (HL) ; on system variable.
 LD (HL),A ; update system variable.
 INC HL ; address next location.
 LD A,B ; put current value of mask in A
 RET ; return.

; ---

; the branch was here with flash and bright

;; CO-TEMP-C
L2273: SBC A,A ; set zero flag for bright.
 LD A,D ; fetch original parameter 0,1 or 8
 RRCA ; rotate bit 0 to bit 7
 LD B,$80 ; mask for flash 10000000
 JR NZ,L227D ; forward to CO-TEMP-D if flash

 RRCA ; rotate bit 7 to bit 6
 LD B,$40 ; mask for bright 01000000

;; CO-TEMP-D
L227D: LD C,A ; store value in C
 LD A,D ; fetch parameter
 CP $08 ; compare with 8
 JR Z,L2287 ; forward to CO-TEMP-E if 8

 CP $02 ; test if 0 or 1
 JR NC,L2244 ; back to REPORT-K if not
 ; 'Invalid colour'

;; CO-TEMP-E
L2287: LD A,C ; value to A
 LD HL,$5C8F ; address ATTR_T
 CALL L226C ; routine CO-CHANGE addressing ATTR_T
 LD A,C ; fetch value
 RRCA ; for flash8/bright8 complete
 RRCA ; rotations to put set bit in
 RRCA ; bit 7 (flash) bit 6 (bright)
 JR L226C ; back to CO-CHANGE addressing MASK_T
 ; and indirect return.

; ---------------------
; Handle BORDER command
; ---------------------
; Command syntax example: BORDER 7
; This command routine sets the border to one of the eight colours.
; The colours used for the lower screen are based on this.

;; BORDER
L2294: CALL L1E94 ; routine FIND-INT1
 CP $08 ; must be in range 0 (black) to 7 (white)
 JR NC,L2244 ; back to REPORT-K if not
 ; 'Invalid colour'.

 OUT ($FE),A ; outputting to port effects an immediate

 ; change.
 RLCA ; shift the colour to
 RLCA ; the paper bits setting the
 RLCA ; ink colour black.
 BIT 5,A ; is the number light coloured ?
 ; i.e. in the range green to white.
 JR NZ,L22A6 ; skip to BORDER-1 if so

 XOR $07 ; make the ink white.

;; BORDER-1
L22A6: LD ($5C48),A ; update BORDCR with new paper/ink
 RET ; return.

; -----------------
; Get pixel address
; -----------------
;
;

;; PIXEL-ADD
L22AA: LD A,$AF ; load with 175 decimal.
 SUB B ; subtract the y value.
 JP C,L24F9 ; jump forward to REPORT-Bc if greater.
 ; 'Integer out of range'

; the high byte is derived from Y only.
; the first 3 bits are always 010
; the next 2 bits denote in which third of the screen the byte is.
; the last 3 bits denote in which of the 8 scan lines within a third
; the byte is located. There are 24 discrete values.

 LD B,A ; the line number from top of screen to B.
 AND A ; clear carry (already clear)
 RRA ; 0xxxxxxx
 SCF ; set carry flag
 RRA ; 10xxxxxx
 AND A ; clear carry flag
 RRA ; 010xxxxx

 XOR B ;
 AND $F8 ; keep the top 5 bits 11111000
 XOR B ; 010xxbbb
 LD H,A ; transfer high byte to H.

; the low byte is derived from both X and Y.

 LD A,C ; the x value 0-255.
 RLCA ;
 RLCA ;
 RLCA ;
 XOR B ; the y value
 AND $C7 ; apply mask 11000111
 XOR B ; restore unmasked bits xxyyyxxx
 RLCA ; rotate to xyyyxxxx
 RLCA ; required position. yyyxxxxx
 LD L,A ; low byte to L.

; finally form the pixel position in A.

 LD A,C ; x value to A
 AND $07 ; mod 8
 RET ; return

; ----------------
; Point Subroutine
; ----------------
; The point subroutine is called from s-point via the scanning functions
; table.

;; POINT-SUB
L22CB: CALL L2307 ; routine STK-TO-BC
 CALL L22AA ; routine PIXEL-ADD finds address of pixel.
 LD B,A ; pixel position to B, 0-7.
 INC B ; increment to give rotation count 1-8.
 LD A,(HL) ; fetch byte from screen.

;; POINT-LP
L22D4: RLCA ; rotate and loop back
 DJNZ L22D4 ; to POINT-LP until pixel at right.

 AND $01 ; test to give zero or one.
 JP L2D28 ; jump forward to STACK-A to save result.

; -------------------
; Handle PLOT command
; -------------------
; Command Syntax example: PLOT 128,88
;

;; PLOT
L22DC: CALL L2307 ; routine STK-TO-BC
 CALL L22E5 ; routine PLOT-SUB
 JP L0D4D ; to TEMPS

; -------------------
; The Plot subroutine
; -------------------
; A screen byte holds 8 pixels so it is necessary to rotate a mask
; into the correct position to leave the other 7 pixels unaffected.
; However all 64 pixels in the character cell take any embedded colour
; items.
; A pixel can be reset (inverse 1), toggled (over 1), or set (with inverse
; and over switches off). With both switches on, the byte is simply put
; back on the screen though the colours may change.

;; PLOT-SUB
L22E5: LD ($5C7D),BC ; store new x/y values in COORDS
 CALL L22AA ; routine PIXEL-ADD gets address in HL,
 ; count from left 0-7 in B.
 LD B,A ; transfer count to B.
 INC B ; increase 1-8.
 LD A,$FE ; 11111110 in A.

;; PLOT-LOOP
L22F0: RRCA ; rotate mask.
 DJNZ L22F0 ; to PLOT-LOOP until B circular rotations.

 LD B,A ; load mask to B
 LD A,(HL) ; fetch screen byte to A

 LD C,(IY+$57) ; P_FLAG to C
 BIT 0,C ; is it to be OVER 1 ?
 JR NZ,L22FD ; forward to PL-TST-IN if so.

; was over 0

 AND B ; combine with mask to blank pixel.

;; PL-TST-IN
L22FD: BIT 2,C ; is it inverse 1 ?
 JR NZ,L2303 ; to PLOT-END if so.

 XOR B ; switch the pixel
 CPL ; restore other 7 bits

;; PLOT-END
L2303: LD (HL),A ; load byte to the screen.
 JP L0BDB ; exit to PO-ATTR to set colours for cell.

; ------------------------------
; Put two numbers in BC register
; ------------------------------
;
;

;; STK-TO-BC
L2307: CALL L2314 ; routine STK-TO-A
 LD B,A ;
 PUSH BC ;
 CALL L2314 ; routine STK-TO-A
 LD E,C ;
 POP BC ;
 LD D,C ;
 LD C,A ;
 RET ;

; -----------------------
; Put stack in A register
; -----------------------
; This routine puts the last value on the calculator stack into the accumulator
; deleting the last value.

;; STK-TO-A
L2314: CALL L2DD5 ; routine FP-TO-A compresses last value into
 ; accumulator. e.g. PI would become 3.
 ; zero flag set if positive.
 JP C,L24F9 ; jump forward to REPORT-Bc if >= 255.5.

 LD C,$01 ; prepare a positive sign byte.
 RET Z ; return if FP-TO-BC indicated positive.

 LD C,$FF ; prepare negative sign byte and
 RET ; return.

; ---------------------
; Handle CIRCLE command
; ---------------------
;
; syntax has been partly checked using the class for draw command.

;; CIRCLE
L2320: RST 18H ; GET-CHAR
 CP $2C ; is it required comma ?
 JP NZ,L1C8A ; jump to REPORT-C if not

 RST 20H ; NEXT-CHAR
 CALL L1C82 ; routine EXPT-1NUM fetches radius
 CALL L1BEE ; routine CHECK-END will return here if

 ; nothing follows command.

 RST 28H ;; FP-CALC
 DEFB $2A ;;abs ; make radius positive
 DEFB $3D ;;re-stack ; in full floating point form
 DEFB $38 ;;end-calc

 LD A,(HL) ; fetch first floating point byte
 CP $81 ; compare to one
 JR NC,L233B ; forward to C-R-GRE-1 if circle radius
 ; is greater than one.

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete ; delete the radius from stack.
 DEFB $38 ;;end-calc

 JR L22DC ; to PLOT to just plot x,y.

; ---

;; C-R-GRE-1
L233B: RST 28H ;; FP-CALC ; x, y, r
 DEFB $A3 ;;stk-pi/2 ; x, y, r, pi/2.
 DEFB $38 ;;end-calc

 LD (HL),$83 ; ; x, y, r, 2*PI

 RST 28H ;; FP-CALC
 DEFB $C5 ;;st-mem-5 ; store 2*PI in mem-5
 DEFB $02 ;;delete ; x, y, z.
 DEFB $38 ;;end-calc

 CALL L247D ; routine CD-PRMS1
 PUSH BC ;

 RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $E1 ;;get-mem-1
 DEFB $04 ;;multiply
 DEFB $38 ;;end-calc

 LD A,(HL) ;
 CP $80 ;
 JR NC,L235A ; to C-ARC-GE1

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 POP BC ;
 JP L22DC ; JUMP to PLOT

; ---

;; C-ARC-GE1
L235A: RST 28H ;; FP-CALC
 DEFB $C2 ;;st-mem-2
 DEFB $01 ;;exchange
 DEFB $C0 ;;st-mem-0

 DEFB $02 ;;delete
 DEFB $03 ;;subtract
 DEFB $01 ;;exchange
 DEFB $E0 ;;get-mem-0
 DEFB $0F ;;addition
 DEFB $C0 ;;st-mem-0
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $E0 ;;get-mem-0
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $E0 ;;get-mem-0
 DEFB $A0 ;;stk-zero
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 INC (IY+$62) ; MEM-2-1st
 CALL L1E94 ; routine FIND-INT1
 LD L,A ;
 PUSH HL ;
 CALL L1E94 ; routine FIND-INT1
 POP HL ;
 LD H,A ;
 LD ($5C7D),HL ; COORDS
 POP BC ;
 JP L2420 ; to DRW-STEPS

; -------------------
; Handle DRAW command
; -------------------
;
;

;; DRAW
L2382: RST 18H ; GET-CHAR
 CP $2C ;
 JR Z,L238D ; to DR-3-PRMS

 CALL L1BEE ; routine CHECK-END
 JP L2477 ; to LINE-DRAW

; ---

;; DR-3-PRMS
L238D: RST 20H ; NEXT-CHAR
 CALL L1C82 ; routine EXPT-1NUM
 CALL L1BEE ; routine CHECK-END

 RST 28H ;; FP-CALC
 DEFB $C5 ;;st-mem-5
 DEFB $A2 ;;stk-half
 DEFB $04 ;;multiply
 DEFB $1F ;;sin
 DEFB $31 ;;duplicate
 DEFB $30 ;;not
 DEFB $30 ;;not
 DEFB $00 ;;jump-true

 DEFB $06 ;;to L23A3, DR-SIN-NZ

 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 JP L2477 ; to LINE-DRAW

; ---

;; DR-SIN-NZ
L23A3: DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $31 ;;duplicate
 DEFB $2A ;;abs
 DEFB $E1 ;;get-mem-1
 DEFB $01 ;;exchange
 DEFB $E1 ;;get-mem-1
 DEFB $2A ;;abs
 DEFB $0F ;;addition
 DEFB $E0 ;;get-mem-0
 DEFB $05 ;;division
 DEFB $2A ;;abs
 DEFB $E0 ;;get-mem-0
 DEFB $01 ;;exchange
 DEFB $3D ;;re-stack
 DEFB $38 ;;end-calc

 LD A,(HL) ;
 CP $81 ;
 JR NC,L23C1 ; to DR-PRMS

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 JP L2477 ; to LINE-DRAW

; ---

;; DR-PRMS
L23C1: CALL L247D ; routine CD-PRMS1
 PUSH BC ;

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $E1 ;;get-mem-1
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $E1 ;;get-mem-1
 DEFB $04 ;;multiply
 DEFB $C2 ;;st-mem-2
 DEFB $02 ;;delete
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $E1 ;;get-mem-1
 DEFB $04 ;;multiply
 DEFB $E2 ;;get-mem-2
 DEFB $E5 ;;get-mem-5
 DEFB $E0 ;;get-mem-0
 DEFB $03 ;;subtract

 DEFB $A2 ;;stk-half
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $1F ;;sin
 DEFB $C5 ;;st-mem-5
 DEFB $02 ;;delete
 DEFB $20 ;;cos
 DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $C2 ;;st-mem-2
 DEFB $02 ;;delete
 DEFB $C1 ;;st-mem-1
 DEFB $E5 ;;get-mem-5
 DEFB $04 ;;multiply
 DEFB $E0 ;;get-mem-0
 DEFB $E2 ;;get-mem-2
 DEFB $04 ;;multiply
 DEFB $0F ;;addition
 DEFB $E1 ;;get-mem-1
 DEFB $01 ;;exchange
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $E0 ;;get-mem-0
 DEFB $04 ;;multiply
 DEFB $E2 ;;get-mem-2
 DEFB $E5 ;;get-mem-5
 DEFB $04 ;;multiply
 DEFB $03 ;;subtract
 DEFB $C2 ;;st-mem-2
 DEFB $2A ;;abs
 DEFB $E1 ;;get-mem-1
 DEFB $2A ;;abs
 DEFB $0F ;;addition
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 LD A,(DE) ;
 CP $81 ;
 POP BC ;
 JP C,L2477 ; to LINE-DRAW

 PUSH BC ;

 RST 28H ;; FP-CALC
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 LD A,($5C7D) ; COORDS-x
 CALL L2D28 ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $C0 ;;st-mem-0
 DEFB $0F ;;addition
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 LD A,($5C7E) ; COORDS-y
 CALL L2D28 ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $C5 ;;st-mem-5
 DEFB $0F ;;addition
 DEFB $E0 ;;get-mem-0
 DEFB $E5 ;;get-mem-5

 DEFB $38 ;;end-calc

 POP BC ;

;; DRW-STEPS
L2420: DEC B ;
 JR Z,L245F ; to ARC-END

 JR L2439 ; to ARC-START

; ---

;; ARC-LOOP
L2425: RST 28H ;; FP-CALC
 DEFB $E1 ;;get-mem-1
 DEFB $31 ;;duplicate
 DEFB $E3 ;;get-mem-3
 DEFB $04 ;;multiply
 DEFB $E2 ;;get-mem-2
 DEFB $E4 ;;get-mem-4
 DEFB $04 ;;multiply
 DEFB $03 ;;subtract
 DEFB $C1 ;;st-mem-1
 DEFB $02 ;;delete
 DEFB $E4 ;;get-mem-4
 DEFB $04 ;;multiply
 DEFB $E2 ;;get-mem-2
 DEFB $E3 ;;get-mem-3
 DEFB $04 ;;multiply
 DEFB $0F ;;addition
 DEFB $C2 ;;st-mem-2
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

;; ARC-START
L2439: PUSH BC ;

 RST 28H ;; FP-CALC
 DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $E1 ;;get-mem-1
 DEFB $0F ;;addition
 DEFB $31 ;;duplicate
 DEFB $38 ;;end-calc

 LD A,($5C7D) ; COORDS-x
 CALL L2D28 ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $03 ;;subtract
 DEFB $E0 ;;get-mem-0
 DEFB $E2 ;;get-mem-2
 DEFB $0F ;;addition
 DEFB $C0 ;;st-mem-0
 DEFB $01 ;;exchange
 DEFB $E0 ;;get-mem-0
 DEFB $38 ;;end-calc

 LD A,($5C7E) ; COORDS-y
 CALL L2D28 ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $03 ;;subtract

 DEFB $38 ;;end-calc

 CALL L24B7 ; routine DRAW-LINE
 POP BC ;
 DJNZ L2425 ; to ARC-LOOP

;; ARC-END
L245F: RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $02 ;;delete
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 LD A,($5C7D) ; COORDS-x
 CALL L2D28 ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $03 ;;subtract
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 LD A,($5C7E) ; COORDS-y
 CALL L2D28 ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $03 ;;subtract
 DEFB $38 ;;end-calc

;; LINE-DRAW
L2477: CALL L24B7 ; routine DRAW-LINE
 JP L0D4D ; to TEMPS

; ------------------
; Initial parameters
; ------------------
;
;

;; CD-PRMS1
L247D: RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $28 ;;sqr
 DEFB $34 ;;stk-data
 DEFB $32 ;;Exponent: $82, Bytes: 1
 DEFB $00 ;;(+00,+00,+00)
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $E5 ;;get-mem-5
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $2A ;;abs
 DEFB $38 ;;end-calc

 CALL L2DD5 ; routine FP-TO-A
 JR C,L2495 ; to USE-252

 AND $FC ;
 ADD A,$04 ;
 JR NC,L2497 ; to DRAW-SAVE

;; USE-252
L2495: LD A,$FC ;

;; DRAW-SAVE
L2497: PUSH AF ;
 CALL L2D28 ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $E5 ;;get-mem-5
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $31 ;;duplicate
 DEFB $1F ;;sin
 DEFB $C4 ;;st-mem-4
 DEFB $02 ;;delete
 DEFB $31 ;;duplicate
 DEFB $A2 ;;stk-half
 DEFB $04 ;;multiply
 DEFB $1F ;;sin
 DEFB $C1 ;;st-mem-1
 DEFB $01 ;;exchange
 DEFB $C0 ;;st-mem-0
 DEFB $02 ;;delete
 DEFB $31 ;;duplicate
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract
 DEFB $1B ;;negate
 DEFB $C3 ;;st-mem-3
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 POP BC ;
 RET ;

; ------------
; Line drawing
; ------------
;
;

;; DRAW-LINE
L24B7: CALL L2307 ; routine STK-TO-BC
 LD A,C ;
 CP B ;
 JR NC,L24C4 ; to DL-X-GE-Y

 LD L,C ;
 PUSH DE ;
 XOR A ;
 LD E,A ;
 JR L24CB ; to DL-LARGER

; ---

;; DL-X-GE-Y
L24C4: OR C ;
 RET Z ;

 LD L,B ;
 LD B,C ;
 PUSH DE ;
 LD D,$00 ;

;; DL-LARGER
L24CB: LD H,B ;
 LD A,B ;
 RRA ;

;; D-L-LOOP
L24CE: ADD A,L ;
 JR C,L24D4 ; to D-L-DIAG

 CP H ;
 JR C,L24DB ; to D-L-HR-VT

;; D-L-DIAG
L24D4: SUB H ;
 LD C,A ;
 EXX ;
 POP BC ;
 PUSH BC ;
 JR L24DF ; to D-L-STEP

; ---

;; D-L-HR-VT
L24DB: LD C,A ;
 PUSH DE ;
 EXX ;
 POP BC ;

;; D-L-STEP
L24DF: LD HL,($5C7D) ; COORDS
 LD A,B ;
 ADD A,H ;
 LD B,A ;
 LD A,C ;
 INC A ;
 ADD A,L ;
 JR C,L24F7 ; to D-L-RANGE

 JR Z,L24F9 ; to REPORT-Bc

;; D-L-PLOT
L24EC: DEC A ;
 LD C,A ;
 CALL L22E5 ; routine PLOT-SUB
 EXX ;
 LD A,C ;
 DJNZ L24CE ; to D-L-LOOP

 POP DE ;
 RET ;

; ---

;; D-L-RANGE
L24F7: JR Z,L24EC ; to D-L-PLOT

;; REPORT-Bc
L24F9: RST 08H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

;***********************************

;** Part 8. EXPRESSION EVALUATION **
;***********************************
;
; It is a this stage of the ROM that the Spectrum ceases altogether to be
; just a colourful novelty. One remarkable feature is that in all previous
; commands when the Spectrum is expecting a number or a string then an
; expression of the same type can be substituted ad infinitum.
; This is the routine that evaluates that expression.
; This is what causes 2 + 2 to give the answer 4.
; That is quite easy to understand. However you don't have to make it much
; more complex to start a remarkable juggling act.
; e.g. PRINT 2 * (VAL "2+2" + TAN 3)
; In fact, provided there is enough free RAM, the Spectrum can evaluate
; an expression of unlimited complexity.
; Apart from a couple of minor glitches, which you can now correct, the
; system is remarkably robust.

; ---------------------------------
; Scan expression or sub-expression
; ---------------------------------
;
;

;; SCANNING
L24FB: RST 18H ; GET-CHAR
 LD B,$00 ; priority marker zero is pushed on stack
 ; to signify end of expression when it is
 ; popped off again.
 PUSH BC ; put in on stack.
 ; and proceed to consider the first character
 ; of the expression.

;; S-LOOP-1
L24FF: LD C,A ; store the character while a look up is done.
 LD HL,L2596 ; Address: scan-func
 CALL L16DC ; routine INDEXER is called to see if it is
 ; part of a limited range '+', '(', 'ATTR' etc.

 LD A,C ; fetch the character back
 JP NC,L2684 ; jump forward to S-ALPHNUM if not in primary
 ; operators and functions to consider in the
 ; first instance a digit or a variable and
 ; then anything else. >>>

 LD B,$00 ; but here if it was found in table so
 LD C,(HL) ; fetch offset from table and make B zero.
 ADD HL,BC ; add the offset to position found
 JP (HL) ; and jump to the routine e.g. S-BIN
 ; making an indirect exit from there.

; ---
; The four service subroutines for routines in the scanning function table
; ---

; PRINT """Hooray!"" he cried."

;; S-QUOTE-S
L250F: CALL L0074 ; routine CH-ADD+1 points to next character
 ; and fetches that character.
 INC BC ; increase length counter.
 CP $0D ; is it carriage return ?
 ; inside a quote.
 JP Z,L1C8A ; jump back to REPORT-C if so.

 ; 'Nonsense in BASIC'.

 CP $22 ; is it a quote '"' ?
 JR NZ,L250F ; back to S-QUOTE-S if not for more.

 CALL L0074 ; routine CH-ADD+1
 CP $22 ; compare with possible adjacent quote
 RET ; return. with zero set if two together.

; ---

; This subroutine is used to get two coordinate expressions for the three
; functions SCREEN$, ATTR and POINT that have two fixed parameters and
; therefore require surrounding braces.

;; S-2-COORD
L2522: RST 20H ; NEXT-CHAR
 CP $28 ; is it the opening '(' ?
 JR NZ,L252D ; forward to S-RPORT-C if not
 ; 'Nonsense in BASIC'.

 CALL L1C79 ; routine NEXT-2NUM gets two comma-separated
 ; numeric expressions. Note. this could cause
 ; many more recursive calls to SCANNING but
 ; the parent function will be evaluated fully
 ; before rejoining the main juggling act.

 RST 18H ; GET-CHAR
 CP $29 ; is it the closing ')' ?

;; S-RPORT-C
L252D: JP NZ,L1C8A ; jump back to REPORT-C if not.
 ; 'Nonsense in BASIC'.

; ------------
; Check syntax
; ------------
; This routine is called on a number of occasions to check if syntax is being
; checked or if the program is being run. To test the flag inline would use
; four bytes of code, but a call instruction only uses 3 bytes of code.

;; SYNTAX-Z
L2530: BIT 7,(IY+$01) ; test FLAGS - checking syntax only ?
 RET ; return.

; ----------------
; Scanning SCREEN$
; ----------------
; This function returns the code of a bit-mapped character at screen
; position at line C, column B. It is unable to detect the mosaic characters
; which are not bit-mapped but detects the ASCII 32 - 127 range.
; The bit-mapped UDGs are ignored which is curious as it requires only a
; few extra bytes of code. As usual, anything to do with CHARS is weird.
; If no match is found a null string is returned.
; No actual check on ranges is performed - that's up to the BASIC programmer.
; No real harm can come from SCREEN$(255,255) although the BASIC manual
; says that invalid values will be trapped.
; Interestingly, in the Pitman pocket guide, 1984, Vickers says that the
; range checking will be performed.

;; S-SCRN$-S
L2535: CALL L2307 ; routine STK-TO-BC.
 LD HL,($5C36) ; fetch address of CHARS.
 LD DE,$0100 ; fetch offset to chr$ 32

 ADD HL,DE ; and find start of bitmaps.
 ; Note. not inc h. ??
 LD A,C ; transfer line to A.
 RRCA ; multiply
 RRCA ; by
 RRCA ; thirty-two.
 AND $E0 ; and with 11100000
 XOR B ; combine with column $00 - $1F
 LD E,A ; to give the low byte of top line
 LD A,C ; column to A range 00000000 to 00011111
 AND $18 ; and with 00011000
 XOR $40 ; xor with 01000000 (high byte screen start)
 LD D,A ; register DE now holds start address of cell.
 LD B,$60 ; there are 96 characters in ASCII set.

;; S-SCRN-LP
L254F: PUSH BC ; save count
 PUSH DE ; save screen start address
 PUSH HL ; save bitmap start
 LD A,(DE) ; first byte of screen to A
 XOR (HL) ; xor with corresponding character byte
 JR Z,L255A ; forward to S-SC-MTCH if they match
 ; if inverse result would be $FF
 ; if any other then mismatch

 INC A ; set to $00 if inverse
 JR NZ,L2573 ; forward to S-SCR-NXT if a mismatch

 DEC A ; restore $FF

; a match has been found so seven more to test.

;; S-SC-MTCH
L255A: LD C,A ; load C with inverse mask $00 or $FF
 LD B,$07 ; count seven more bytes

;; S-SC-ROWS
L255D: INC D ; increment screen address.
 INC HL ; increment bitmap address.
 LD A,(DE) ; byte to A
 XOR (HL) ; will give $00 or $FF (inverse)
 XOR C ; xor with inverse mask
 JR NZ,L2573 ; forward to S-SCR-NXT if no match.

 DJNZ L255D ; back to S-SC-ROWS until all eight matched.

; continue if a match of all eight bytes was found

 POP BC ; discard the
 POP BC ; saved
 POP BC ; pointers
 LD A,$80 ; the endpoint of character set
 SUB B ; subtract the counter
 ; to give the code 32-127
 LD BC,$0001 ; make one space in workspace.

 RST 30H ; BC-SPACES creates the space sliding
 ; the calculator stack upwards.
 LD (DE),A ; start is addressed by DE, so insert code
 JR L257D ; forward to S-SCR-STO

; ---

; the jump was here if no match and more bitmaps to test.

;; S-SCR-NXT
L2573: POP HL ; restore the last bitmap start
 LD DE,$0008 ; and prepare to add 8.
 ADD HL,DE ; now addresses next character bitmap.
 POP DE ; restore screen address
 POP BC ; and character counter in B
 DJNZ L254F ; back to S-SCRN-LP if more characters.

 LD C,B ; B is now zero, so BC now zero.

;; S-SCR-STO
L257D: JP L2AB2 ; to STK-STO-$ to store the string in
 ; workspace or a string with zero length.
 ; (value of DE doesn't matter in last case)

; Note. this exit seems correct but the general-purpose routine S-STRING
; that calls this one will also stack any of its string results so this
; leads to a double storing of the result in this case.
; The instruction at L257D should just be a RET.
; credit Stephen Kelly and others, 1982.

; -------------
; Scanning ATTR
; -------------
; This function subroutine returns the attributes of a screen location -
; a numeric result.
; Again it's up to the BASIC programmer to supply valid values of line/column.

;; S-ATTR-S
L2580: CALL L2307 ; routine STK-TO-BC fetches line to C,
 ; and column to B.
 LD A,C ; line to A $00 - $17 (max 00010111)
 RRCA ; rotate
 RRCA ; bits
 RRCA ; left.
 LD C,A ; store in C as an intermediate value.

 AND $E0 ; pick up bits 11100000 (was 00011100)
 XOR B ; combine with column $00 - $1F
 LD L,A ; low byte now correct.

 LD A,C ; bring back intermediate result from C
 AND $03 ; mask to give correct third of
 ; screen $00 - $02
 XOR $58 ; combine with base address.
 LD H,A ; high byte correct.
 LD A,(HL) ; pick up the colour attribute.
 JP L2D28 ; forward to STACK-A to store result
 ; and make an indirect exit.

; -----------------------
; Scanning function table
; -----------------------
; This table is used by INDEXER routine to find the offsets to
; four operators and eight functions. e.g. $A8 is the token 'FN'.
; This table is used in the first instance for the first character of an
; expression or by a recursive call to SCANNING for the first character of
; any sub-expression. It eliminates functions that have no argument or
; functions that can have more than one argument and therefore require
; braces. By eliminating and dealing with these now it can later take a
; simplistic approach to all other functions and assume that they have
; one argument.
; Similarly by eliminating BIN and '.' now it is later able to assume that

; all numbers begin with a digit and that the presence of a number or
; variable can be detected by a call to ALPHANUM.
; By default all expressions are positive and the spurious '+' is eliminated
; now as in print +2. This should not be confused with the operator '+'.
; Note. this does allow a degree of nonsense to be accepted as in
; PRINT +"3 is the greatest.".
; An acquired programming skill is the ability to include brackets where
; they are not necessary.
; A bracket at the start of a sub-expression may be spurious or necessary
; to denote that the contained expression is to be evaluated as an entity.
; In either case this is dealt with by recursive calls to SCANNING.
; An expression that begins with a quote requires special treatment.

;; scan-func
L2596: DEFB $22, L25B3-$-1 ; $1C offset to S-QUOTE
 DEFB '(', L25E8-$-1 ; $4F offset to S-BRACKET
 DEFB '.', L268D-$-1 ; $F2 offset to S-DECIMAL
 DEFB '+', L25AF-$-1 ; $12 offset to S-U-PLUS

 DEFB $A8, L25F5-$-1 ; $56 offset to S-FN
 DEFB $A5, L25F8-$-1 ; $57 offset to S-RND
 DEFB $A7, L2627-$-1 ; $84 offset to S-PI
 DEFB $A6, L2634-$-1 ; $8F offset to S-INKEY$
 DEFB $C4, L268D-$-1 ; $E6 offset to S-BIN
 DEFB $AA, L2668-$-1 ; $BF offset to S-SCREEN$
 DEFB $AB, L2672-$-1 ; $C7 offset to S-ATTR
 DEFB $A9, L267B-$-1 ; $CE offset to S-POINT

 DEFB $00 ; zero end marker

; --------------------------
; Scanning function routines
; --------------------------
; These are the 11 subroutines accessed by the above table.
; S-BIN and S-DECIMAL are the same
; The 1-byte offset limits their location to within 255 bytes of their
; entry in the table.

; ->
;; S-U-PLUS
L25AF: RST 20H ; NEXT-CHAR just ignore
 JP L24FF ; to S-LOOP-1

; ---

; ->
;; S-QUOTE
L25B3: RST 18H ; GET-CHAR
 INC HL ; address next character (first in quotes)
 PUSH HL ; save start of quoted text.
 LD BC,$0000 ; initialize length of string to zero.
 CALL L250F ; routine S-QUOTE-S
 JR NZ,L25D9 ; forward to S-Q-PRMS if

;; S-Q-AGAIN
L25BE: CALL L250F ; routine S-QUOTE-S copies string until a
 ; quote is encountered
 JR Z,L25BE ; back to S-Q-AGAIN if two quotes WERE
 ; together.

; but if just an isolated quote then that terminates the string.

 CALL L2530 ; routine SYNTAX-Z
 JR Z,L25D9 ; forward to S-Q-PRMS if checking syntax.

 RST 30H ; BC-SPACES creates the space for true
 ; copy of string in workspace.
 POP HL ; re-fetch start of quoted text.
 PUSH DE ; save start in workspace.

;; S-Q-COPY
L25CB: LD A,(HL) ; fetch a character from source.
 INC HL ; advance source address.
 LD (DE),A ; place in destination.
 INC DE ; advance destination address.
 CP $22 ; was it a '"' just copied ?
 JR NZ,L25CB ; back to S-Q-COPY to copy more if not

 LD A,(HL) ; fetch adjacent character from source.
 INC HL ; advance source address.
 CP $22 ; is this '"' ? - i.e. two quotes together ?
 JR Z,L25CB ; to S-Q-COPY if so including just one of the
 ; pair of quotes.

; proceed when terminating quote encountered.

;; S-Q-PRMS
L25D9: DEC BC ; decrease count by 1.
 POP DE ; restore start of string in workspace.

;; S-STRING
L25DB: LD HL,$5C3B ; Address FLAGS system variable.
 RES 6,(HL) ; signal string result.
 BIT 7,(HL) ; is syntax being checked.
 CALL NZ,L2AB2 ; routine STK-STO-$ is called in runtime.
 JP L2712 ; jump forward to S-CONT-2 ===>

; ---

; ->
;; S-BRACKET
L25E8: RST 20H ; NEXT-CHAR
 CALL L24FB ; routine SCANNING is called recursively.
 CP $29 ; is it the closing ')' ?
 JP NZ,L1C8A ; jump back to REPORT-C if not
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 JP L2712 ; jump forward to S-CONT-2 ===>

; ---

; ->
;; S-FN
L25F5: JP L27BD ; jump forward to S-FN-SBRN.

; ---

; ->
;; S-RND
L25F8: CALL L2530 ; routine SYNTAX-Z
 JR Z,L2625 ; forward to S-RND-END if checking syntax.

 LD BC,($5C76) ; fetch system variable SEED
 CALL L2D2B ; routine STACK-BC places on calculator stack

 RST 28H ;; FP-CALC ;s.

 DEFB $A1 ;;stk-one ;s,1.
 DEFB $0F ;;addition ;s+1.
 DEFB $34 ;;stk-data ;
 DEFB $37 ;;Exponent: $87,
 ;;Bytes: 1
 DEFB $16 ;;(+00,+00,+00) ;s+1,75.
 DEFB $04 ;;multiply ;(s+1)*75 = v
 DEFB $34 ;;stk-data ;v.
 DEFB $80 ;;Bytes: 3
 DEFB $41 ;;Exponent $91
 DEFB $00,$00,$80 ;;(+00) ;v,65537.
 DEFB $32 ;;n-mod-m ;remainder, result.
 DEFB $02 ;;delete ;remainder.
 DEFB $A1 ;;stk-one ;remainder, 1.
 DEFB $03 ;;subtract ;remainder - 1. = rnd
 DEFB $31 ;;duplicate ;rnd,rnd.
 DEFB $38 ;;end-calc

 CALL L2DA2 ; routine FP-TO-BC
 LD ($5C76),BC ; store in SEED for next starting point.
 LD A,(HL) ; fetch exponent
 AND A ; is it zero ?
 JR Z,L2625 ; forward if so to S-RND-END

 SUB $10 ; reduce exponent by 2^16
 LD (HL),A ; place back

;; S-RND-END
L2625: JR L2630 ; forward to S-PI-END

; ---

; the number PI 3.14159...

; ->
;; S-PI
L2627: CALL L2530 ; routine SYNTAX-Z
 JR Z,L2630 ; to S-PI-END if checking syntax.

 RST 28H ;; FP-CALC
 DEFB $A3 ;;stk-pi/2 pi/2.
 DEFB $38 ;;end-calc

 INC (HL) ; increment the exponent leaving pi
 ; on the calculator stack.

;; S-PI-END
L2630: RST 20H ; NEXT-CHAR
 JP L26C3 ; jump forward to S-NUMERIC

; ---

; ->
;; S-INKEY$
L2634: LD BC,$105A ; priority $10, operation code $1A ('read-in')
 ; +$40 for string result, numeric operand.
 ; set this up now in case we need to use the
 ; calculator.
 RST 20H ; NEXT-CHAR
 CP $23 ; '#' ?
 JP Z,L270D ; to S-PUSH-PO if so to use the calculator
 ; single operation
 ; to read from network/RS232 etc. .

; else read a key from the keyboard.

 LD HL,$5C3B ; fetch FLAGS
 RES 6,(HL) ; signal string result.
 BIT 7,(HL) ; checking syntax ?
 JR Z,L2665 ; forward to S-INK$-EN if so

 CALL L028E ; routine KEY-SCAN key in E, shift in D.
 LD C,$00 ; the length of an empty string
 JR NZ,L2660 ; to S-IK$-STK to store empty string if
 ; no key returned.

 CALL L031E ; routine K-TEST get main code in A
 JR NC,L2660 ; to S-IK$-STK to stack null string if
 ; invalid

 DEC D ; D is expected to be FLAGS so set bit 3 $FF
 ; 'L' Mode so no keywords.
 LD E,A ; main key to A
 ; C is MODE 0 'KLC' from above still.
 CALL L0333 ; routine K-DECODE
 PUSH AF ; save the code
 LD BC,$0001 ; make room for one character

 RST 30H ; BC-SPACES
 POP AF ; bring the code back
 LD (DE),A ; put the key in workspace
 LD C,$01 ; set C length to one

;; S-IK$-STK
L2660: LD B,$00 ; set high byte of length to zero
 CALL L2AB2 ; routine STK-STO-$

;; S-INK$-EN
L2665: JP L2712 ; to S-CONT-2 ===>

; ---

; ->
;; S-SCREEN$
L2668: CALL L2522 ; routine S-2-COORD
 CALL NZ,L2535 ; routine S-SCRN$-S

 RST 20H ; NEXT-CHAR
 JP L25DB ; forward to S-STRING to stack result

; ---

; ->
;; S-ATTR
L2672: CALL L2522 ; routine S-2-COORD
 CALL NZ,L2580 ; routine S-ATTR-S

 RST 20H ; NEXT-CHAR
 JR L26C3 ; forward to S-NUMERIC

; ---

; ->
;; S-POINT
L267B: CALL L2522 ; routine S-2-COORD
 CALL NZ,L22CB ; routine POINT-SUB

 RST 20H ; NEXT-CHAR

 JR L26C3 ; forward to S-NUMERIC

; -----------------------------

; ==> The branch was here if not in table.

;; S-ALPHNUM
L2684: CALL L2C88 ; routine ALPHANUM checks if variable or
 ; a digit.
 JR NC,L26DF ; forward to S-NEGATE if not to consider
 ; a '-' character then functions.

 CP $41 ; compare 'A'
 JR NC,L26C9 ; forward to S-LETTER if alpha ->
 ; else must have been numeric so continue
 ; into that routine.

; This important routine is called during runtime and from LINE-SCAN
; when a BASIC line is checked for syntax. It is this routine that
; inserts, during syntax checking, the invisible floating point numbers
; after the numeric expression. During runtime it just picks these
; numbers up. It also handles BIN format numbers.

; ->
;; S-BIN
;; S-DECIMAL
L268D: CALL L2530 ; routine SYNTAX-Z
 JR NZ,L26B5 ; to S-STK-DEC in runtime

; this route is taken when checking syntax.

 CALL L2C9B ; routine DEC-TO-FP to evaluate number

 RST 18H ; GET-CHAR to fetch HL
 LD BC,$0006 ; six locations required
 CALL L1655 ; routine MAKE-ROOM
 INC HL ; to first new location
 LD (HL),$0E ; insert number marker
 INC HL ; address next
 EX DE,HL ; make DE destination.
 LD HL,($5C65) ; STKEND points to end of stack.
 LD C,$05 ; result is five locations lower
 AND A ; prepare for true subtraction
 SBC HL,BC ; point to start of value.
 LD ($5C65),HL ; update STKEND as we are taking number.
 LDIR ; Copy five bytes to program location
 EX DE,HL ; transfer pointer to HL
 DEC HL ; adjust
 CALL L0077 ; routine TEMP-PTR1 sets CH-ADD
 JR L26C3 ; to S-NUMERIC to record nature of result

; ---

; branch here in runtime.

;; S-STK-DEC
L26B5: RST 18H ; GET-CHAR positions HL at digit.

;; S-SD-SKIP
L26B6: INC HL ; advance pointer
 LD A,(HL) ; until we find
 CP $0E ; chr 14d - the number indicator
 JR NZ,L26B6 ; to S-SD-SKIP until a match
 ; it has to be here.

 INC HL ; point to first byte of number
 CALL L33B4 ; routine STACK-NUM stacks it
 LD ($5C5D),HL ; update system variable CH_ADD

;; S-NUMERIC
L26C3: SET 6,(IY+$01) ; update FLAGS - Signal numeric result
 JR L26DD ; forward to S-CONT-1 ===>
 ; actually S-CONT-2 is destination but why
 ; waste a byte on a jump when a JR will do.
 ; actually a JR L2712 can be used. Rats.

; end of functions accessed from scanning functions table.

; --------------------------
; Scanning variable routines
; --------------------------
;
;

;; S-LETTER
L26C9: CALL L28B2 ; routine LOOK-VARS
 JP C,L1C2E ; jump back to REPORT-2 if not found
 ; 'Variable not found'
 ; but a variable is always 'found' if syntax
 ; is being checked.

 CALL Z,L2996 ; routine STK-VAR considers a subscript/slice
 LD A,($5C3B) ; fetch FLAGS value
 CP $C0 ; compare 11000000
 JR C,L26DD ; step forward to S-CONT-1 if string ===>

 INC HL ; advance pointer
 CALL L33B4 ; routine STACK-NUM

;; S-CONT-1
L26DD: JR L2712 ; forward to S-CONT-2 ===>

; --
; -> the scanning branch was here if not alphanumeric.
; All the remaining functions will be evaluated by a single call to the
; calculator. The correct priority for the operation has to be placed in
; the B register and the operation code, calculator literal in the C register.
; the operation code has bit 7 set if result is numeric and bit 6 is
; set if operand is numeric. so
; $C0 = numeric result, numeric operand. e.g. 'sin'
; $80 = numeric result, string operand. e.g. 'code'
; $40 = string result, numeric operand. e.g. 'str$'
; $00 = string result, string operand. e.g. 'val$'

;; S-NEGATE
L26DF: LD BC,$09DB ; prepare priority 09, operation code $C0 +
 ; 'negate' ($1B) - bits 6 and 7 set for numeric
 ; result and numeric operand.

 CP $2D ; is it '-' ?
 JR Z,L270D ; forward if so to S-PUSH-PO

 LD BC,$1018 ; prepare priority $10, operation code 'val$' -
 ; bits 6 and 7 reset for string result and
 ; string operand.

 CP $AE ; is it 'VAL$' ?
 JR Z,L270D ; forward if so to S-PUSH-PO

 SUB $AF ; subtract token 'CODE' value to reduce
 ; functions 'CODE' to 'NOT' although the
 ; upper range is, as yet, unchecked.
 ; valid range would be $00 - $14.

 JP C,L1C8A ; jump back to REPORT-C with anything else
 ; 'Nonsense in BASIC'

 LD BC,$04F0 ; prepare priority $04, operation $C0 +
 ; 'not' ($30)

 CP $14 ; is it 'NOT'
 JR Z,L270D ; forward to S-PUSH-PO if so

 JP NC,L1C8A ; to REPORT-C if higher
 ; 'Nonsense in BASIC'

 LD B,$10 ; priority $10 for all the rest
 ADD A,$DC ; make range $DC - $EF
 ; $C0 + 'code'($1C) thru 'chr$' ($2F)

 LD C,A ; transfer 'function' to C
 CP $DF ; is it 'sin' ?
 JR NC,L2707 ; forward to S-NO-TO-$ with 'sin' through
 ; 'chr$' as operand is numeric.

; all the rest 'cos' through 'chr$' give a numeric result except 'str$'
; and 'chr$'.

 RES 6,C ; signal string operand for 'code', 'val' and
 ; 'len'.

;; S-NO-TO-$
L2707: CP $EE ; compare 'str$'
 JR C,L270D ; forward to S-PUSH-PO if lower as result
 ; is numeric.

 RES 7,C ; reset bit 7 of op code for 'str$', 'chr$'
 ; as result is string.

; >> This is where they were all headed for.

;; S-PUSH-PO
L270D: PUSH BC ; push the priority and calculator operation
 ; code.

 RST 20H ; NEXT-CHAR
 JP L24FF ; jump back to S-LOOP-1 to go round the loop
 ; again with the next character.

; --------------------------------

; ===> there were many branches forward to here

;; S-CONT-2
L2712: RST 18H ; GET-CHAR

;; S-CONT-3
L2713: CP $28 ; is it '(' ?
 JR NZ,L2723 ; forward to S-OPERTR if not >

 BIT 6,(IY+$01) ; test FLAGS - numeric or string result ?
 JR NZ,L2734 ; forward to S-LOOP if numeric to evaluate >

; if a string preceded '(' then slice it.

 CALL L2A52 ; routine SLICING

 RST 20H ; NEXT-CHAR
 JR L2713 ; back to S-CONT-3

; ---------------------------

; the branch was here when possibility of an operator '(' has been excluded.

;; S-OPERTR
L2723: LD B,$00 ; prepare to add
 LD C,A ; possible operator to C
 LD HL,L2795 ; Address: $2795 - tbl-of-ops
 CALL L16DC ; routine INDEXER
 JR NC,L2734 ; forward to S-LOOP if not in table

; but if found in table the priority has to be looked up.

 LD C,(HL) ; operation code to C (B is still zero)
 LD HL,L27B0 - $C3 ; $26ED is base of table
 ADD HL,BC ; index into table.
 LD B,(HL) ; priority to B.

; ------------------
; Scanning main loop
; ------------------
; the juggling act

;; S-LOOP
L2734: POP DE ; fetch last priority and operation
 LD A,D ; priority to A
 CP B ; compare with this one
 JR C,L2773 ; forward to S-TIGHTER to execute the
 ; last operation before this one as it has
 ; higher priority.

; the last priority was greater or equal this one.

 AND A ; if it is zero then so is this
 JP Z,L0018 ; jump to exit via get-char pointing at
 ; next character.
 ; This may be the character after the
 ; expression or, if exiting a recursive call,
 ; the next part of the expression to be
 ; evaluated.

 PUSH BC ; save current priority/operation
 ; as it has lower precedence than the one
 ; now in DE.

; the 'USR' function is special in that it is overloaded to give two types
; of result.

 LD HL,$5C3B ; address FLAGS
 LD A,E ; new operation to A register
 CP $ED ; is it $C0 + 'usr-no' ($2D) ?
 JR NZ,L274C ; forward to S-STK-LST if not

 BIT 6,(HL) ; string result expected ?
 ; (from the lower priority operand we've
 ; just pushed on stack)

 JR NZ,L274C ; forward to S-STK-LST if numeric
 ; as operand bits match.

 LD E,$99 ; reset bit 6 and substitute $19 'usr-$'
 ; for string operand.

;; S-STK-LST
L274C: PUSH DE ; now stack this priority/operation
 CALL L2530 ; routine SYNTAX-Z
 JR Z,L275B ; forward to S-SYNTEST if checking syntax.

 LD A,E ; fetch the operation code
 AND $3F ; mask off the result/operand bits to leave
 ; a calculator literal.
 LD B,A ; transfer to B register

; now use the calculator to perform the single operation - operand is on
; the calculator stack.
; Note. although the calculator is performing a single operation most
; functions e.g. TAN are written using other functions and literals and
; these in turn are written using further strings of calculator literals so
; another level of magical recursion joins the juggling act for a while
; as the calculator too is calling itself.

 RST 28H ;; FP-CALC
 DEFB $3B ;;fp-calc-2
L2758: DEFB $38 ;;end-calc

 JR L2764 ; forward to S-RUNTEST

; ---

; the branch was here if checking syntax only.

;; S-SYNTEST
L275B: LD A,E ; fetch the operation code to accumulator
 XOR (IY+$01) ; compare with bits of FLAGS
 AND $40 ; bit 6 will be zero now if operand
 ; matched expected result.

;; S-RPORT-C2
L2761: JP NZ,L1C8A ; to REPORT-C if mismatch
 ; 'Nonsense in BASIC'
 ; else continue to set flags for next

; the branch is to here in runtime after a successful operation.

;; S-RUNTEST
L2764: POP DE ; fetch the last operation from stack
 LD HL,$5C3B ; address FLAGS
 SET 6,(HL) ; set default to numeric result in FLAGS
 BIT 7,E ; test the operational result
 JR NZ,L2770 ; forward to S-LOOPEND if numeric

 RES 6,(HL) ; reset bit 6 of FLAGS to show string result.

;; S-LOOPEND
L2770: POP BC ; fetch the previous priority/operation
 JR L2734 ; back to S-LOOP to perform these

; ---

; the branch was here when a stacked priority/operator had higher priority
; than the current one.

;; S-TIGHTER
L2773: PUSH DE ; save high priority op on stack again
 LD A,C ; fetch lower priority operation code
 BIT 6,(IY+$01) ; test FLAGS - Numeric or string result ?
 JR NZ,L2790 ; forward to S-NEXT if numeric result

; if this is lower priority yet has string then must be a comparison.
; Since these can only be evaluated in context and were defaulted to
; numeric in operator look up they must be changed to string equivalents.

 AND $3F ; mask to give true calculator literal
 ADD A,$08 ; augment numeric literals to string
 ; equivalents.
 ; 'no-&-no' => 'str-&-no'
 ; 'no-l-eql' => 'str-l-eql'
 ; 'no-gr-eq' => 'str-gr-eq'
 ; 'nos-neql' => 'strs-neql'
 ; 'no-grtr' => 'str-grtr'
 ; 'no-less' => 'str-less'
 ; 'nos-eql' => 'strs-eql'
 ; 'addition' => 'strs-add'
 LD C,A ; put modified comparison operator back
 CP $10 ; is it now 'str-&-no' ?
 JR NZ,L2788 ; forward to S-NOT-AND if not.

 SET 6,C ; set numeric operand bit
 JR L2790 ; forward to S-NEXT

; ---

;; S-NOT-AND
L2788: JR C,L2761 ; back to S-RPORT-C2 if less
 ; 'Nonsense in BASIC'.
 ; e.g. a$ * b$

 CP $17 ; is it 'strs-add' ?
 JR Z,L2790 ; forward to S-NEXT if so
 ; (bit 6 and 7 are reset)

 SET 7,C ; set numeric (Boolean) result for all others

;; S-NEXT
L2790: PUSH BC ; now save this priority/operation on stack

 RST 20H ; NEXT-CHAR
 JP L24FF ; jump back to S-LOOP-1

; ------------------
; Table of operators
; ------------------
; This table is used to look up the calculator literals associated with
; the operator character. The thirteen calculator operations $03 - $0F
; have bits 6 and 7 set to signify a numeric result.
; Some of these codes and bits may be altered later if the context suggests
; a string comparison or operation.
; that is '+', '=', '>', '<', '<=', '>=' or '<>'.

;; tbl-of-ops
L2795: DEFB '+', $CF ; $C0 + 'addition'
 DEFB '-', $C3 ; $C0 + 'subtract'
 DEFB '*', $C4 ; $C0 + 'multiply'
 DEFB '/', $C5 ; $C0 + 'division'
 DEFB '^', $C6 ; $C0 + 'to-power'

 DEFB '=', $CE ; $C0 + 'nos-eql'
 DEFB '>', $CC ; $C0 + 'no-grtr'
 DEFB '<', $CD ; $C0 + 'no-less'

 DEFB $C7, $C9 ; '<=' $C0 + 'no-l-eql'
 DEFB $C8, $CA ; '>=' $C0 + 'no-gr-eql'
 DEFB $C9, $CB ; '<>' $C0 + 'nos-neql'
 DEFB $C5, $C7 ; 'OR' $C0 + 'or'
 DEFB $C6, $C8 ; 'AND' $C0 + 'no-&-no'

 DEFB $00 ; zero end-marker.

; -------------------
; Table of priorities
; -------------------
; This table is indexed with the operation code obtained from the above
; table $C3 - $CF to obtain the priority for the respective operation.

;; tbl-priors
L27B0: DEFB $06 ; '-' opcode $C3
 DEFB $08 ; '*' opcode $C4
 DEFB $08 ; '/' opcode $C5
 DEFB $0A ; '^' opcode $C6
 DEFB $02 ; 'OR' opcode $C7
 DEFB $03 ; 'AND' opcode $C8
 DEFB $05 ; '<=' opcode $C9
 DEFB $05 ; '>=' opcode $CA
 DEFB $05 ; '<>' opcode $CB
 DEFB $05 ; '>' opcode $CC
 DEFB $05 ; '<' opcode $CD
 DEFB $05 ; '=' opcode $CE
 DEFB $06 ; '+' opcode $CF

; ----------------------
; Scanning function (FN)
; ----------------------
; This routine deals with user-defined functions.
; The definition can be anywhere in the program area but these are best
; placed near the start of the program as we shall see.
; The evaluation process is quite complex as the Spectrum has to parse two
; statements at the same time. Syntax of both has been checked previously
; and hidden locations have been created immediately after each argument
; of the DEF FN statement. Each of the arguments of the FN function is
; evaluated by SCANNING and placed in the hidden locations. Then the
; expression to the right of the DEF FN '=' is evaluated by SCANNING and for
; any variables encountered, a search is made in the DEF FN variable list
; in the program area before searching in the normal variables area.
;
; Recursion is not allowed: i.e. the definition of a function should not use
; the same function, either directly or indirectly (through another function).
; You'll normally get error 4, ('Out of memory'), although sometimes the system
; will crash. - Vickers, Pitman 1984.
;
; As the definition is just an expression, there would seem to be no means
; of breaking out of such recursion.
; However, by the clever use of string expressions and VAL, such recursion is
; possible.
; e.g. DEF FN a(n) = VAL "n+FN a(n-1)+0" ((n<1) * 10 + 1 TO)
; will evaluate the full 11-character expression for all values where n is
; greater than zero but just the 11th character, "0", when n drops to zero
; thereby ending the recursion producing the correct result.
; Recursive string functions are possible using VAL$ instead of VAL and the
; null string as the final addend.

; - from a turn of the century newsgroup discussion initiated by Mike Wynne.

;; S-FN-SBRN
L27BD: CALL L2530 ; routine SYNTAX-Z
 JR NZ,L27F7 ; forward to SF-RUN in runtime

 RST 20H ; NEXT-CHAR
 CALL L2C8D ; routine ALPHA check for letters A-Z a-z
 JP NC,L1C8A ; jump back to REPORT-C if not
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 CP $24 ; is it '$' ?
 PUSH AF ; save character and flags
 JR NZ,L27D0 ; forward to SF-BRKT-1 with numeric function

 RST 20H ; NEXT-CHAR

;; SF-BRKT-1
L27D0: CP $28 ; is '(' ?
 JR NZ,L27E6 ; forward to SF-RPRT-C if not
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR
 CP $29 ; is it ')' ?
 JR Z,L27E9 ; forward to SF-FLAG-6 if no arguments.

;; SF-ARGMTS
L27D9: CALL L24FB ; routine SCANNING checks each argument
 ; which may be an expression.

 RST 18H ; GET-CHAR
 CP $2C ; is it a ',' ?
 JR NZ,L27E4 ; forward if not to SF-BRKT-2 to test bracket

 RST 20H ; NEXT-CHAR if a comma was found
 JR L27D9 ; back to SF-ARGMTS to parse all arguments.

; ---

;; SF-BRKT-2
L27E4: CP $29 ; is character the closing ')' ?

;; SF-RPRT-C
L27E6: JP NZ,L1C8A ; jump to REPORT-C
 ; 'Nonsense in BASIC'

; at this point any optional arguments have had their syntax checked.

;; SF-FLAG-6
L27E9: RST 20H ; NEXT-CHAR
 LD HL,$5C3B ; address system variable FLAGS
 RES 6,(HL) ; signal string result
 POP AF ; restore test against '$'.
 JR Z,L27F4 ; forward to SF-SYN-EN if string function.

 SET 6,(HL) ; signal numeric result

;; SF-SYN-EN

L27F4: JP L2712 ; jump back to S-CONT-2 to continue scanning.

; ---

; the branch was here in runtime.

;; SF-RUN
L27F7: RST 20H ; NEXT-CHAR fetches name
 AND $DF ; AND 11101111 - reset bit 5 - upper-case.
 LD B,A ; save in B

 RST 20H ; NEXT-CHAR
 SUB $24 ; subtract '$'
 LD C,A ; save result in C
 JR NZ,L2802 ; forward if not '$' to SF-ARGMT1

 RST 20H ; NEXT-CHAR advances to bracket

;; SF-ARGMT1
L2802: RST 20H ; NEXT-CHAR advances to start of argument
 PUSH HL ; save address
 LD HL,($5C53) ; fetch start of program area from PROG
 DEC HL ; the search starting point is the previous
 ; location.

;; SF-FND-DF
L2808: LD DE,$00CE ; search is for token 'DEF FN' in E,
 ; statement count in D.
 PUSH BC ; save C the string test, and B the letter.
 CALL L1D86 ; routine LOOK-PROG will search for token.
 POP BC ; restore BC.
 JR NC,L2814 ; forward to SF-CP-DEF if a match was found.

;; REPORT-P
L2812: RST 08H ; ERROR-1
 DEFB $18 ; Error Report: FN without DEF

;; SF-CP-DEF
L2814: PUSH HL ; save address of DEF FN
 CALL L28AB ; routine FN-SKPOVR skips over white-space etc.
 ; without disturbing CH-ADD.
 AND $DF ; make fetched character upper-case.
 CP B ; compare with FN name
 JR NZ,L2825 ; forward to SF-NOT-FD if no match.

; the letters match so test the type.

 CALL L28AB ; routine FN-SKPOVR skips white-space
 SUB $24 ; subtract '$' from fetched character
 CP C ; compare with saved result of same operation
 ; on FN name.
 JR Z,L2831 ; forward to SF-VALUES with a match.

; the letters matched but one was string and the other numeric.

;; SF-NOT-FD
L2825: POP HL ; restore search point.
 DEC HL ; make location before
 LD DE,$0200 ; the search is to be for the end of the
 ; current definition - 2 statements forward.
 PUSH BC ; save the letter/type
 CALL L198B ; routine EACH-STMT steps past rejected
 ; definition.

 POP BC ; restore letter/type
 JR L2808 ; back to SF-FND-DF to continue search

; ---

; Success!
; the branch was here with matching letter and numeric/string type.

;; SF-VALUES
L2831: AND A ; test A (will be zero if string '$' - '$')

 CALL Z,L28AB ; routine FN-SKPOVR advances HL past '$'.

 POP DE ; discard pointer to 'DEF FN'.
 POP DE ; restore pointer to first FN argument.
 LD ($5C5D),DE ; save in CH_ADD

 CALL L28AB ; routine FN-SKPOVR advances HL past '('
 PUSH HL ; save start address in DEF FN ***
 CP $29 ; is character a ')' ?
 JR Z,L2885 ; forward to SF-R-BR-2 if no arguments.

;; SF-ARG-LP
L2843: INC HL ; point to next character.
 LD A,(HL) ; fetch it.
 CP $0E ; is it the number marker
 LD D,$40 ; signal numeric in D.
 JR Z,L2852 ; forward to SF-ARG-VL if numeric.

 DEC HL ; back to letter
 CALL L28AB ; routine FN-SKPOVR skips any white-space
 INC HL ; advance past the expected '$' to
 ; the 'hidden' marker.
 LD D,$00 ; signal string.

;; SF-ARG-VL
L2852: INC HL ; now address first of 5-byte location.
 PUSH HL ; save address in DEF FN statement
 PUSH DE ; save D - result type

 CALL L24FB ; routine SCANNING evaluates expression in
 ; the FN statement setting FLAGS and leaving
 ; result as last value on calculator stack.

 POP AF ; restore saved result type to A

 XOR (IY+$01) ; xor with FLAGS
 AND $40 ; and with 01000000 to test bit 6
 JR NZ,L288B ; forward to REPORT-Q if type mismatch.
 ; 'Parameter error'

 POP HL ; pop the start address in DEF FN statement
 EX DE,HL ; transfer to DE ?? pop straight into de ?

 LD HL,($5C65) ; set HL to STKEND location after value
 LD BC,$0005 ; five bytes to move
 SBC HL,BC ; decrease HL by 5 to point to start.
 LD ($5C65),HL ; set STKEND 'removing' value from stack.

 LDIR ; copy value into DEF FN statement
 EX DE,HL ; set HL to location after value in DEF FN
 DEC HL ; step back one
 CALL L28AB ; routine FN-SKPOVR gets next valid character
 CP $29 ; is it ')' end of arguments ?

 JR Z,L2885 ; forward to SF-R-BR-2 if so.

; a comma separator has been encountered in the DEF FN argument list.

 PUSH HL ; save position in DEF FN statement

 RST 18H ; GET-CHAR from FN statement
 CP $2C ; is it ',' ?
 JR NZ,L288B ; forward to REPORT-Q if not
 ; 'Parameter error'

 RST 20H ; NEXT-CHAR in FN statement advances to next
 ; argument.

 POP HL ; restore DEF FN pointer
 CALL L28AB ; routine FN-SKPOVR advances to corresponding
 ; argument.

 JR L2843 ; back to SF-ARG-LP looping until all
 ; arguments are passed into the DEF FN
 ; hidden locations.

; ---

; the branch was here when all arguments passed.

;; SF-R-BR-2
L2885: PUSH HL ; save location of ')' in DEF FN

 RST 18H ; GET-CHAR gets next character in FN
 CP $29 ; is it a ')' also ?
 JR Z,L288D ; forward to SF-VALUE if so.

;; REPORT-Q
L288B: RST 08H ; ERROR-1
 DEFB $19 ; Error Report: Parameter error

;; SF-VALUE
L288D: POP DE ; location of ')' in DEF FN to DE.
 EX DE,HL ; now to HL, FN ')' pointer to DE.
 LD ($5C5D),HL ; initialize CH_ADD to this value.

; At this point the start of the DEF FN argument list is on the machine stack.
; We also have to consider that this defined function may form part of the
; definition of another defined function (though not itself).
; As this defined function may be part of a hierarchy of defined functions
; currently being evaluated by recursive calls to SCANNING, then we have to
; preserve the original value of DEFADD and not assume that it is zero.

 LD HL,($5C0B) ; get original DEFADD address
 EX (SP),HL ; swap with DEF FN address on stack ***
 LD ($5C0B),HL ; set DEFADD to point to this argument list
 ; during scanning.

 PUSH DE ; save FN ')' pointer.

 RST 20H ; NEXT-CHAR advances past ')' in define

 RST 20H ; NEXT-CHAR advances past '=' to expression

 CALL L24FB ; routine SCANNING evaluates but searches
 ; initially for variables at DEFADD

 POP HL ; pop the FN ')' pointer
 LD ($5C5D),HL ; set CH_ADD to this
 POP HL ; pop the original DEFADD value
 LD ($5C0B),HL ; and re-insert into DEFADD system variable.

 RST 20H ; NEXT-CHAR advances to character after ')'
 JP L2712 ; to S-CONT-2 - to continue current
 ; invocation of scanning

; --------------------
; Used to parse DEF FN
; --------------------
; e.g. DEF FN s $ (x) = b $ (TO x) : REM exaggerated
;
; This routine is used 10 times to advance along a DEF FN statement
; skipping spaces and colour control codes. It is similar to NEXT-CHAR
; which is, at the same time, used to skip along the corresponding FN function
; except the latter has to deal with AT and TAB characters in string
; expressions. These cannot occur in a program area so this routine is
; simpler as both colour controls and their parameters are less than space.

;; FN-SKPOVR
L28AB: INC HL ; increase pointer
 LD A,(HL) ; fetch addressed character
 CP $21 ; compare with space + 1
 JR C,L28AB ; back to FN-SKPOVR if less

 RET ; return pointing to a valid character.

; ---------
; LOOK-VARS
; ---------
;
;

;; LOOK-VARS
L28B2: SET 6,(IY+$01) ; update FLAGS - presume numeric result

 RST 18H ; GET-CHAR
 CALL L2C8D ; routine ALPHA tests for A-Za-z
 JP NC,L1C8A ; jump to REPORT-C if not.
 ; 'Nonsense in BASIC'

 PUSH HL ; save pointer to first letter ^1
 AND $1F ; mask lower bits, 1 - 26 decimal 000xxxxx
 LD C,A ; store in C.

 RST 20H ; NEXT-CHAR
 PUSH HL ; save pointer to second character ^2
 CP $28 ; is it '(' - an array ?
 JR Z,L28EF ; forward to V-RUN/SYN if so.

 SET 6,C ; set 6 signaling string if solitary 010
 CP $24 ; is character a '$' ?
 JR Z,L28DE ; forward to V-STR-VAR

 SET 5,C ; signal numeric 011
 CALL L2C88 ; routine ALPHANUM sets carry if second
 ; character is alphanumeric.
 JR NC,L28E3 ; forward to V-TEST-FN if just one character

; It is more than one character but re-test current character so that 6 reset
; This loop renders the similar loop at V-PASS redundant.

;; V-CHAR
L28D4: CALL L2C88 ; routine ALPHANUM
 JR NC,L28EF ; to V-RUN/SYN when no more

 RES 6,C ; make long named type 001

 RST 20H ; NEXT-CHAR
 JR L28D4 ; loop back to V-CHAR

; ---

;; V-STR-VAR
L28DE: RST 20H ; NEXT-CHAR advances past '$'
 RES 6,(IY+$01) ; update FLAGS - signal string result.

;; V-TEST-FN
L28E3: LD A,($5C0C) ; load A with DEFADD_hi
 AND A ; and test for zero.
 JR Z,L28EF ; forward to V-RUN/SYN if a defined function
 ; is not being evaluated.

; Note.

 CALL L2530 ; routine SYNTAX-Z
 JP NZ,L2951 ; JUMP to STK-F-ARG in runtime and then
 ; back to this point if no variable found.

;; V-RUN/SYN
L28EF: LD B,C ; save flags in B
 CALL L2530 ; routine SYNTAX-Z
 JR NZ,L28FD ; to V-RUN to look for the variable in runtime

; if checking syntax the letter is not returned

 LD A,C ; copy letter/flags to A
 AND $E0 ; and with 11100000 to get rid of the letter
 SET 7,A ; use spare bit to signal checking syntax.
 LD C,A ; and transfer to C.
 JR L2934 ; forward to V-SYNTAX

; ---

; but in runtime search for the variable.

;; V-RUN
L28FD: LD HL,($5C4B) ; set HL to start of variables from VARS

;; V-EACH
L2900: LD A,(HL) ; get first character
 AND $7F ; and with 01111111
 ; ignoring bit 7 which distinguishes
 ; arrays or for/next variables.

 JR Z,L2932 ; to V-80-BYTE if zero as must be 10000000
 ; the variables end-marker.

 CP C ; compare with supplied value.
 JR NZ,L292A ; forward to V-NEXT if no match.

 RLA ; destructively test
 ADD A,A ; bits 5 and 6 of A
 ; jumping if bit 5 reset or 6 set

 JP P,L293F ; to V-FOUND-2 strings and arrays

 JR C,L293F ; to V-FOUND-2 simple and for next

; leaving long name variables.

 POP DE ; pop pointer to 2nd. char
 PUSH DE ; save it again
 PUSH HL ; save variable first character pointer

;; V-MATCHES
L2912: INC HL ; address next character in vars area

;; V-SPACES
L2913: LD A,(DE) ; pick up letter from prog area
 INC DE ; and advance address
 CP $20 ; is it a space
 JR Z,L2913 ; back to V-SPACES until non-space

 OR $20 ; convert to range 1 - 26.
 CP (HL) ; compare with addressed variables character
 JR Z,L2912 ; loop back to V-MATCHES if a match on an
 ; intermediate letter.

 OR $80 ; now set bit 7 as last character of long
 ; names are inverted.
 CP (HL) ; compare again
 JR NZ,L2929 ; forward to V-GET-PTR if no match

; but if they match check that this is also last letter in prog area

 LD A,(DE) ; fetch next character
 CALL L2C88 ; routine ALPHANUM sets carry if not alphanum
 JR NC,L293E ; forward to V-FOUND-1 with a full match.

;; V-GET-PTR
L2929: POP HL ; pop saved pointer to char 1

;; V-NEXT
L292A: PUSH BC ; save flags
 CALL L19B8 ; routine NEXT-ONE gets next variable in DE
 EX DE,HL ; transfer to HL.
 POP BC ; restore the flags
 JR L2900 ; loop back to V-EACH
 ; to compare each variable

; ---

;; V-80-BYTE
L2932: SET 7,B ; will signal not found

; the branch was here when checking syntax

;; V-SYNTAX
L2934: POP DE ; discard the pointer to 2nd. character v2
 ; in BASIC line/workspace.

 RST 18H ; GET-CHAR gets character after variable name.
 CP $28 ; is it '(' ?
 JR Z,L2943 ; forward to V-PASS
 ; Note. could go straight to V-END ?

 SET 5,B ; signal not an array
 JR L294B ; forward to V-END

; ---------------------------

; the jump was here when a long name matched and HL pointing to last character
; in variables area.

;; V-FOUND-1
L293E: POP DE ; discard pointer to first var letter

; the jump was here with all other matches HL points to first var char.

;; V-FOUND-2
L293F: POP DE ; discard pointer to 2nd prog char v2
 POP DE ; drop pointer to 1st prog char v1
 PUSH HL ; save pointer to last char in vars

 RST 18H ; GET-CHAR

;; V-PASS
L2943: CALL L2C88 ; routine ALPHANUM
 JR NC,L294B ; forward to V-END if not

; but it never will be as we advanced past long-named variables earlier.

 RST 20H ; NEXT-CHAR
 JR L2943 ; back to V-PASS

; ---

;; V-END
L294B: POP HL ; pop the pointer to first character in
 ; BASIC line/workspace.
 RL B ; rotate the B register left
 ; bit 7 to carry
 BIT 6,B ; test the array indicator bit.
 RET ; return

; -----------------------
; Stack function argument
; -----------------------
; This branch is taken from LOOK-VARS when a defined function is currently
; being evaluated.
; Scanning is evaluating the expression after the '=' and the variable
; found could be in the argument list to the left of the '=' or in the
; normal place after the program. Preference will be given to the former.
; The variable name to be matched is in C.

;; STK-F-ARG
L2951: LD HL,($5C0B) ; set HL to DEFADD
 LD A,(HL) ; load the first character
 CP $29 ; is it ')' ?
 JP Z,L28EF ; JUMP back to V-RUN/SYN, if so, as there are
 ; no arguments.

; but proceed to search argument list of defined function first if not empty.

;; SFA-LOOP
L295A: LD A,(HL) ; fetch character again.
 OR $60 ; or with 01100000 presume a simple variable.
 LD B,A ; save result in B.
 INC HL ; address next location.
 LD A,(HL) ; pick up byte.
 CP $0E ; is it the number marker ?
 JR Z,L296B ; forward to SFA-CP-VR if so.

; it was a string. White-space may be present but syntax has been checked.

 DEC HL ; point back to letter.
 CALL L28AB ; routine FN-SKPOVR skips to the '$'
 INC HL ; now address the hidden marker.
 RES 5,B ; signal a string variable.

;; SFA-CP-VR
L296B: LD A,B ; transfer found variable letter to A.
 CP C ; compare with expected.
 JR Z,L2981 ; forward to SFA-MATCH with a match.

 INC HL ; step
 INC HL ; past
 INC HL ; the
 INC HL ; five
 INC HL ; bytes.

 CALL L28AB ; routine FN-SKPOVR skips to next character
 CP $29 ; is it ')' ?
 JP Z,L28EF ; jump back if so to V-RUN/SYN to look in
 ; normal variables area.

 CALL L28AB ; routine FN-SKPOVR skips past the ','
 ; all syntax has been checked and these
 ; things can be taken as read.
 JR L295A ; back to SFA-LOOP while there are more
 ; arguments.

; ---

;; SFA-MATCH
L2981: BIT 5,C ; test if numeric
 JR NZ,L2991 ; to SFA-END if so as will be stacked
 ; by scanning

 INC HL ; point to start of string descriptor
 LD DE,($5C65) ; set DE to STKEND
 CALL L33C0 ; routine MOVE-FP puts parameters on stack.
 EX DE,HL ; new free location to HL.
 LD ($5C65),HL ; use it to set STKEND system variable.

;; SFA-END
L2991: POP DE ; discard
 POP DE ; pointers.
 XOR A ; clear carry flag.
 INC A ; and zero flag.
 RET ; return.

; ------------------------
; Stack variable component
; ------------------------
; This is called to evaluate a complex structure that has been found, in
; runtime, by LOOK-VARS in the variables area.
; In this case HL points to the initial letter, bits 7-5
; of which indicate the type of variable.
; 010 - simple string, 110 - string array, 100 - array of numbers.
;
; It is called from CLASS-01 when assigning to a string or array including
; a slice.
; It is called from SCANNING to isolate the required part of the structure.
;
; An important part of the runtime process is to check that the number of

; dimensions of the variable match the number of subscripts supplied in the
; BASIC line.
;
; If checking syntax,
; the B register, which counts dimensions is set to zero (256) to allow
; the loop to continue till all subscripts are checked. While doing this it
; is reading dimension sizes from some arbitrary area of memory. Although
; these are meaningless it is of no concern as the limit is never checked by
; int-exp during syntax checking.
;
; The routine is also called from the syntax path of DIM command to check the
; syntax of both string and numeric arrays definitions except that bit 6 of C
; is reset so both are checked as numeric arrays. This ruse avoids a terminal
; slice being accepted as part of the DIM command.
; All that is being checked is that there are a valid set of comma-separated
; expressions before a terminal ')', although, as above, it will still go
; through the motions of checking dummy dimension sizes.

;; STK-VAR
L2996: XOR A ; clear A
 LD B,A ; and B, the syntax dimension counter (256)
 BIT 7,C ; checking syntax ?
 JR NZ,L29E7 ; forward to SV-COUNT if so.

; runtime evaluation.

 BIT 7,(HL) ; will be reset if a simple string.
 JR NZ,L29AE ; forward to SV-ARRAYS otherwise

 INC A ; set A to 1, simple string.

;; SV-SIMPLE$
L29A1: INC HL ; address length low
 LD C,(HL) ; place in C
 INC HL ; address length high
 LD B,(HL) ; place in B
 INC HL ; address start of string
 EX DE,HL ; DE = start now.
 CALL L2AB2 ; routine STK-STO-$ stacks string parameters
 ; DE start in variables area,
 ; BC length, A=1 simple string

; the only thing now is to consider if a slice is required.

 RST 18H ; GET-CHAR puts character at CH_ADD in A
 JP L2A49 ; jump forward to SV-SLICE? to test for '('

; --

; the branch was here with string and numeric arrays in runtime.

;; SV-ARRAYS
L29AE: INC HL ; step past
 INC HL ; the total length
 INC HL ; to address Number of dimensions.
 LD B,(HL) ; transfer to B overwriting zero.
 BIT 6,C ; a numeric array ?
 JR Z,L29C0 ; forward to SV-PTR with numeric arrays

 DEC B ; ignore the final element of a string array
 ; the fixed string size.

 JR Z,L29A1 ; back to SV-SIMPLE$ if result is zero as has
 ; been created with DIM a$(10) for instance

 ; and can be treated as a simple string.

; proceed with multi-dimensioned string arrays in runtime.

 EX DE,HL ; save pointer to dimensions in DE

 RST 18H ; GET-CHAR looks at the BASIC line
 CP $28 ; is character '(' ?
 JR NZ,L2A20 ; to REPORT-3 if not
 ; 'Subscript wrong'

 EX DE,HL ; dimensions pointer to HL to synchronize
 ; with next instruction.

; runtime numeric arrays path rejoins here.

;; SV-PTR
L29C0: EX DE,HL ; save dimension pointer in DE
 JR L29E7 ; forward to SV-COUNT with true no of dims
 ; in B. As there is no initial comma the
 ; loop is entered at the midpoint.

; --
; the dimension counting loop which is entered at mid-point.

;; SV-COMMA
L29C3: PUSH HL ; save counter

 RST 18H ; GET-CHAR

 POP HL ; pop counter
 CP $2C ; is character ',' ?
 JR Z,L29EA ; forward to SV-LOOP if so

; in runtime the variable definition indicates a comma should appear here

 BIT 7,C ; checking syntax ?
 JR Z,L2A20 ; forward to REPORT-3 if not
 ; 'Subscript error'

; proceed if checking syntax of an array?

 BIT 6,C ; array of strings
 JR NZ,L29D8 ; forward to SV-CLOSE if so

; an array of numbers.

 CP $29 ; is character ')' ?
 JR NZ,L2A12 ; forward to SV-RPT-C if not
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR moves CH-ADD past the statement
 RET ; return ->

; ---

; the branch was here with an array of strings.

;; SV-CLOSE
L29D8: CP $29 ; as above ')' could follow the expression
 JR Z,L2A48 ; forward to SV-DIM if so

 CP $CC ; is it 'TO' ?
 JR NZ,L2A12 ; to SV-RPT-C with anything else

 ; 'Nonsense in BASIC'

; now backtrack CH_ADD to set up for slicing routine.
; Note. in a BASIC line we can safely backtrack to a colour parameter.

;; SV-CH-ADD
L29E0: RST 18H ; GET-CHAR
 DEC HL ; backtrack HL
 LD ($5C5D),HL ; to set CH_ADD up for slicing routine
 JR L2A45 ; forward to SV-SLICE and make a return
 ; when all slicing complete.

; --
; -> the mid-point entry point of the loop

;; SV-COUNT
L29E7: LD HL,$0000 ; initialize data pointer to zero.

;; SV-LOOP
L29EA: PUSH HL ; save the data pointer.

 RST 20H ; NEXT-CHAR in BASIC area points to an
 ; expression.

 POP HL ; restore the data pointer.
 LD A,C ; transfer name/type to A.
 CP $C0 ; is it 11000000 ?
 ; Note. the letter component is absent if
 ; syntax checking.
 JR NZ,L29FB ; forward to SV-MULT if not an array of
 ; strings.

; proceed to check string arrays during syntax.

 RST 18H ; GET-CHAR
 CP $29 ; ')' end of subscripts ?
 JR Z,L2A48 ; forward to SV-DIM to consider further slice

 CP $CC ; is it 'TO' ?
 JR Z,L29E0 ; back to SV-CH-ADD to consider a slice.
 ; (no need to repeat get-char at L29E0)

; if neither, then an expression is required so rejoin runtime loop ??
; registers HL and DE only point to somewhere meaningful in runtime so
; comments apply to that situation.

;; SV-MULT
L29FB: PUSH BC ; save dimension number.
 PUSH HL ; push data pointer/rubbish.
 ; DE points to current dimension.
 CALL L2AEE ; routine DE,(DE+1) gets next dimension in DE
 ; and HL points to it.
 EX (SP),HL ; dim pointer to stack, data pointer to HL (*)
 EX DE,HL ; data pointer to DE, dim size to HL.

 CALL L2ACC ; routine INT-EXP1 checks integer expression
 ; and gets result in BC in runtime.
 JR C,L2A20 ; to REPORT-3 if > HL
 ; 'Subscript out of range'

 DEC BC ; adjust returned result from 1-x to 0-x
 CALL L2AF4 ; routine GET-HL*DE multiplies data pointer by
 ; dimension size.
 ADD HL,BC ; add the integer returned by expression.

 POP DE ; pop the dimension pointer.

 POP BC ; pop dimension counter.
 DJNZ L29C3 ; back to SV-COMMA if more dimensions
 ; Note. during syntax checking, unless there
 ; are more than 256 subscripts, the branch
 ; back to SV-COMMA is always taken.

 BIT 7,C ; are we checking syntax ?
 ; then we've got a joker here.

;; SV-RPT-C
L2A12: JR NZ,L2A7A ; forward to SL-RPT-C if so
 ; 'Nonsense in BASIC'
 ; more than 256 subscripts in BASIC line.

; but in runtime the number of subscripts are at least the same as dims

 PUSH HL ; save data pointer.
 BIT 6,C ; is it a string array ?
 JR NZ,L2A2C ; forward to SV-ELEM$ if so.

; a runtime numeric array subscript.

 LD B,D ; register DE has advanced past all dimensions
 LD C,E ; and points to start of data in variable.
 ; transfer it to BC.

 RST 18H ; GET-CHAR checks BASIC line
 CP $29 ; must be a ')' ?
 JR Z,L2A22 ; skip to SV-NUMBER if so

; else more subscripts in BASIC line than the variable definition.

;; REPORT-3
L2A20: RST 08H ; ERROR-1
 DEFB $02 ; Error Report: Subscript wrong

; continue if subscripts matched the numeric array.

;; SV-NUMBER
L2A22: RST 20H ; NEXT-CHAR moves CH_ADD to next statement
 ; - finished parsing.

 POP HL ; pop the data pointer.
 LD DE,$0005 ; each numeric element is 5 bytes.
 CALL L2AF4 ; routine GET-HL*DE multiplies.
 ADD HL,BC ; now add to start of data in the variable.

 RET ; return with HL pointing at the numeric
 ; array subscript. ->

; ---

; the branch was here for string subscripts when the number of subscripts
; in the BASIC line was one less than in variable definition.

;; SV-ELEM$
L2A2C: CALL L2AEE ; routine DE,(DE+1) gets final dimension
 ; the length of strings in this array.
 EX (SP),HL ; start pointer to stack, data pointer to HL.
 CALL L2AF4 ; routine GET-HL*DE multiplies by element
 ; size.
 POP BC ; the start of data pointer is added

 ADD HL,BC ; in - now points to location before.
 INC HL ; point to start of required string.
 LD B,D ; transfer the length (final dimension size)
 LD C,E ; from DE to BC.
 EX DE,HL ; put start in DE.
 CALL L2AB1 ; routine STK-ST-0 stores the string parameters
 ; with A=0 - a slice or subscript.

; now check that there were no more subscripts in the BASIC line.

 RST 18H ; GET-CHAR
 CP $29 ; is it ')' ?
 JR Z,L2A48 ; forward to SV-DIM to consider a separate
 ; subscript or/and a slice.

 CP $2C ; a comma is allowed if the final subscript
 ; is to be sliced e.g. a$(2,3,4 TO 6).
 JR NZ,L2A20 ; to REPORT-3 with anything else
 ; 'Subscript error'

;; SV-SLICE
L2A45: CALL L2A52 ; routine SLICING slices the string.

; but a slice of a simple string can itself be sliced.

;; SV-DIM
L2A48: RST 20H ; NEXT-CHAR

;; SV-SLICE?
L2A49: CP $28 ; is character '(' ?
 JR Z,L2A45 ; loop back if so to SV-SLICE

 RES 6,(IY+$01) ; update FLAGS - Signal string result
 RET ; and return.

; ---

; The above section deals with the flexible syntax allowed.
; DIM a$(3,3,10) can be considered as two dimensional array of ten-character
; strings or a 3-dimensional array of characters.
; a$(1,1) will return a 10-character string as will a$(1,1,1 TO 10)
; a$(1,1,1) will return a single character.
; a$(1,1) (1 TO 6) is the same as a$(1,1,1 TO 6)
; A slice can itself be sliced ad infinitum
; b$ () () () () () () (2 TO 10) (2 TO 9) (3) is the same as b$(5)

; -------------------------
; Handle slicing of strings
; -------------------------
; The syntax of string slicing is very natural and it is as well to reflect
; on the permutations possible.
; a$() and a$(TO) indicate the entire string although just a$ would do
; and would avoid coming here.
; h$(16) indicates the single character at position 16.
; a$(TO 32) indicates the first 32 characters.
; a$(257 TO) indicates all except the first 256 characters.
; a$(19000 TO 19999) indicates the thousand characters at position 19000.
; Also a$(9 TO 5) returns a null string not an error.
; This enables a$(2 TO) to return a null string if the passed string is
; of length zero or 1.
; A string expression in brackets can be sliced. e.g. (STR$ PI) (3 TO)
; We arrived here from SCANNING with CH-ADD pointing to the initial '('

; or from above.

;; SLICING
L2A52: CALL L2530 ; routine SYNTAX-Z
 CALL NZ,L2BF1 ; routine STK-FETCH fetches parameters of
 ; string at runtime, start in DE, length
 ; in BC. This could be an array subscript.

 RST 20H ; NEXT-CHAR
 CP $29 ; is it ')' ? e.g. a$()
 JR Z,L2AAD ; forward to SL-STORE to store entire string.

 PUSH DE ; else save start address of string

 XOR A ; clear accumulator to use as a running flag.
 PUSH AF ; and save on stack before any branching.

 PUSH BC ; save length of string to be sliced.
 LD DE,$0001 ; default the start point to position 1.

 RST 18H ; GET-CHAR

 POP HL ; pop length to HL as default end point
 ; and limit.

 CP $CC ; is it 'TO' ? e.g. a$(TO 10000)
 JR Z,L2A81 ; to SL-SECOND to evaluate second parameter.

 POP AF ; pop the running flag.

 CALL L2ACD ; routine INT-EXP2 fetches first parameter.

 PUSH AF ; save flag (will be $FF if parameter>limit)

 LD D,B ; transfer the start
 LD E,C ; to DE overwriting 0001.
 PUSH HL ; save original length.

 RST 18H ; GET-CHAR
 POP HL ; pop the limit length.
 CP $CC ; is it 'TO' after a start ?
 JR Z,L2A81 ; to SL-SECOND to evaluate second parameter

 CP $29 ; is it ')' ? e.g. a$(365)

;; SL-RPT-C
L2A7A: JP NZ,L1C8A ; jump to REPORT-C with anything else
 ; 'Nonsense in BASIC'

 LD H,D ; copy start
 LD L,E ; to end - just a one character slice.
 JR L2A94 ; forward to SL-DEFINE.

; ---------------------

;; SL-SECOND
L2A81: PUSH HL ; save limit length.

 RST 20H ; NEXT-CHAR

 POP HL ; pop the length.

 CP $29 ; is character ')' ? e.g. a$(7 TO)
 JR Z,L2A94 ; to SL-DEFINE using length as end point.

 POP AF ; else restore flag.
 CALL L2ACD ; routine INT-EXP2 gets second expression.

 PUSH AF ; save the running flag.

 RST 18H ; GET-CHAR

 LD H,B ; transfer second parameter
 LD L,C ; to HL. e.g. a$(42 to 99)
 CP $29 ; is character a ')' ?
 JR NZ,L2A7A ; to SL-RPT-C if not
 ; 'Nonsense in BASIC'

; we now have start in DE and an end in HL.

;; SL-DEFINE
L2A94: POP AF ; pop the running flag.
 EX (SP),HL ; put end point on stack, start address to HL
 ADD HL,DE ; add address of string to the start point.
 DEC HL ; point to first character of slice.
 EX (SP),HL ; start address to stack, end point to HL (*)
 AND A ; prepare to subtract.
 SBC HL,DE ; subtract start point from end point.
 LD BC,$0000 ; default the length result to zero.
 JR C,L2AA8 ; forward to SL-OVER if start > end.

 INC HL ; increment the length for inclusive byte.

 AND A ; now test the running flag.
 JP M,L2A20 ; jump back to REPORT-3 if $FF.
 ; 'Subscript out of range'

 LD B,H ; transfer the length
 LD C,L ; to BC.

;; SL-OVER
L2AA8: POP DE ; restore start address from machine stack ***
 RES 6,(IY+$01) ; update FLAGS - signal string result for
 ; syntax.

;; SL-STORE
L2AAD: CALL L2530 ; routine SYNTAX-Z (UNSTACK-Z?)
 RET Z ; return if checking syntax.
 ; but continue to store the string in runtime.

; ------------------------------------
; other than from above, this routine is called from STK-VAR to stack
; a known string array element.
; ------------------------------------

;; STK-ST-0
L2AB1: XOR A ; clear to signal a sliced string or element.

; -------------------------
; this routine is called from chr$, scrn$ etc. to store a simple string result.
; --------------------------

;; STK-STO-$
L2AB2: RES 6,(IY+$01) ; update FLAGS - signal string result.
 ; and continue to store parameters of string.

; ---------------------------------------
; Pass five registers to calculator stack

; ---------------------------------------
; This subroutine puts five registers on the calculator stack.

;; STK-STORE
L2AB6: PUSH BC ; save two registers
 CALL L33A9 ; routine TEST-5-SP checks room and puts 5
 ; in BC.
 POP BC ; fetch the saved registers.
 LD HL,($5C65) ; make HL point to first empty location STKEND
 LD (HL),A ; place the 5 registers.
 INC HL ;
 LD (HL),E ;
 INC HL ;
 LD (HL),D ;
 INC HL ;
 LD (HL),C ;
 INC HL ;
 LD (HL),B ;
 INC HL ;
 LD ($5C65),HL ; update system variable STKEND.
 RET ; and return.

; ---
; Return result of evaluating next expression
; ---
; This clever routine is used to check and evaluate an integer expression
; which is returned in BC, setting A to $FF, if greater than a limit supplied
; in HL. It is used to check array subscripts, parameters of a string slice
; and the arguments of the DIM command. In the latter case, the limit check
; is not required and H is set to $FF. When checking optional string slice
; parameters, it is entered at the second entry point so as not to disturb
; the running flag A, which may be $00 or $FF from a previous invocation.

;; INT-EXP1
L2ACC: XOR A ; set result flag to zero.

; -> The entry point is here if A is used as a running flag.

;; INT-EXP2
L2ACD: PUSH DE ; preserve DE register throughout.
 PUSH HL ; save the supplied limit.
 PUSH AF ; save the flag.

 CALL L1C82 ; routine EXPT-1NUM evaluates expression
 ; at CH_ADD returning if numeric result,
 ; with value on calculator stack.

 POP AF ; pop the flag.
 CALL L2530 ; routine SYNTAX-Z
 JR Z,L2AEB ; forward to I-RESTORE if checking syntax so
 ; avoiding a comparison with supplied limit.

 PUSH AF ; save the flag.

 CALL L1E99 ; routine FIND-INT2 fetches value from
 ; calculator stack to BC producing an error
 ; if too high.

 POP DE ; pop the flag to D.
 LD A,B ; test value for zero and reject
 OR C ; as arrays and strings begin at 1.
 SCF ; set carry flag.
 JR Z,L2AE8 ; forward to I-CARRY if zero.

 POP HL ; restore the limit.
 PUSH HL ; and save.
 AND A ; prepare to subtract.
 SBC HL,BC ; subtract value from limit.

;; I-CARRY
L2AE8: LD A,D ; move flag to accumulator $00 or $FF.
 SBC A,$00 ; will set to $FF if carry set.

;; I-RESTORE
L2AEB: POP HL ; restore the limit.
 POP DE ; and DE register.
 RET ; return.

; -----------------------
; LD DE,(DE+1) Subroutine
; -----------------------
; This routine just loads the DE register with the contents of the two
; locations following the location addressed by DE.
; It is used to step along the 16-bit dimension sizes in array definitions.
; Note. Such code is made into subroutines to make programs easier to
; write and it would use less space to include the five instructions in-line.
; However, there are so many exchanges going on at the places this is invoked
; that to implement it in-line would make the code hard to follow.
; It probably had a zippier label though as the intention is to simplify the
; program.

;; DE,(DE+1)
L2AEE: EX DE,HL ;
 INC HL ;
 LD E,(HL) ;
 INC HL ;
 LD D,(HL) ;
 RET ;

; -------------------
; HL=HL*DE Subroutine
; -------------------
; This routine calls the mathematical routine to multiply HL by DE in runtime.
; It is called from STK-VAR and from DIM. In the latter case syntax is not
; being checked so the entry point could have been at the second CALL
; instruction to save a few clock-cycles.

;; GET-HL*DE
L2AF4: CALL L2530 ; routine SYNTAX-Z.
 RET Z ; return if checking syntax.

 CALL L30A9 ; routine HL-HL*DE.
 JP C,L1F15 ; jump back to REPORT-4 if over 65535.

 RET ; else return with 16-bit result in HL.

; -----------------
; THE 'LET' COMMAND
; -----------------
; Sinclair BASIC adheres to the ANSI-78 standard and a LET is required in
; assignments e.g. LET a = 1 : LET h$ = "hat".
;
; Long names may contain spaces but not colour controls (when assigned).
; a substring can appear to the left of the equals sign.

; An earlier mathematician Lewis Carroll may have been pleased that
; 10 LET Babies cannot manage crocodiles = Babies are illogical AND

; Nobody is despised who can manage a crocodile AND Illogical persons
; are despised
; does not give the 'Nonsense..' error if the three variables exist.
; I digress.

;; LET
L2AFF: LD HL,($5C4D) ; fetch system variable DEST to HL.
 BIT 1,(IY+$37) ; test FLAGX - handling a new variable ?
 JR Z,L2B66 ; forward to L-EXISTS if not.

; continue for a new variable. DEST points to start in BASIC line.
; from the CLASS routines.

 LD BC,$0005 ; assume numeric and assign an initial 5 bytes

;; L-EACH-CH
L2B0B: INC BC ; increase byte count for each relevant
 ; character

;; L-NO-SP
L2B0C: INC HL ; increase pointer.
 LD A,(HL) ; fetch character.
 CP $20 ; is it a space ?
 JR Z,L2B0C ; back to L-NO-SP is so.

 JR NC,L2B1F ; forward to L-TEST-CH if higher.

 CP $10 ; is it $00 - $0F ?
 JR C,L2B29 ; forward to L-SPACES if so.

 CP $16 ; is it $16 - $1F ?
 JR NC,L2B29 ; forward to L-SPACES if so.

; it was $10 - $15 so step over a colour code.

 INC HL ; increase pointer.
 JR L2B0C ; loop back to L-NO-SP.

; ---

; the branch was to here if higher than space.

;; L-TEST-CH
L2B1F: CALL L2C88 ; routine ALPHANUM sets carry if alphanumeric
 JR C,L2B0B ; loop back to L-EACH-CH for more if so.

 CP $24 ; is it '$' ?
 JP Z,L2BC0 ; jump forward if so, to L-NEW$
 ; with a new string.

;; L-SPACES
L2B29: LD A,C ; save length lo in A.
 LD HL,($5C59) ; fetch E_LINE to HL.
 DEC HL ; point to location before, the variables
 ; end-marker.
 CALL L1655 ; routine MAKE-ROOM creates BC spaces
 ; for name and numeric value.
 INC HL ; advance to first new location.
 INC HL ; then to second.
 EX DE,HL ; set DE to second location.
 PUSH DE ; save this pointer.
 LD HL,($5C4D) ; reload HL with DEST.
 DEC DE ; point to first.
 SUB $06 ; subtract six from length_lo.

 LD B,A ; save count in B.
 JR Z,L2B4F ; forward to L-SINGLE if it was just
 ; one character.

; HL points to start of variable name after 'LET' in BASIC line.

;; L-CHAR
L2B3E: INC HL ; increase pointer.
 LD A,(HL) ; pick up character.
 CP $21 ; is it space or higher ?
 JR C,L2B3E ; back to L-CHAR with space and less.

 OR $20 ; make variable lower-case.
 INC DE ; increase destination pointer.
 LD (DE),A ; and load to edit line.
 DJNZ L2B3E ; loop back to L-CHAR until B is zero.

 OR $80 ; invert the last character.
 LD (DE),A ; and overwrite that in edit line.

; now consider first character which has bit 6 set

 LD A,$C0 ; set A 11000000 is xor mask for a long name.
 ; %101 is xor/or result

; single character numerics rejoin here with %00000000 in mask.
; %011 will be xor/or result

;; L-SINGLE
L2B4F: LD HL,($5C4D) ; fetch DEST - HL addresses first character.
 XOR (HL) ; apply variable type indicator mask (above).
 OR $20 ; make lowercase - set bit 5.
 POP HL ; restore pointer to 2nd character.
 CALL L2BEA ; routine L-FIRST puts A in first character.
 ; and returns with HL holding
 ; new E_LINE-1 the $80 vars end-marker.

;; L-NUMERIC
L2B59: PUSH HL ; save the pointer.

; the value of variable is deleted but remains after calculator stack.

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete ; delete variable value
 DEFB $38 ;;end-calc

; DE (STKEND) points to start of value.

 POP HL ; restore the pointer.
 LD BC,$0005 ; start of number is five bytes before.
 AND A ; prepare for true subtraction.
 SBC HL,BC ; HL points to start of value.
 JR L2BA6 ; forward to L-ENTER ==>

; ---

; the jump was to here if the variable already existed.

;; L-EXISTS
L2B66: BIT 6,(IY+$01) ; test FLAGS - numeric or string result ?
 JR Z,L2B72 ; skip forward to L-DELETE$ -*->
 ; if string result.

; A numeric variable could be simple or an array element.
; They are treated the same and the old value is overwritten.

 LD DE,$0006 ; six bytes forward points to loc past value.
 ADD HL,DE ; add to start of number.
 JR L2B59 ; back to L-NUMERIC to overwrite value.

; ---

; -*-> the branch was here if a string existed.

;; L-DELETE$
L2B72: LD HL,($5C4D) ; fetch DEST to HL.
 ; (still set from first instruction)
 LD BC,($5C72) ; fetch STRLEN to BC.
 BIT 0,(IY+$37) ; test FLAGX - handling a complete simple
 ; string ?
 JR NZ,L2BAF ; forward to L-ADD$ if so.

; must be a string array or a slice in workspace.
; Note. LET a$(3 TO 6) = h$ will assign "hat " if h$ = "hat"
; and "hats" if h$ = "hatstand".
;
; This is known as Procrustian lengthening and shortening after a
; character Procrustes in Greek legend who made travellers sleep in his bed,
; cutting off their feet or stretching them so they fitted the bed perfectly.
; The bloke was hatstand and slain by Theseus.

 LD A,B ; test if length
 OR C ; is zero and
 RET Z ; return if so.

 PUSH HL ; save pointer to start.

 RST 30H ; BC-SPACES creates room.
 PUSH DE ; save pointer to first new location.
 PUSH BC ; and length (*)
 LD D,H ; set DE to point to last location.
 LD E,L ;
 INC HL ; set HL to next location.
 LD (HL),$20 ; place a space there.
 LDDR ; copy bytes filling with spaces.

 PUSH HL ; save pointer to start.
 CALL L2BF1 ; routine STK-FETCH start to DE,
 ; length to BC.
 POP HL ; restore the pointer.
 EX (SP),HL ; (*) length to HL, pointer to stack.
 AND A ; prepare for true subtraction.
 SBC HL,BC ; subtract old length from new.
 ADD HL,BC ; and add back.
 JR NC,L2B9B ; forward if it fits to L-LENGTH.

 LD B,H ; otherwise set
 LD C,L ; length to old length.
 ; "hatstand" becomes "hats"

;; L-LENGTH
L2B9B: EX (SP),HL ; (*) length to stack, pointer to HL.
 EX DE,HL ; pointer to DE, start of string to HL.
 LD A,B ; is the length zero ?
 OR C ;
 JR Z,L2BA3 ; forward to L-IN-W/S if so
 ; leaving prepared spaces.

 LDIR ; else copy bytes overwriting some spaces.

;; L-IN-W/S
L2BA3: POP BC ; pop the new length. (*)
 POP DE ; pop pointer to new area.
 POP HL ; pop pointer to variable in assignment.
 ; and continue copying from workspace
 ; to variables area.

; ==> branch here from L-NUMERIC

;; L-ENTER
L2BA6: EX DE,HL ; exchange pointers HL=STKEND DE=end of vars.
 LD A,B ; test the length
 OR C ; and make a
 RET Z ; return if zero (strings only).

 PUSH DE ; save start of destination.
 LDIR ; copy bytes.
 POP HL ; address the start.
 RET ; and return.

; ---

; the branch was here from L-DELETE$ if an existing simple string.
; register HL addresses start of string in variables area.

;; L-ADD$
L2BAF: DEC HL ; point to high byte of length.
 DEC HL ; to low byte.
 DEC HL ; to letter.
 LD A,(HL) ; fetch masked letter to A.
 PUSH HL ; save the pointer on stack.
 PUSH BC ; save new length.
 CALL L2BC6 ; routine L-STRING adds new string at end
 ; of variables area.
 ; if no room we still have old one.
 POP BC ; restore length.
 POP HL ; restore start.
 INC BC ; increase
 INC BC ; length by three
 INC BC ; to include character and length bytes.
 JP L19E8 ; jump to indirect exit via RECLAIM-2
 ; deleting old version and adjusting pointers.

; ---

; the jump was here with a new string variable.

;; L-NEW$
L2BC0: LD A,$DF ; indicator mask %11011111 for
 ; %010xxxxx will be result
 LD HL,($5C4D) ; address DEST first character.
 AND (HL) ; combine mask with character.

;; L-STRING
L2BC6: PUSH AF ; save first character and mask.
 CALL L2BF1 ; routine STK-FETCH fetches parameters of
 ; the string.
 EX DE,HL ; transfer start to HL.
 ADD HL,BC ; add to length.
 PUSH BC ; save the length.
 DEC HL ; point to end of string.

 LD ($5C4D),HL ; save pointer in DEST.
 ; (updated by POINTERS if in workspace)
 INC BC ; extra byte for letter.
 INC BC ; two bytes
 INC BC ; for the length of string.
 LD HL,($5C59) ; address E_LINE.
 DEC HL ; now end of VARS area.
 CALL L1655 ; routine MAKE-ROOM makes room for string.
 ; updating pointers including DEST.
 LD HL,($5C4D) ; pick up pointer to end of string from DEST.
 POP BC ; restore length from stack.
 PUSH BC ; and save again on stack.
 INC BC ; add a byte.
 LDDR ; copy bytes from end to start.
 EX DE,HL ; HL addresses length low
 INC HL ; increase to address high byte
 POP BC ; restore length to BC
 LD (HL),B ; insert high byte
 DEC HL ; address low byte location
 LD (HL),C ; insert that byte
 POP AF ; restore character and mask

;; L-FIRST
L2BEA: DEC HL ; address variable name
 LD (HL),A ; and insert character.
 LD HL,($5C59) ; load HL with E_LINE.
 DEC HL ; now end of VARS area.
 RET ; return

; ------------------------------------
; Get last value from calculator stack
; ------------------------------------
;
;

;; STK-FETCH
L2BF1: LD HL,($5C65) ; STKEND
 DEC HL ;
 LD B,(HL) ;
 DEC HL ;
 LD C,(HL) ;
 DEC HL ;
 LD D,(HL) ;
 DEC HL ;
 LD E,(HL) ;
 DEC HL ;
 LD A,(HL) ;
 LD ($5C65),HL ; STKEND
 RET ;

; ------------------
; Handle DIM command
; ------------------
; e.g. DIM a(2,3,4,7): DIM a$(32) : DIM b$(20,2,768) : DIM c$(20000)
; the only limit to dimensions is memory so, for example,
; DIM a(2,2,2,2,2,2,2,2,2,2,2,2,2) is possible and creates a multi-
; dimensional array of zeros. String arrays are initialized to spaces.
; It is not possible to erase an array, but it can be re-dimensioned to
; a minimal size of 1, after use, to free up memory.

;; DIM
L2C02: CALL L28B2 ; routine LOOK-VARS

;; D-RPORT-C

L2C05: JP NZ,L1C8A ; jump to REPORT-C if a long-name variable.
 ; DIM lottery numbers(49) doesn't work.

 CALL L2530 ; routine SYNTAX-Z
 JR NZ,L2C15 ; forward to D-RUN in runtime.

 RES 6,C ; signal 'numeric' array even if string as
 ; this simplifies the syntax checking.

 CALL L2996 ; routine STK-VAR checks syntax.
 CALL L1BEE ; routine CHECK-END performs early exit ->

; the branch was here in runtime.

;; D-RUN
L2C15: JR C,L2C1F ; skip to D-LETTER if variable did not exist.
 ; else reclaim the old one.

 PUSH BC ; save type in C.
 CALL L19B8 ; routine NEXT-ONE find following variable
 ; or position of $80 end-marker.
 CALL L19E8 ; routine RECLAIM-2 reclaims the
 ; space between.
 POP BC ; pop the type.

;; D-LETTER
L2C1F: SET 7,C ; signal array.
 LD B,$00 ; initialize dimensions to zero and
 PUSH BC ; save with the type.
 LD HL,$0001 ; make elements one character presuming string
 BIT 6,C ; is it a string ?
 JR NZ,L2C2D ; forward to D-SIZE if so.

 LD L,$05 ; make elements 5 bytes as is numeric.

;; D-SIZE
L2C2D: EX DE,HL ; save the element size in DE.

; now enter a loop to parse each of the integers in the list.

;; D-NO-LOOP
L2C2E: RST 20H ; NEXT-CHAR
 LD H,$FF ; disable limit check by setting HL high
 CALL L2ACC ; routine INT-EXP1
 JP C,L2A20 ; to REPORT-3 if > 65280 and then some
 ; 'Subscript out of range'

 POP HL ; pop dimension counter, array type
 PUSH BC ; save dimension size ***
 INC H ; increment the dimension counter
 PUSH HL ; save the dimension counter
 LD H,B ; transfer size
 LD L,C ; to HL
 CALL L2AF4 ; routine GET-HL*DE multiplies dimension by
 ; running total of size required initially
 ; 1 or 5.
 EX DE,HL ; save running total in DE

 RST 18H ; GET-CHAR
 CP $2C ; is it ',' ?
 JR Z,L2C2E ; loop back to D-NO-LOOP until all dimensions
 ; have been considered

; when loop complete continue.

 CP $29 ; is it ')' ?
 JR NZ,L2C05 ; to D-RPORT-C with anything else
 ; 'Nonsense in BASIC'

 RST 20H ; NEXT-CHAR advances to next statement/CR

 POP BC ; pop dimension counter/type
 LD A,C ; type to A

; now calculate space required for array variable

 LD L,B ; dimensions to L since these require 16 bits
 ; then this value will be doubled
 LD H,$00 ; set high byte to zero

; another four bytes are required for letter(1), total length(2), number of
; dimensions(1) but since we have yet to double allow for two

 INC HL ; increment
 INC HL ; increment

 ADD HL,HL ; now double giving 4 + dimensions * 2

 ADD HL,DE ; add to space required for array contents

 JP C,L1F15 ; to REPORT-4 if > 65535
 ; 'Out of memory'

 PUSH DE ; save data space
 PUSH BC ; save dimensions/type
 PUSH HL ; save total space
 LD B,H ; total space
 LD C,L ; to BC
 LD HL,($5C59) ; address E_LINE - first location after
 ; variables area
 DEC HL ; point to location before - the $80 end-marker
 CALL L1655 ; routine MAKE-ROOM creates the space if
 ; memory is available.

 INC HL ; point to first new location and
 LD (HL),A ; store letter/type

 POP BC ; pop total space
 DEC BC ; exclude name
 DEC BC ; exclude the 16-bit
 DEC BC ; counter itself
 INC HL ; point to next location the 16-bit counter
 LD (HL),C ; insert low byte
 INC HL ; address next
 LD (HL),B ; insert high byte

 POP BC ; pop the number of dimensions.
 LD A,B ; dimensions to A
 INC HL ; address next
 LD (HL),A ; and insert "No. of dims"

 LD H,D ; transfer DE space + 1 from make-room
 LD L,E ; to HL
 DEC DE ; set DE to next location down.
 LD (HL),$00 ; presume numeric and insert a zero
 BIT 6,C ; test bit 6 of C. numeric or string ?
 JR Z,L2C7C ; skip to DIM-CLEAR if numeric

 LD (HL),$20 ; place a space character in HL

;; DIM-CLEAR
L2C7C: POP BC ; pop the data length

 LDDR ; LDDR sets to zeros or spaces

; The number of dimensions is still in A.
; A loop is now entered to insert the size of each dimension that was pushed
; during the D-NO-LOOP working downwards from position before start of data.

;; DIM-SIZES
L2C7F: POP BC ; pop a dimension size ***
 LD (HL),B ; insert high byte at position
 DEC HL ; next location down
 LD (HL),C ; insert low byte
 DEC HL ; next location down
 DEC A ; decrement dimension counter
 JR NZ,L2C7F ; back to DIM-SIZES until all done.

 RET ; return.

; -----------------------------
; Check whether digit or letter
; -----------------------------
; This routine checks that the character in A is alphanumeric
; returning with carry set if so.

;; ALPHANUM
L2C88: CALL L2D1B ; routine NUMERIC will reset carry if so.
 CCF ; Complement Carry Flag
 RET C ; Return if numeric else continue into
 ; next routine.

; This routine checks that the character in A is alphabetic

;; ALPHA
L2C8D: CP $41 ; less than 'A' ?
 CCF ; Complement Carry Flag
 RET NC ; return if so

 CP $5B ; less than 'Z'+1 ?
 RET C ; is within first range

 CP $61 ; less than 'a' ?
 CCF ; Complement Carry Flag
 RET NC ; return if so.

 CP $7B ; less than 'z'+1 ?
 RET ; carry set if within a-z.

; -------------------------
; Decimal to floating point
; -------------------------
; This routine finds the floating point number represented by an expression
; beginning with BIN, '.' or a digit.
; Note that BIN need not have any '0's or '1's after it.
; BIN is really just a notational symbol and not a function.

;; DEC-TO-FP
L2C9B: CP $C4 ; 'BIN' token ?
 JR NZ,L2CB8 ; to NOT-BIN if not

 LD DE,$0000 ; initialize 16 bit buffer register.

;; BIN-DIGIT
L2CA2: RST 20H ; NEXT-CHAR
 SUB $31 ; '1'
 ADC A,$00 ; will be zero if '1' or '0'
 ; carry will be set if was '0'
 JR NZ,L2CB3 ; forward to BIN-END if result not zero

 EX DE,HL ; buffer to HL
 CCF ; Carry now set if originally '1'
 ADC HL,HL ; shift the carry into HL
 JP C,L31AD ; to REPORT-6 if overflow - too many digits
 ; after first '1'. There can be an unlimited
 ; number of leading zeros.
 ; 'Number too big' - raise an error

 EX DE,HL ; save the buffer
 JR L2CA2 ; back to BIN-DIGIT for more digits

; ---

;; BIN-END
L2CB3: LD B,D ; transfer 16 bit buffer
 LD C,E ; to BC register pair.
 JP L2D2B ; JUMP to STACK-BC to put on calculator stack

; ---

; continue here with .1, 42, 3.14, 5., 2.3 E -4

;; NOT-BIN
L2CB8: CP $2E ; '.' - leading decimal point ?
 JR Z,L2CCB ; skip to DECIMAL if so.

 CALL L2D3B ; routine INT-TO-FP to evaluate all digits
 ; This number 'x' is placed on stack.
 CP $2E ; '.' - mid decimal point ?

 JR NZ,L2CEB ; to E-FORMAT if not to consider that format

 RST 20H ; NEXT-CHAR
 CALL L2D1B ; routine NUMERIC returns carry reset if 0-9

 JR C,L2CEB ; to E-FORMAT if not a digit e.g. '1.'

 JR L2CD5 ; to DEC-STO-1 to add the decimal part to 'x'

; ---

; a leading decimal point has been found in a number.

;; DECIMAL
L2CCB: RST 20H ; NEXT-CHAR
 CALL L2D1B ; routine NUMERIC will reset carry if digit

;; DEC-RPT-C
L2CCF: JP C,L1C8A ; to REPORT-C if just a '.'
 ; raise 'Nonsense in BASIC'

; since there is no leading zero put one on the calculator stack.

 RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero ; 0.

 DEFB $38 ;;end-calc

; If rejoining from earlier there will be a value 'x' on stack.
; If continuing from above the value zero.
; Now store 1 in mem-0.
; Note. At each pass of the digit loop this will be divided by ten.

;; DEC-STO-1
L2CD5: RST 28H ;; FP-CALC
 DEFB $A1 ;;stk-one ;x or 0,1.
 DEFB $C0 ;;st-mem-0 ;x or 0,1.
 DEFB $02 ;;delete ;x or 0.
 DEFB $38 ;;end-calc

;; NXT-DGT-1
L2CDA: RST 18H ; GET-CHAR
 CALL L2D22 ; routine STK-DIGIT stacks single digit 'd'
 JR C,L2CEB ; exit to E-FORMAT when digits exhausted >

 RST 28H ;; FP-CALC ;x or 0,d. first pass.
 DEFB $E0 ;;get-mem-0 ;x or 0,d,1.
 DEFB $A4 ;;stk-ten ;x or 0,d,1,10.
 DEFB $05 ;;division ;x or 0,d,1/10.
 DEFB $C0 ;;st-mem-0 ;x or 0,d,1/10.
 DEFB $04 ;;multiply ;x or 0,d/10.
 DEFB $0F ;;addition ;x or 0 + d/10.
 DEFB $38 ;;end-calc last value.

 RST 20H ; NEXT-CHAR moves to next character
 JR L2CDA ; back to NXT-DGT-1

; ---

; although only the first pass is shown it can be seen that at each pass
; the new less significant digit is multiplied by an increasingly smaller
; factor (1/100, 1/1000, 1/10000 ...) before being added to the previous
; last value to form a new last value.

; Finally see if an exponent has been input.

;; E-FORMAT
L2CEB: CP $45 ; is character 'E' ?
 JR Z,L2CF2 ; to SIGN-FLAG if so

 CP $65 ; 'e' is acceptable as well.
 RET NZ ; return as no exponent.

;; SIGN-FLAG
L2CF2: LD B,$FF ; initialize temporary sign byte to $FF

 RST 20H ; NEXT-CHAR
 CP $2B ; is character '+' ?
 JR Z,L2CFE ; to SIGN-DONE

 CP $2D ; is character '-' ?
 JR NZ,L2CFF ; to ST-E-PART as no sign

 INC B ; set sign to zero

; now consider digits of exponent.
; Note. incidentally this is the only occasion in Spectrum BASIC when an
; expression may not be used when a number is expected.

;; SIGN-DONE
L2CFE: RST 20H ; NEXT-CHAR

;; ST-E-PART
L2CFF: CALL L2D1B ; routine NUMERIC
 JR C,L2CCF ; to DEC-RPT-C if not
 ; raise 'Nonsense in BASIC'.

 PUSH BC ; save sign (in B)
 CALL L2D3B ; routine INT-TO-FP places exponent on stack
 CALL L2DD5 ; routine FP-TO-A transfers it to A
 POP BC ; restore sign
 JP C,L31AD ; to REPORT-6 if overflow (over 255)
 ; raise 'Number too big'.

 AND A ; set flags
 JP M,L31AD ; to REPORT-6 if over '127'.
 ; raise 'Number too big'.
 ; 127 is still way too high and it is
 ; impossible to enter an exponent greater
 ; than 39 from the keyboard. The error gets
 ; raised later in E-TO-FP so two different
 ; error messages depending how high A is.

 INC B ; $FF to $00 or $00 to $01 - expendable now.
 JR Z,L2D18 ; forward to E-FP-JUMP if exponent positive

 NEG ; Negate the exponent.

;; E-FP-JUMP
L2D18: JP L2D4F ; JUMP forward to E-TO-FP to assign to
 ; last value x on stack x * 10 to power A
 ; a relative jump would have done.

; ---------------------
; Check for valid digit
; ---------------------
; This routine checks that the ASCII character in A is numeric
; returning with carry reset if so.

;; NUMERIC
L2D1B: CP $30 ; '0'
 RET C ; return if less than zero character.

 CP $3A ; The upper test is '9'
 CCF ; Complement Carry Flag
 RET ; Return - carry clear if character '0' - '9'

; -----------
; Stack Digit
; -----------
; This subroutine is called from INT-TO-FP and DEC-TO-FP to stack a digit
; on the calculator stack.

;; STK-DIGIT
L2D22: CALL L2D1B ; routine NUMERIC
 RET C ; return if not numeric character

 SUB $30 ; convert from ASCII to digit

; -----------------
; Stack accumulator
; -----------------

;
;

;; STACK-A
L2D28: LD C,A ; transfer to C
 LD B,$00 ; and make B zero

; ----------------------
; Stack BC register pair
; ----------------------
;

;; STACK-BC
L2D2B: LD IY,$5C3A ; re-initialize ERR_NR

 XOR A ; clear to signal small integer
 LD E,A ; place in E for sign
 LD D,C ; LSB to D
 LD C,B ; MSB to C
 LD B,A ; last byte not used
 CALL L2AB6 ; routine STK-STORE

 RST 28H ;; FP-CALC
 DEFB $38 ;;end-calc make HL = STKEND-5

 AND A ; clear carry
 RET ; before returning

; -------------------------
; Integer to floating point
; -------------------------
; This routine places one or more digits found in a BASIC line
; on the calculator stack multiplying the previous value by ten each time
; before adding in the new digit to form a last value on calculator stack.

;; INT-TO-FP
L2D3B: PUSH AF ; save first character

 RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero ; v=0. initial value
 DEFB $38 ;;end-calc

 POP AF ; fetch first character back.

;; NXT-DGT-2
L2D40: CALL L2D22 ; routine STK-DIGIT puts 0-9 on stack
 RET C ; will return when character is not numeric >

 RST 28H ;; FP-CALC ; v, d.
 DEFB $01 ;;exchange ; d, v.
 DEFB $A4 ;;stk-ten ; d, v, 10.
 DEFB $04 ;;multiply ; d, v*10.
 DEFB $0F ;;addition ; d + v*10 = newvalue
 DEFB $38 ;;end-calc ; v.

 CALL L0074 ; routine CH-ADD+1 get next character
 JR L2D40 ; back to NXT-DGT-2 to process as a digit

;*********************************
;** Part 9. ARITHMETIC ROUTINES **
;*********************************

; --------------------------

; E-format to floating point
; --------------------------
; This subroutine is used by the PRINT-FP routine and the decimal to FP
; routines to stack a number expressed in exponent format.
; Note. Though not used by the ROM as such, it has also been set up as
; a unary calculator literal but this will not work as the accumulator
; is not available from within the calculator.

; on entry there is a value x on the calculator stack and an exponent of ten
; in A. The required value is x + 10 ^ A

;; e-to-fp
;; E-TO-FP
L2D4F: RLCA ; this will set the x.
 RRCA ; carry if bit 7 is set

 JR NC,L2D55 ; to E-SAVE if positive.

 CPL ; make negative positive
 INC A ; without altering carry.

;; E-SAVE
L2D55: PUSH AF ; save positive exp and sign in carry

 LD HL,$5C92 ; address MEM-0

 CALL L350B ; routine FP-0/1
 ; places an integer zero, if no carry,
 ; else a one in mem-0 as a sign flag

 RST 28H ;; FP-CALC
 DEFB $A4 ;;stk-ten x, 10.
 DEFB $38 ;;end-calc

 POP AF ; pop the exponent.

; now enter a loop

;; E-LOOP
L2D60: SRL A ; 0>76543210>C

 JR NC,L2D71 ; forward to E-TST-END if no bit

 PUSH AF ; save shifted exponent.

 RST 28H ;; FP-CALC
 DEFB $C1 ;;st-mem-1 x, 10.
 DEFB $E0 ;;get-mem-0 x, 10, (0/1).
 DEFB $00 ;;jump-true

 DEFB $04 ;;to L2D6D, E-DIVSN

 DEFB $04 ;;multiply x*10.
 DEFB $33 ;;jump

 DEFB $02 ;;to L2D6E, E-FETCH

;; E-DIVSN
L2D6D: DEFB $05 ;;division x/10.

;; E-FETCH
L2D6E: DEFB $E1 ;;get-mem-1 x/10 or x*10, 10.
 DEFB $38 ;;end-calc new x, 10.

 POP AF ; restore shifted exponent

; the loop branched to here with no carry

;; E-TST-END
L2D71: JR Z,L2D7B ; forward to E-END if A emptied of bits

 PUSH AF ; re-save shifted exponent

 RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate new x, 10, 10.
 DEFB $04 ;;multiply new x, 100.
 DEFB $38 ;;end-calc

 POP AF ; restore shifted exponent
 JR L2D60 ; back to E-LOOP until all bits done.

; ---

; although only the first pass is shown it can be seen that for each set bit
; representing a power of two, x is multiplied or divided by the
; corresponding power of ten.

;; E-END
L2D7B: RST 28H ;; FP-CALC final x, factor.
 DEFB $02 ;;delete final x.
 DEFB $38 ;;end-calc x.

 RET ; return

; -------------
; Fetch integer
; -------------
; This routine is called by the mathematical routines - FP-TO-BC, PRINT-FP,
; mult, re-stack and negate to fetch an integer from address HL.
; HL points to the stack or a location in MEM and no deletion occurs.
; If the number is negative then a similar process to that used in INT-STORE
; is used to restore the twos complement number to normal in DE and a sign
; in C.

;; INT-FETCH
L2D7F: INC HL ; skip zero indicator.
 LD C,(HL) ; fetch sign to C
 INC HL ; address low byte
 LD A,(HL) ; fetch to A
 XOR C ; two's complement
 SUB C ;
 LD E,A ; place in E
 INC HL ; address high byte
 LD A,(HL) ; fetch to A
 ADC A,C ; two's complement
 XOR C ;
 LD D,A ; place in D
 RET ; return

; ------------------------
; Store a positive integer
; ------------------------
; This entry point is not used in this ROM but would
; store any integer as positive.

;; p-int-sto
L2D8C: LD C,$00 ; make sign byte positive and continue

; -------------
; Store integer
; -------------
; this routine stores an integer in DE at address HL.
; It is called from mult, truncate, negate and sgn.
; The sign byte $00 +ve or $FF -ve is in C.
; If negative, the number is stored in 2's complement form so that it is
; ready to be added.

;; INT-STORE
L2D8E: PUSH HL ; preserve HL

 LD (HL),$00 ; first byte zero shows integer not exponent
 INC HL ;
 LD (HL),C ; then store the sign byte
 INC HL ;
 ; e.g. +1 -1
 LD A,E ; fetch low byte 00000001 00000001
 XOR C ; xor sign 00000000 or 11111111
 ; gives 00000001 or 11111110
 SUB C ; sub sign 00000000 or 11111111
 ; gives 00000001>0 or 11111111>C
 LD (HL),A ; store 2's complement.
 INC HL ;
 LD A,D ; high byte 00000000 00000000
 ADC A,C ; sign 00000000<0 11111111<C
 ; gives 00000000 or 00000000
 XOR C ; xor sign 00000000 11111111
 LD (HL),A ; store 2's complement.
 INC HL ;
 LD (HL),$00 ; last byte always zero for integers.
 ; is not used and need not be looked at when
 ; testing for zero but comes into play should
 ; an integer be converted to fp.
 POP HL ; restore HL
 RET ; return.

; -----------------------------
; Floating point to BC register
; -----------------------------
; This routine gets a floating point number e.g. 127.4 from the calculator
; stack to the BC register.

;; FP-TO-BC
L2DA2: RST 28H ;; FP-CALC set HL to
 DEFB $38 ;;end-calc point to last value.

 LD A,(HL) ; get first of 5 bytes
 AND A ; and test
 JR Z,L2DAD ; forward to FP-DELETE if an integer

; The value is first rounded up and then converted to integer.

 RST 28H ;; FP-CALC x.
 DEFB $A2 ;;stk-half x. 1/2.
 DEFB $0F ;;addition x + 1/2.
 DEFB $27 ;;int int(x + .5)
 DEFB $38 ;;end-calc

; now delete but leave HL pointing at integer

;; FP-DELETE
L2DAD: RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 PUSH HL ; save pointer.
 PUSH DE ; and STKEND.
 EX DE,HL ; make HL point to exponent/zero indicator
 LD B,(HL) ; indicator to B
 CALL L2D7F ; routine INT-FETCH
 ; gets int in DE sign byte to C
 ; but meaningless values if a large integer

 XOR A ; clear A
 SUB B ; subtract indicator byte setting carry
 ; if not a small integer.

 BIT 7,C ; test a bit of the sign byte setting zero
 ; if positive.

 LD B,D ; transfer int
 LD C,E ; to BC
 LD A,E ; low byte to A as a useful return value.

 POP DE ; pop STKEND
 POP HL ; and pointer to last value
 RET ; return
 ; if carry is set then the number was too big.

; ------------
; LOG(2^A)
; ------------
; This routine is used when printing floating point numbers to calculate
; the number of digits before the decimal point.

; first convert a one-byte signed integer to its five byte form.

;; LOG(2^A)
L2DC1: LD D,A ; store a copy of A in D.
 RLA ; test sign bit of A.
 SBC A,A ; now $FF if negative or $00
 LD E,A ; sign byte to E.
 LD C,A ; and to C
 XOR A ; clear A
 LD B,A ; and B.
 CALL L2AB6 ; routine STK-STORE stacks number AEDCB

; so 00 00 XX 00 00 (positive) or 00 FF XX FF 00 (negative).
; i.e. integer indicator, sign byte, low, high, unused.

; now multiply exponent by log to the base 10 of two.

 RST 28H ;; FP-CALC

 DEFB $34 ;;stk-data .30103 (log 2)
 DEFB $EF ;;Exponent: $7F, Bytes: 4
 DEFB $1A,$20,$9A,$85 ;;
 DEFB $04 ;;multiply

 DEFB $27 ;;int

 DEFB $38 ;;end-calc

; -------------------
; Floating point to A
; -------------------
; this routine collects a floating point number from the stack into the
; accumulator returning carry set if not in range 0 - 255.
; Not all the calling routines raise an error with overflow so no attempt
; is made to produce an error report here.

;; FP-TO-A
L2DD5: CALL L2DA2 ; routine FP-TO-BC returns with C in A also.
 RET C ; return with carry set if > 65535, overflow

 PUSH AF ; save the value and flags
 DEC B ; and test that
 INC B ; the high byte is zero.
 JR Z,L2DE1 ; forward FP-A-END if zero

; else there has been 8-bit overflow

 POP AF ; retrieve the value
 SCF ; set carry flag to show overflow
 RET ; and return.

; ---

;; FP-A-END
L2DE1: POP AF ; restore value and success flag and
 RET ; return.

; -----------------------------
; Print a floating point number
; -----------------------------
; Not a trivial task.
; Begin by considering whether to print a leading sign for negative numbers.

;; PRINT-FP
L2DE3: RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $36 ;;less-0
 DEFB $00 ;;jump-true

 DEFB $0B ;;to L2DF2, PF-NEGTVE

 DEFB $31 ;;duplicate
 DEFB $37 ;;greater-0
 DEFB $00 ;;jump-true

 DEFB $0D ;;to L2DF8, PF-POSTVE

; must be zero itself

 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

 LD A,$30 ; prepare the character '0'

 RST 10H ; PRINT-A
 RET ; return. ->
; ---

;; PF-NEGTVE
L2DF2: DEFB $2A ;;abs
 DEFB $38 ;;end-calc

 LD A,$2D ; the character '-'

 RST 10H ; PRINT-A

; and continue to print the now positive number.

 RST 28H ;; FP-CALC

;; PF-POSTVE
L2DF8: DEFB $A0 ;;stk-zero x,0. begin by
 DEFB $C3 ;;st-mem-3 x,0. clearing a temporary
 DEFB $C4 ;;st-mem-4 x,0. output buffer to
 DEFB $C5 ;;st-mem-5 x,0. fifteen zeros.
 DEFB $02 ;;delete x.
 DEFB $38 ;;end-calc x.

 EXX ; in case called from 'str$' then save the
 PUSH HL ; pointer to whatever comes after
 EXX ; str$ as H'L' will be used.

; now enter a loop?

;; PF-LOOP
L2E01: RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate x,x.
 DEFB $27 ;;int x,int x.
 DEFB $C2 ;;st-mem-2 x,int x.
 DEFB $03 ;;subtract x-int x. fractional part.
 DEFB $E2 ;;get-mem-2 x-int x, int x.
 DEFB $01 ;;exchange int x, x-int x.
 DEFB $C2 ;;st-mem-2 int x, x-int x.
 DEFB $02 ;;delete int x.
 DEFB $38 ;;end-calc int x.
 ;
 ; mem-2 holds the fractional part.

; HL points to last value int x

 LD A,(HL) ; fetch exponent of int x.
 AND A ; test
 JR NZ,L2E56 ; forward to PF-LARGE if a large integer
 ; > 65535

; continue with small positive integer components in range 0 - 65535
; if original number was say .999 then this integer component is zero.

 CALL L2D7F ; routine INT-FETCH gets x in DE
 ; (but x is not deleted)

 LD B,$10 ; set B, bit counter, to 16d

 LD A,D ; test if
 AND A ; high byte is zero
 JR NZ,L2E1E ; forward to PF-SAVE if 16-bit integer.

; and continue with integer in range 0 - 255.

 OR E ; test the low byte for zero
 ; i.e. originally just point something or other.
 JR Z,L2E24 ; forward if so to PF-SMALL

;

 LD D,E ; transfer E to D
 LD B,$08 ; and reduce the bit counter to 8.

;; PF-SAVE
L2E1E: PUSH DE ; save the part before decimal point.
 EXX ;
 POP DE ; and pop in into D'E'
 EXX ;
 JR L2E7B ; forward to PF-BITS

; ---------------------

; the branch was here when 'int x' was found to be zero as in say 0.5.
; The zero has been fetched from the calculator stack but not deleted and
; this should occur now. This omission leaves the stack unbalanced and while
; that causes no problems with a simple PRINT statement, it will if str$ is
; being used in an expression e.g. "2" + STR$ 0.5 gives the result "0.5"
; instead of the expected result "20.5".
; credit Tony Stratton, 1982.
; A DEFB 02 delete is required immediately on using the calculator.

;; PF-SMALL
L2E24: RST 28H ;; FP-CALC int x = 0.
L2E25: DEFB $E2 ;;get-mem-2 int x = 0, x-int x.
 DEFB $38 ;;end-calc

 LD A,(HL) ; fetch exponent of positive fractional number
 SUB $7E ; subtract

 CALL L2DC1 ; routine LOG(2^A) calculates leading digits.

 LD D,A ; transfer count to D
 LD A,($5CAC) ; fetch total MEM-5-1
 SUB D ;
 LD ($5CAC),A ; MEM-5-1
 LD A,D ;
 CALL L2D4F ; routine E-TO-FP

 RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $27 ;;int
 DEFB $C1 ;;st-mem-1
 DEFB $03 ;;subtract
 DEFB $E1 ;;get-mem-1
 DEFB $38 ;;end-calc

 CALL L2DD5 ; routine FP-TO-A

 PUSH HL ; save HL
 LD ($5CA1),A ; MEM-3-1
 DEC A ;
 RLA ;
 SBC A,A ;
 INC A ;

 LD HL,$5CAB ; address MEM-5-1 leading digit counter
 LD (HL),A ; store counter
 INC HL ; address MEM-5-2 total digits
 ADD A,(HL) ; add counter to contents
 LD (HL),A ; and store updated value
 POP HL ; restore HL

 JP L2ECF ; JUMP forward to PF-FRACTN

; ---

; Note. while it would be pedantic to comment on every occasion a JP
; instruction could be replaced with a JR instruction, this applies to the
; above, which is useful if you wish to correct the unbalanced stack error
; by inserting a 'DEFB 02 delete' at L2E25, and maintain main addresses.

; the branch was here with a large positive integer > 65535 e.g. 123456789
; the accumulator holds the exponent.

;; PF-LARGE
L2E56: SUB $80 ; make exponent positive
 CP $1C ; compare to 28
 JR C,L2E6F ; to PF-MEDIUM if integer <= 2^27

 CALL L2DC1 ; routine LOG(2^A)
 SUB $07 ;
 LD B,A ;
 LD HL,$5CAC ; address MEM-5-1 the leading digits counter.
 ADD A,(HL) ; add A to contents
 LD (HL),A ; store updated value.
 LD A,B ;
 NEG ; negate
 CALL L2D4F ; routine E-TO-FP
 JR L2E01 ; back to PF-LOOP

; ----------------------------

;; PF-MEDIUM
L2E6F: EX DE,HL ;
 CALL L2FBA ; routine FETCH-TWO
 EXX ;
 SET 7,D ;
 LD A,L ;
 EXX ;
 SUB $80 ;
 LD B,A ;

; the branch was here to handle bits in DE with 8 or 16 in B if small int
; and integer in D'E', 6 nibbles will accommodate 065535 but routine does
; 32-bit numbers as well from above

;; PF-BITS
L2E7B: SLA E ; C<xxxxxxxx<0
 RL D ; C<xxxxxxxx<C
 EXX ;
 RL E ; C<xxxxxxxx<C
 RL D ; C<xxxxxxxx<C
 EXX ;

 LD HL,$5CAA ; set HL to mem-4-5th last byte of buffer
 LD C,$05 ; set byte count to 5 - 10 nibbles

;; PF-BYTES
L2E8A: LD A,(HL) ; fetch 0 or prev value
 ADC A,A ; shift left add in carry C<xxxxxxxx<C

 DAA ; Decimal Adjust Accumulator.
 ; if greater than 9 then the left hand
 ; nibble is incremented. If greater than
 ; 99 then adjusted and carry set.
 ; so if we'd built up 7 and a carry came in
 ; 0000 0111 < C
 ; 0000 1111

 ; daa 1 0101 which is 15 in BCD

 LD (HL),A ; put back
 DEC HL ; work down thru mem 4
 DEC C ; decrease the 5 counter.
 JR NZ,L2E8A ; back to PF-BYTES until the ten nibbles rolled

 DJNZ L2E7B ; back to PF-BITS until 8 or 16 (or 32) done

; at most 9 digits for 32-bit number will have been loaded with digits
; each of the 9 nibbles in mem 4 is placed into ten bytes in mem-3 and mem 4
; unless the nibble is zero as the buffer is already zero.
; (or in the case of mem-5 will become zero as a result of RLD instruction)

 XOR A ; clear to accept
 LD HL,$5CA6 ; address MEM-4-0 byte destination.
 LD DE,$5CA1 ; address MEM-3-0 nibble source.
 LD B,$09 ; the count is 9 (not ten) as the first
 ; nibble is known to be blank.

 RLD ; shift RH nibble to left in (HL)
 ; A (HL)
 ; 0000 0000 < 0000 3210
 ; 0000 0000 3210 0000
 ; A picks up the blank nibble

 LD C,$FF ; set a flag to indicate when a significant
 ; digit has been encountered.

;; PF-DIGITS
L2EA1: RLD ; pick up leftmost nibble from (HL)
 ; A (HL)
 ; 0000 0000 < 7654 3210
 ; 0000 7654 3210 0000

 JR NZ,L2EA9 ; to PF-INSERT if non-zero value picked up.

 DEC C ; test
 INC C ; flag
 JR NZ,L2EB3 ; skip forward to PF-TEST-2 if flag still $FF
 ; indicating this is a leading zero.

; but if the zero is a significant digit e.g. 10 then include in digit totals.
; the path for non-zero digits rejoins here.

;; PF-INSERT
L2EA9: LD (DE),A ; insert digit at destination
 INC DE ; increase the destination pointer
 INC (IY+$71) ; increment MEM-5-1st digit counter
 INC (IY+$72) ; increment MEM-5-2nd leading digit counter
 LD C,$00 ; set flag to zero indicating that any
 ; subsequent zeros are significant and not
 ; leading.

;; PF-TEST-2
L2EB3: BIT 0,B ; test if the nibble count is even
 JR Z,L2EB8 ; skip to PF-ALL-9 if so to deal with the
 ; other nibble in the same byte

 INC HL ; point to next source byte if not

;; PF-ALL-9

L2EB8: DJNZ L2EA1 ; decrement the nibble count, back to PF-DIGITS
 ; if all nine not done.

; For 8-bit integers there will be at most 3 digits.
; For 16-bit integers there will be at most 5 digits.
; but for larger integers there could be nine leading digits.
; if nine digits complete then the last one is rounded up as the number will
; be printed using E-format notation

 LD A,($5CAB) ; fetch digit count from MEM-5-1st
 SUB $09 ; subtract 9 - max possible
 JR C,L2ECB ; forward if less to PF-MORE

 DEC (IY+$71) ; decrement digit counter MEM-5-1st to 8
 LD A,$04 ; load A with the value 4.
 CP (IY+$6F) ; compare with MEM-4-4th - the ninth digit
 JR L2F0C ; forward to PF-ROUND
 ; to consider rounding.

; ---------------------------------------

; now delete int x from calculator stack and fetch fractional part.

;; PF-MORE
L2ECB: RST 28H ;; FP-CALC int x.
 DEFB $02 ;;delete .
 DEFB $E2 ;;get-mem-2 x - int x = f.
 DEFB $38 ;;end-calc f.

;; PF-FRACTN
L2ECF: EX DE,HL ;
 CALL L2FBA ; routine FETCH-TWO
 EXX ;
 LD A,$80 ;
 SUB L ;
 LD L,$00 ;
 SET 7,D ;
 EXX ;
 CALL L2FDD ; routine SHIFT-FP

;; PF-FRN-LP
L2EDF: LD A,(IY+$71) ; MEM-5-1st
 CP $08 ;
 JR C,L2EEC ; to PF-FR-DGT

 EXX ;
 RL D ;
 EXX ;
 JR L2F0C ; to PF-ROUND

; ---

;; PF-FR-DGT
L2EEC: LD BC,$0200 ;

;; PF-FR-EXX
L2EEF: LD A,E ;
 CALL L2F8B ; routine CA-10*A+C
 LD E,A ;
 LD A,D ;
 CALL L2F8B ; routine CA-10*A+C
 LD D,A ;
 PUSH BC ;
 EXX ;

 POP BC ;
 DJNZ L2EEF ; to PF-FR-EXX

 LD HL,$5CA1 ; MEM-3
 LD A,C ;
 LD C,(IY+$71) ; MEM-5-1st
 ADD HL,BC ;
 LD (HL),A ;
 INC (IY+$71) ; MEM-5-1st
 JR L2EDF ; to PF-FRN-LP

; ----------------

; 1) with 9 digits but 8 in mem-5-1 and A holding 4, carry set if rounding up.
; e.g.
; 999999999 is printed as 1E+9
; 100000001 is printed as 1E+8
; 100000009 is printed as 1.0000001E+8

;; PF-ROUND
L2F0C: PUSH AF ; save A and flags
 LD HL,$5CA1 ; address MEM-3 start of digits
 LD C,(IY+$71) ; MEM-5-1st No. of digits to C
 LD B,$00 ; prepare to add
 ADD HL,BC ; address last digit + 1
 LD B,C ; No. of digits to B counter
 POP AF ; restore A and carry flag from comparison.

;; PF-RND-LP
L2F18: DEC HL ; address digit at rounding position.
 LD A,(HL) ; fetch it
 ADC A,$00 ; add carry from the comparison
 LD (HL),A ; put back result even if $0A.
 AND A ; test A
 JR Z,L2F25 ; skip to PF-R-BACK if ZERO?

 CP $0A ; compare to 'ten' - overflow
 CCF ; complement carry flag so that set if ten.
 JR NC,L2F2D ; forward to PF-COUNT with 1 - 9.

;; PF-R-BACK
L2F25: DJNZ L2F18 ; loop back to PF-RND-LP

; if B counts down to zero then we've rounded right back as in 999999995.
; and the first 8 locations all hold $0A.

 LD (HL),$01 ; load first location with digit 1.
 INC B ; make B hold 1 also.
 ; could save an instruction byte here.
 INC (IY+$72) ; make MEM-5-2nd hold 1.
 ; and proceed to initialize total digits to 1.

;; PF-COUNT
L2F2D: LD (IY+$71),B ; MEM-5-1st

; now balance the calculator stack by deleting it

 RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc

; note if used from str$ then other values may be on the calculator stack.
; we can also restore the next literal pointer from its position on the

; machine stack.

 EXX ;
 POP HL ; restore next literal pointer.
 EXX ;

 LD BC,($5CAB) ; set C to MEM-5-1st digit counter.
 ; set B to MEM-5-2nd leading digit counter.
 LD HL,$5CA1 ; set HL to start of digits at MEM-3-1
 LD A,B ;
 CP $09 ;
 JR C,L2F46 ; to PF-NOT-E

 CP $FC ;
 JR C,L2F6C ; to PF-E-FRMT

;; PF-NOT-E
L2F46: AND A ; test for zero leading digits as in .123

 CALL Z,L15EF ; routine OUT-CODE prints a zero e.g. 0.123

;; PF-E-SBRN
L2F4A: XOR A ;
 SUB B ;
 JP M,L2F52 ; skip forward to PF-OUT-LP if originally +ve

 LD B,A ; else negative count now +ve
 JR L2F5E ; forward to PF-DC-OUT ->

; ---

;; PF-OUT-LP
L2F52: LD A,C ; fetch total digit count
 AND A ; test for zero
 JR Z,L2F59 ; forward to PF-OUT-DT if so

 LD A,(HL) ; fetch digit
 INC HL ; address next digit
 DEC C ; decrease total digit counter

;; PF-OUT-DT
L2F59: CALL L15EF ; routine OUT-CODE outputs it.
 DJNZ L2F52 ; loop back to PF-OUT-LP until B leading
 ; digits output.

;; PF-DC-OUT
L2F5E: LD A,C ; fetch total digits and
 AND A ; test if also zero
 RET Z ; return if so -->

;

 INC B ; increment B
 LD A,$2E ; prepare the character '.'

;; PF-DEC-0$
L2F64: RST 10H ; PRINT-A outputs the character '.' or '0'

 LD A,$30 ; prepare the character '0'
 ; (for cases like .000012345678)
 DJNZ L2F64 ; loop back to PF-DEC-0$ for B times.

 LD B,C ; load B with now trailing digit counter.
 JR L2F52 ; back to PF-OUT-LP

; ---------------------------------

; the branch was here for E-format printing e.g. 123456789 => 1.2345679e+8

;; PF-E-FRMT
L2F6C: LD D,B ; counter to D
 DEC D ; decrement
 LD B,$01 ; load B with 1.

 CALL L2F4A ; routine PF-E-SBRN above

 LD A,$45 ; prepare character 'e'
 RST 10H ; PRINT-A

 LD C,D ; exponent to C
 LD A,C ; and to A
 AND A ; test exponent
 JP P,L2F83 ; to PF-E-POS if positive

 NEG ; negate
 LD C,A ; positive exponent to C
 LD A,$2D ; prepare character '-'
 JR L2F85 ; skip to PF-E-SIGN

; ---

;; PF-E-POS
L2F83: LD A,$2B ; prepare character '+'

;; PF-E-SIGN
L2F85: RST 10H ; PRINT-A outputs the sign

 LD B,$00 ; make the high byte zero.
 JP L1A1B ; exit via OUT-NUM-1 to print exponent in BC

; ------------------------------
; Handle printing floating point
; ------------------------------
; This subroutine is called twice from above when printing floating-point
; numbers. It returns 10*A +C in registers C and A

;; CA-10*A+C
L2F8B: PUSH DE ; preserve DE.
 LD L,A ; transfer A to L
 LD H,$00 ; zero high byte.
 LD E,L ; copy HL
 LD D,H ; to DE.
 ADD HL,HL ; double (*2)
 ADD HL,HL ; double (*4)
 ADD HL,DE ; add DE (*5)
 ADD HL,HL ; double (*10)
 LD E,C ; copy C to E (D is 0)
 ADD HL,DE ; and add to give required result.
 LD C,H ; transfer to
 LD A,L ; destination registers.
 POP DE ; restore DE
 RET ; return with result.

; --------------
; Prepare to add
; --------------
; This routine is called twice by addition to prepare the two numbers. The
; exponent is picked up in A and the location made zero. Then the sign bit

; is tested before being set to the implied state. Negative numbers are twos
; complemented.

;; PREP-ADD
L2F9B: LD A,(HL) ; pick up exponent
 LD (HL),$00 ; make location zero
 AND A ; test if number is zero
 RET Z ; return if so

 INC HL ; address mantissa
 BIT 7,(HL) ; test the sign bit
 SET 7,(HL) ; set it to implied state
 DEC HL ; point to exponent
 RET Z ; return if positive number.

 PUSH BC ; preserve BC
 LD BC,$0005 ; length of number
 ADD HL,BC ; point HL past end
 LD B,C ; set B to 5 counter
 LD C,A ; store exponent in C
 SCF ; set carry flag

;; NEG-BYTE
L2FAF: DEC HL ; work from LSB to MSB
 LD A,(HL) ; fetch byte
 CPL ; complement
 ADC A,$00 ; add in initial carry or from prev operation
 LD (HL),A ; put back
 DJNZ L2FAF ; loop to NEG-BYTE till all 5 done

 LD A,C ; stored exponent to A
 POP BC ; restore original BC
 RET ; return

; -----------------
; Fetch two numbers
; -----------------
; This routine is called twice when printing floating point numbers and also
; to fetch two numbers by the addition, multiply and division routines.
; HL addresses the first number, DE addresses the second number.
; For arithmetic only, A holds the sign of the result which is stored in
; the second location.

;; FETCH-TWO
L2FBA: PUSH HL ; save pointer to first number, result if math.
 PUSH AF ; save result sign.

 LD C,(HL) ;
 INC HL ;

 LD B,(HL) ;
 LD (HL),A ; store the sign at correct location in
 ; destination 5 bytes for arithmetic only.
 INC HL ;

 LD A,C ;
 LD C,(HL) ;
 PUSH BC ;
 INC HL ;
 LD C,(HL) ;
 INC HL ;
 LD B,(HL) ;
 EX DE,HL ;
 LD D,A ;

 LD E,(HL) ;
 PUSH DE ;
 INC HL ;
 LD D,(HL) ;
 INC HL ;
 LD E,(HL) ;
 PUSH DE ;
 EXX ;
 POP DE ;
 POP HL ;
 POP BC ;
 EXX ;
 INC HL ;
 LD D,(HL) ;
 INC HL ;
 LD E,(HL) ;

 POP AF ; restore possible result sign.
 POP HL ; and pointer to possible result.
 RET ; return.

; ---------------------------------
; Shift floating point number right
; ---------------------------------
;
;

;; SHIFT-FP
L2FDD: AND A ;
 RET Z ;

 CP $21 ;
 JR NC,L2FF9 ; to ADDEND-0

 PUSH BC ;
 LD B,A ;

;; ONE-SHIFT
L2FE5: EXX ;
 SRA L ;
 RR D ;
 RR E ;
 EXX ;
 RR D ;
 RR E ;
 DJNZ L2FE5 ; to ONE-SHIFT

 POP BC ;
 RET NC ;

 CALL L3004 ; routine ADD-BACK
 RET NZ ;

;; ADDEND-0
L2FF9: EXX ;
 XOR A ;

;; ZEROS-4/5
L2FFB: LD L,$00 ;
 LD D,A ;
 LD E,L ;
 EXX ;
 LD DE,$0000 ;
 RET ;

; ------------------
; Add back any carry
; ------------------
;
;

;; ADD-BACK
L3004: INC E ;
 RET NZ ;

 INC D ;
 RET NZ ;

 EXX ;
 INC E ;
 JR NZ,L300D ; to ALL-ADDED

 INC D ;

;; ALL-ADDED
L300D: EXX ;
 RET ;

; -----------------------
; Handle subtraction (03)
; -----------------------
; Subtraction is done by switching the sign byte/bit of the second number
; which may be integer of floating point and continuing into addition.

;; subtract
L300F: EX DE,HL ; address second number with HL

 CALL L346E ; routine NEGATE switches sign

 EX DE,HL ; address first number again
 ; and continue.

; --------------------
; Handle addition (0F)
; --------------------
; HL points to first number, DE to second.
; If they are both integers, then go for the easy route.

;; addition
L3014: LD A,(DE) ; fetch first byte of second
 OR (HL) ; combine with first byte of first
 JR NZ,L303E ; forward to FULL-ADDN if at least one was
 ; in floating point form.

; continue if both were small integers.

 PUSH DE ; save pointer to lowest number for result.

 INC HL ; address sign byte and
 PUSH HL ; push the pointer.

 INC HL ; address low byte
 LD E,(HL) ; to E
 INC HL ; address high byte
 LD D,(HL) ; to D
 INC HL ; address unused byte

 INC HL ; address known zero indicator of 1st number

 INC HL ; address sign byte

 LD A,(HL) ; sign to A, $00 or $FF

 INC HL ; address low byte
 LD C,(HL) ; to C
 INC HL ; address high byte
 LD B,(HL) ; to B

 POP HL ; pop result sign pointer
 EX DE,HL ; integer to HL

 ADD HL,BC ; add to the other one in BC
 ; setting carry if overflow.

 EX DE,HL ; save result in DE bringing back sign pointer

 ADC A,(HL) ; if pos/pos A=01 with overflow else 00
 ; if neg/neg A=FF with overflow else FE
 ; if mixture A=00 with overflow else FF

 RRCA ; bit 0 to (C)

 ADC A,$00 ; both acceptable signs now zero

 JR NZ,L303C ; forward to ADDN-OFLW if not

 SBC A,A ; restore a negative result sign

 LD (HL),A ;
 INC HL ;
 LD (HL),E ;
 INC HL ;
 LD (HL),D ;
 DEC HL ;
 DEC HL ;
 DEC HL ;

 POP DE ; STKEND
 RET ;

; ---

;; ADDN-OFLW
L303C: DEC HL ;
 POP DE ;

;; FULL-ADDN
L303E: CALL L3293 ; routine RE-ST-TWO
 EXX ;
 PUSH HL ;
 EXX ;
 PUSH DE ;
 PUSH HL ;
 CALL L2F9B ; routine PREP-ADD
 LD B,A ;
 EX DE,HL ;
 CALL L2F9B ; routine PREP-ADD
 LD C,A ;
 CP B ;
 JR NC,L3055 ; to SHIFT-LEN

 LD A,B ;
 LD B,C ;

 EX DE,HL ;

;; SHIFT-LEN
L3055: PUSH AF ;
 SUB B ;
 CALL L2FBA ; routine FETCH-TWO
 CALL L2FDD ; routine SHIFT-FP
 POP AF ;
 POP HL ;
 LD (HL),A ;
 PUSH HL ;
 LD L,B ;
 LD H,C ;
 ADD HL,DE ;
 EXX ;
 EX DE,HL ;
 ADC HL,BC ;
 EX DE,HL ;
 LD A,H ;
 ADC A,L ;
 LD L,A ;
 RRA ;
 XOR L ;
 EXX ;
 EX DE,HL ;
 POP HL ;
 RRA ;
 JR NC,L307C ; to TEST-NEG

 LD A,$01 ;
 CALL L2FDD ; routine SHIFT-FP
 INC (HL) ;
 JR Z,L309F ; to ADD-REP-6

;; TEST-NEG
L307C: EXX ;
 LD A,L ;
 AND $80 ;
 EXX ;
 INC HL ;
 LD (HL),A ;
 DEC HL ;
 JR Z,L30A5 ; to GO-NC-MLT

 LD A,E ;
 NEG ; Negate
 CCF ; Complement Carry Flag
 LD E,A ;
 LD A,D ;
 CPL ;
 ADC A,$00 ;
 LD D,A ;
 EXX ;
 LD A,E ;
 CPL ;
 ADC A,$00 ;
 LD E,A ;
 LD A,D ;
 CPL ;
 ADC A,$00 ;
 JR NC,L30A3 ; to END-COMPL

 RRA ;
 EXX ;

 INC (HL) ;

;; ADD-REP-6
L309F: JP Z,L31AD ; to REPORT-6

 EXX ;

;; END-COMPL
L30A3: LD D,A ;
 EXX ;

;; GO-NC-MLT
L30A5: XOR A ;
 JP L3155 ; to TEST-NORM

; -----------------------------
; Used in 16 bit multiplication
; -----------------------------
; This routine is used, in the first instance, by the multiply calculator
; literal to perform an integer multiplication in preference to
; 32-bit multiplication to which it will resort if this overflows.
;
; It is also used by STK-VAR to calculate array subscripts and by DIM to
; calculate the space required for multi-dimensional arrays.

;; HL-HL*DE
L30A9: PUSH BC ; preserve BC throughout
 LD B,$10 ; set B to 16
 LD A,H ; save H in A high byte
 LD C,L ; save L in C low byte
 LD HL,$0000 ; initialize result to zero

; now enter a loop.

;; HL-LOOP
L30B1: ADD HL,HL ; double result
 JR C,L30BE ; to HL-END if overflow

 RL C ; shift AC left into carry
 RLA ;
 JR NC,L30BC ; to HL-AGAIN to skip addition if no carry

 ADD HL,DE ; add in DE
 JR C,L30BE ; to HL-END if overflow

;; HL-AGAIN
L30BC: DJNZ L30B1 ; back to HL-LOOP for all 16 bits

;; HL-END
L30BE: POP BC ; restore preserved BC
 RET ; return with carry reset if successful
 ; and result in HL.

; --
; THE 'PREPARE TO MULTIPLY OR DIVIDE' SUBROUTINE
; --
; This routine is called in succession from multiply and divide to prepare
; two mantissas by setting the leftmost bit that is used for the sign.
; On the first call A holds zero and picks up the sign bit. On the second
; call the two bits are XORed to form the result sign - minus * minus giving
; plus etc. If either number is zero then this is flagged.
; HL addresses the exponent.

;; PREP-M/D

L30C0: CALL L34E9 ; routine TEST-ZERO preserves accumulator.
 RET C ; return carry set if zero

 INC HL ; address first byte of mantissa
 XOR (HL) ; pick up the first or xor with first.
 SET 7,(HL) ; now set to give true 32-bit mantissa
 DEC HL ; point to exponent
 RET ; return with carry reset

; --------------------------
; Handle multiplication (04)
; --------------------------
;
;

;; multiply
L30CA: LD A,(DE) ;
 OR (HL) ;
 JR NZ,L30F0 ; to MULT-LONG

 PUSH DE ;
 PUSH HL ;
 PUSH DE ;
 CALL L2D7F ; routine INT-FETCH
 EX DE,HL ;
 EX (SP),HL ;
 LD B,C ;
 CALL L2D7F ; routine INT-FETCH
 LD A,B ;
 XOR C ;
 LD C,A ;
 POP HL ;
 CALL L30A9 ; routine HL-HL*DE
 EX DE,HL ;
 POP HL ;
 JR C,L30EF ; to MULT-OFLW

 LD A,D ;
 OR E ;
 JR NZ,L30EA ; to MULT-RSLT

 LD C,A ;

;; MULT-RSLT
L30EA: CALL L2D8E ; routine INT-STORE
 POP DE ;
 RET ;

; ---

;; MULT-OFLW
L30EF: POP DE ;

;; MULT-LONG
L30F0: CALL L3293 ; routine RE-ST-TWO
 XOR A ;
 CALL L30C0 ; routine PREP-M/D
 RET C ;

 EXX ;
 PUSH HL ;
 EXX ;
 PUSH DE ;
 EX DE,HL ;

 CALL L30C0 ; routine PREP-M/D
 EX DE,HL ;
 JR C,L315D ; to ZERO-RSLT

 PUSH HL ;
 CALL L2FBA ; routine FETCH-TWO
 LD A,B ;
 AND A ;
 SBC HL,HL ;
 EXX ;
 PUSH HL ;
 SBC HL,HL ;
 EXX ;
 LD B,$21 ;
 JR L3125 ; to STRT-MLT

; ---

;; MLT-LOOP
L3114: JR NC,L311B ; to NO-ADD

 ADD HL,DE ;
 EXX ;
 ADC HL,DE ;
 EXX ;

;; NO-ADD
L311B: EXX ;
 RR H ;
 RR L ;
 EXX ;
 RR H ;
 RR L ;

;; STRT-MLT
L3125: EXX ;
 RR B ;
 RR C ;
 EXX ;
 RR C ;
 RRA ;
 DJNZ L3114 ; to MLT-LOOP

 EX DE,HL ;
 EXX ;
 EX DE,HL ;
 EXX ;
 POP BC ;
 POP HL ;
 LD A,B ;
 ADD A,C ;
 JR NZ,L313B ; to MAKE-EXPT

 AND A ;

;; MAKE-EXPT
L313B: DEC A ;
 CCF ; Complement Carry Flag

;; DIVN-EXPT
L313D: RLA ;
 CCF ; Complement Carry Flag
 RRA ;
 JP P,L3146 ; to OFLW1-CLR

 JR NC,L31AD ; to REPORT-6

 AND A ;

;; OFLW1-CLR
L3146: INC A ;
 JR NZ,L3151 ; to OFLW2-CLR

 JR C,L3151 ; to OFLW2-CLR

 EXX ;
 BIT 7,D ;
 EXX ;
 JR NZ,L31AD ; to REPORT-6

;; OFLW2-CLR
L3151: LD (HL),A ;
 EXX ;
 LD A,B ;
 EXX ;

;; TEST-NORM
L3155: JR NC,L316C ; to NORMALISE

 LD A,(HL) ;
 AND A ;

;; NEAR-ZERO
L3159: LD A,$80 ;
 JR Z,L315E ; to SKIP-ZERO

;; ZERO-RSLT
L315D: XOR A ;

;; SKIP-ZERO
L315E: EXX ;
 AND D ;
 CALL L2FFB ; routine ZEROS-4/5
 RLCA ;
 LD (HL),A ;
 JR C,L3195 ; to OFLOW-CLR

 INC HL ;
 LD (HL),A ;
 DEC HL ;
 JR L3195 ; to OFLOW-CLR

; ---

;; NORMALISE
L316C: LD B,$20 ;

;; SHIFT-ONE
L316E: EXX ;
 BIT 7,D ;
 EXX ;
 JR NZ,L3186 ; to NORML-NOW

 RLCA ;
 RL E ;
 RL D ;
 EXX ;
 RL E ;

 RL D ;
 EXX ;
 DEC (HL) ;
 JR Z,L3159 ; to NEAR-ZERO

 DJNZ L316E ; to SHIFT-ONE

 JR L315D ; to ZERO-RSLT

; ---

;; NORML-NOW
L3186: RLA ;
 JR NC,L3195 ; to OFLOW-CLR

 CALL L3004 ; routine ADD-BACK
 JR NZ,L3195 ; to OFLOW-CLR

 EXX ;
 LD D,$80 ;
 EXX ;
 INC (HL) ;
 JR Z,L31AD ; to REPORT-6

;; OFLOW-CLR
L3195: PUSH HL ;
 INC HL ;
 EXX ;
 PUSH DE ;
 EXX ;
 POP BC ;
 LD A,B ;
 RLA ;
 RL (HL) ;
 RRA ;
 LD (HL),A ;
 INC HL ;
 LD (HL),C ;
 INC HL ;
 LD (HL),D ;
 INC HL ;
 LD (HL),E ;
 POP HL ;
 POP DE ;
 EXX ;
 POP HL ;
 EXX ;
 RET ;

; ---

;; REPORT-6
L31AD: RST 08H ; ERROR-1
 DEFB $05 ; Error Report: Number too big

; --------------------
; Handle division (05)
; --------------------
;
;

;; division
L31AF: CALL L3293 ; routine RE-ST-TWO
 EX DE,HL ;

 XOR A ;
 CALL L30C0 ; routine PREP-M/D
 JR C,L31AD ; to REPORT-6

 EX DE,HL ;
 CALL L30C0 ; routine PREP-M/D
 RET C ;

 EXX ;
 PUSH HL ;
 EXX ;
 PUSH DE ;
 PUSH HL ;
 CALL L2FBA ; routine FETCH-TWO
 EXX ;
 PUSH HL ;
 LD H,B ;
 LD L,C ;
 EXX ;
 LD H,C ;
 LD L,B ;
 XOR A ;
 LD B,$DF ;
 JR L31E2 ; to DIV-START

; ---

;; DIV-LOOP
L31D2: RLA ;
 RL C ;
 EXX ;
 RL C ;
 RL B ;
 EXX ;

;; div-34th
L31DB: ADD HL,HL ;
 EXX ;
 ADC HL,HL ;
 EXX ;
 JR C,L31F2 ; to SUBN-ONLY

;; DIV-START
L31E2: SBC HL,DE ;
 EXX ;
 SBC HL,DE ;
 EXX ;
 JR NC,L31F9 ; to NO-RSTORE

 ADD HL,DE ;
 EXX ;
 ADC HL,DE ;
 EXX ;
 AND A ;
 JR L31FA ; to COUNT-ONE

; ---

;; SUBN-ONLY
L31F2: AND A ;
 SBC HL,DE ;
 EXX ;
 SBC HL,DE ;
 EXX ;

;; NO-RSTORE
L31F9: SCF ; Set Carry Flag

;; COUNT-ONE
L31FA: INC B ;
 JP M,L31D2 ; to DIV-LOOP

 PUSH AF ;
 JR Z,L31E2 ; to DIV-START

;
;
;
;

 LD E,A ;
 LD D,C ;
 EXX ;
 LD E,C ;
 LD D,B ;
 POP AF ;
 RR B ;
 POP AF ;
 RR B ;
 EXX ;
 POP BC ;
 POP HL ;
 LD A,B ;
 SUB C ;
 JP L313D ; jump back to DIVN-EXPT

; ------------------------------------
; Integer truncation towards zero ($3A)
; ------------------------------------
;
;

;; truncate
L3214: LD A,(HL) ;
 AND A ;
 RET Z ;

 CP $81 ;
 JR NC,L3221 ; to T-GR-ZERO

 LD (HL),$00 ;
 LD A,$20 ;
 JR L3272 ; to NIL-BYTES

; ---

;; T-GR-ZERO
L3221: CP $91 ;
 JR NZ,L323F ; to T-SMALL

 INC HL ;
 INC HL ;
 INC HL ;
 LD A,$80 ;
 AND (HL) ;
 DEC HL ;
 OR (HL) ;
 DEC HL ;

 JR NZ,L3233 ; to T-FIRST

 LD A,$80 ;
 XOR (HL) ;

;; T-FIRST
L3233: DEC HL ;
 JR NZ,L326C ; to T-EXPNENT

 LD (HL),A ;
 INC HL ;
 LD (HL),$FF ;
 DEC HL ;
 LD A,$18 ;
 JR L3272 ; to NIL-BYTES

; ---

;; T-SMALL
L323F: JR NC,L326D ; to X-LARGE

 PUSH DE ;
 CPL ;
 ADD A,$91 ;
 INC HL ;
 LD D,(HL) ;
 INC HL ;
 LD E,(HL) ;
 DEC HL ;
 DEC HL ;
 LD C,$00 ;
 BIT 7,D ;
 JR Z,L3252 ; to T-NUMERIC

 DEC C ;

;; T-NUMERIC
L3252: SET 7,D ;
 LD B,$08 ;
 SUB B ;
 ADD A,B ;
 JR C,L325E ; to T-TEST

 LD E,D ;
 LD D,$00 ;
 SUB B ;

;; T-TEST
L325E: JR Z,L3267 ; to T-STORE

 LD B,A ;

;; T-SHIFT
L3261: SRL D ;
 RR E ;
 DJNZ L3261 ; to T-SHIFT

;; T-STORE
L3267: CALL L2D8E ; routine INT-STORE
 POP DE ;
 RET ;

; ---

;; T-EXPNENT
L326C: LD A,(HL) ;

;; X-LARGE
L326D: SUB $A0 ;
 RET P ;

 NEG ; Negate

;; NIL-BYTES
L3272: PUSH DE ;
 EX DE,HL ;
 DEC HL ;
 LD B,A ;
 SRL B ;
 SRL B ;
 SRL B ;
 JR Z,L3283 ; to BITS-ZERO

;; BYTE-ZERO
L327E: LD (HL),$00 ;
 DEC HL ;
 DJNZ L327E ; to BYTE-ZERO

;; BITS-ZERO
L3283: AND $07 ;
 JR Z,L3290 ; to IX-END

 LD B,A ;
 LD A,$FF ;

;; LESS-MASK
L328A: SLA A ;
 DJNZ L328A ; to LESS-MASK

 AND (HL) ;
 LD (HL),A ;

;; IX-END
L3290: EX DE,HL ;
 POP DE ;
 RET ;

; ----------------------------------
; Storage of numbers in 5 byte form.
; ==================================
; Both integers and floating-point numbers can be stored in five bytes.
; Zero is a special case stored as 5 zeros.
; For integers the form is
; Byte 1 - zero,
; Byte 2 - sign byte, $00 +ve, $FF -ve.
; Byte 3 - Low byte of integer.
; Byte 4 - High byte
; Byte 5 - unused but always zero.
;
; it seems unusual to store the low byte first but it is just as easy either
; way. Statistically it just increases the chances of trailing zeros which
; is an advantage elsewhere in saving ROM code.
;
; zero sign low high unused
; So +1 is 00000000 00000000 00000001 00000000 00000000
;
; and -1 is 00000000 11111111 11111111 11111111 00000000
;

; much of the arithmetic found in BASIC lines can be done using numbers
; in this form using the Z80's 16 bit register operation ADD.
; (multiplication is done by a sequence of additions).
;
; Storing -ve integers in two's complement form, means that they are ready for
; addition and you might like to add the numbers above to prove that the
; answer is zero. If, as in this case, the carry is set then that denotes that
; the result is positive. This only applies when the signs don't match.
; With positive numbers a carry denotes the result is out of integer range.
; With negative numbers a carry denotes the result is within range.
; The exception to the last rule is when the result is -65536
;
; Floating point form is an alternative method of storing numbers which can
; be used for integers and larger (or fractional) numbers.
;
; In this form 1 is stored as
; 10000001 00000000 00000000 00000000 00000000
;
; When a small integer is converted to a floating point number the last two
; bytes are always blank so they are omitted in the following steps
;
; first make exponent +1 +16d (bit 7 of the exponent is set if positive)

; 10010001 00000000 00000001
; 10010000 00000000 00000010 <- now shift left and decrement exponent
; ...
; 10000010 01000000 00000000 <- until a 1 abuts the imaginary point
; 10000001 10000000 00000000 to the left of the mantissa.
;
; however since the leftmost bit of the mantissa is always set then it can
; be used to denote the sign of the mantissa and put back when needed by the
; PREP routines which gives
;
; 10000001 00000000 00000000

; --
; THE 'RE-STACK TWO "SMALL" INTEGERS' SUBROUTINE
; --
; This routine is called to re-stack two numbers in full floating point form
; e.g. from mult when integer multiplication has overflowed.

;; RE-ST-TWO
L3293: CALL L3296 ; routine RESTK-SUB below and continue
 ; into the routine to do the other one.

;; RESTK-SUB
L3296: EX DE,HL ; swap pointers

; ---
; THE 'RE-STACK ONE "SMALL" INTEGER' SUBROUTINE
; ---
; (offset: $3D 're-stack')
; This routine re-stacks an integer, usually on the calculator stack, in full
; floating point form. HL points to first byte.

;; re-stack
L3297: LD A,(HL) ; Fetch Exponent byte to A
 AND A ; test it
 RET NZ ; return if not zero as already in full
 ; floating-point form.

 PUSH DE ; preserve DE.
 CALL L2D7F ; routine INT-FETCH
 ; integer to DE, sign to C.

; HL points to 4th byte.

 XOR A ; clear accumulator.
 INC HL ; point to 5th.
 LD (HL),A ; and blank.
 DEC HL ; point to 4th.
 LD (HL),A ; and blank.

 LD B,$91 ; set exponent byte +ve $81
 ; and imaginary dec point 16 bits to right
 ; of first bit.

; we could skip to normalize now but it's quicker to avoid normalizing
; through an empty D.

 LD A,D ; fetch the high byte D
 AND A ; is it zero ?
 JR NZ,L32B1 ; skip to RS-NRMLSE if not.

 OR E ; low byte E to A and test for zero
 LD B,D ; set B exponent to 0
 JR Z,L32BD ; forward to RS-STORE if value is zero.

 LD D,E ; transfer E to D
 LD E,B ; set E to 0
 LD B,$89 ; reduce the initial exponent by eight.

;; RS-NRMLSE
L32B1: EX DE,HL ; integer to HL, addr of 4th byte to DE.

;; RSTK-LOOP
L32B2: DEC B ; decrease exponent
 ADD HL,HL ; shift DE left
 JR NC,L32B2 ; loop back to RSTK-LOOP
 ; until a set bit pops into carry

 RRC C ; now rotate the sign byte $00 or $FF
 ; into carry to give a sign bit

 RR H ; rotate the sign bit to left of H
 RR L ; rotate any carry into L

 EX DE,HL ; address 4th byte, normalized int to DE

;; RS-STORE
L32BD: DEC HL ; address 3rd byte
 LD (HL),E ; place E
 DEC HL ; address 2nd byte
 LD (HL),D ; place D
 DEC HL ; address 1st byte
 LD (HL),B ; store the exponent

 POP DE ; restore initial DE.
 RET ; return.

;**
;** Part 10. FLOATING-POINT CALCULATOR **
;**

; As a general rule the calculator avoids using the IY register.
; exceptions are val, val$ and str$.
; So an assembly language programmer who has disabled interrupts to use

; IY for other purposes can still use the calculator for mathematical
; purposes.

; ------------------------
; THE 'TABLE OF CONSTANTS'
; ------------------------
;
;

; used 11 times
;; stk-zero 00 00 00 00 00
L32C5: DEFB $00 ;;Bytes: 1
 DEFB $B0 ;;Exponent $00
 DEFB $00 ;;(+00,+00,+00)

; used 19 times
;; stk-one 00 00 01 00 00
L32C8: DEFB $40 ;;Bytes: 2
 DEFB $B0 ;;Exponent $00
 DEFB $00,$01 ;;(+00,+00)

; used 9 times
;; stk-half 80 00 00 00 00
L32CC: DEFB $30 ;;Exponent: $80, Bytes: 1
 DEFB $00 ;;(+00,+00,+00)

; used 4 times.
;; stk-pi/2 81 49 0F DA A2
L32CE: DEFB $F1 ;;Exponent: $81, Bytes: 4
 DEFB $49,$0F,$DA,$A2 ;;

; used 3 times.
;; stk-ten 00 00 0A 00 00
L32D3: DEFB $40 ;;Bytes: 2
 DEFB $B0 ;;Exponent $00
 DEFB $00,$0A ;;(+00,+00)

; ------------------------
; THE 'TABLE OF ADDRESSES'
; ------------------------
;
; Starts with binary operations which have two operands and one result.
; Three pseudo binary operations first.

;; tbl-addrs
L32D7: DEFW L368F ; $00 Address: $368F - jump-true
 DEFW L343C ; $01 Address: $343C - exchange
 DEFW L33A1 ; $02 Address: $33A1 - delete

; True binary operations.

 DEFW L300F ; $03 Address: $300F - subtract
 DEFW L30CA ; $04 Address: $30CA - multiply
 DEFW L31AF ; $05 Address: $31AF - division
 DEFW L3851 ; $06 Address: $3851 - to-power
 DEFW L351B ; $07 Address: $351B - or

 DEFW L3524 ; $08 Address: $3524 - no-&-no
 DEFW L353B ; $09 Address: $353B - no-l-eql
 DEFW L353B ; $0A Address: $353B - no-gr-eql
 DEFW L353B ; $0B Address: $353B - nos-neql
 DEFW L353B ; $0C Address: $353B - no-grtr

 DEFW L353B ; $0D Address: $353B - no-less
 DEFW L353B ; $0E Address: $353B - nos-eql
 DEFW L3014 ; $0F Address: $3014 - addition

 DEFW L352D ; $10 Address: $352D - str-&-no
 DEFW L353B ; $11 Address: $353B - str-l-eql
 DEFW L353B ; $12 Address: $353B - str-gr-eql
 DEFW L353B ; $13 Address: $353B - strs-neql
 DEFW L353B ; $14 Address: $353B - str-grtr
 DEFW L353B ; $15 Address: $353B - str-less
 DEFW L353B ; $16 Address: $353B - strs-eql
 DEFW L359C ; $17 Address: $359C - strs-add

; Unary follow.

 DEFW L35DE ; $18 Address: $35DE - val$
 DEFW L34BC ; $19 Address: $34BC - usr-$
 DEFW L3645 ; $1A Address: $3645 - read-in
 DEFW L346E ; $1B Address: $346E - negate

 DEFW L3669 ; $1C Address: $3669 - code
 DEFW L35DE ; $1D Address: $35DE - val
 DEFW L3674 ; $1E Address: $3674 - len
 DEFW L37B5 ; $1F Address: $37B5 - sin
 DEFW L37AA ; $20 Address: $37AA - cos
 DEFW L37DA ; $21 Address: $37DA - tan
 DEFW L3833 ; $22 Address: $3833 - asn
 DEFW L3843 ; $23 Address: $3843 - acs
 DEFW L37E2 ; $24 Address: $37E2 - atn
 DEFW L3713 ; $25 Address: $3713 - ln
 DEFW L36C4 ; $26 Address: $36C4 - exp
 DEFW L36AF ; $27 Address: $36AF - int
 DEFW L384A ; $28 Address: $384A - sqr
 DEFW L3492 ; $29 Address: $3492 - sgn
 DEFW L346A ; $2A Address: $346A - abs
 DEFW L34AC ; $2B Address: $34AC - peek
 DEFW L34A5 ; $2C Address: $34A5 - in
 DEFW L34B3 ; $2D Address: $34B3 - usr-no
 DEFW L361F ; $2E Address: $361F - str$
 DEFW L35C9 ; $2F Address: $35C9 - chrs
 DEFW L3501 ; $30 Address: $3501 - not

; End of true unary.

 DEFW L33C0 ; $31 Address: $33C0 - duplicate
 DEFW L36A0 ; $32 Address: $36A0 - n-mod-m
 DEFW L3686 ; $33 Address: $3686 - jump
 DEFW L33C6 ; $34 Address: $33C6 - stk-data
 DEFW L367A ; $35 Address: $367A - dec-jr-nz
 DEFW L3506 ; $36 Address: $3506 - less-0
 DEFW L34F9 ; $37 Address: $34F9 - greater-0
 DEFW L369B ; $38 Address: $369B - end-calc
 DEFW L3783 ; $39 Address: $3783 - get-argt
 DEFW L3214 ; $3A Address: $3214 - truncate
 DEFW L33A2 ; $3B Address: $33A2 - fp-calc-2
 DEFW L2D4F ; $3C Address: $2D4F - e-to-fp
 DEFW L3297 ; $3D Address: $3297 - re-stack

; The following are just the next available slots for the 128 compound
; literals which are in range $80 - $FF.

 DEFW L3449 ; Address: $3449 - series-xx $80 - $9F.
 DEFW L341B ; Address: $341B - stk-const-xx $A0 - $BF.
 DEFW L342D ; Address: $342D - st-mem-xx $C0 - $DF.

 DEFW L340F ; Address: $340F - get-mem-xx $E0 - $FF.

; Aside: 3E - 3F are therefore unused calculator literals.
; If the literal has to be also usable as a function then bits 6 and 7 are
; used to show type of arguments and result.

; --------------
; The Calculator
; --------------
;
;

;; CALCULATE
L335B: CALL L35BF ; routine STK-PNTRS is called to set up the
 ; calculator stack pointers for a default
 ; unary operation. HL = last value on stack.
 ; DE = STKEND first location after stack.

; the calculate routine is called at this point by the series generator...

;; GEN-ENT-1
L335E: LD A,B ; fetch the Z80 B register to A
 LD ($5C67),A ; and store value in system variable BREG.
 ; this will be the counter for dec-jr-nz
 ; or if used from fp-calc2 the calculator
 ; instruction.

; ... and again later at this point

;; GEN-ENT-2
L3362: EXX ; switch sets
 EX (SP),HL ; and store the address of next instruction,
 ; the return address, in H'L'.
 ; If this is a recursive call the H'L'
 ; of the previous invocation goes on stack.
 ; c.f. end-calc.
 EXX ; switch back to main set

; this is the re-entry looping point when handling a string of literals.

;; RE-ENTRY
L3365: LD ($5C65),DE ; save end of stack in system variable STKEND
 EXX ; switch to alt
 LD A,(HL) ; get next literal
 INC HL ; increase pointer'

; single operation jumps back to here

;; SCAN-ENT
L336C: PUSH HL ; save pointer on stack
 AND A ; now test the literal
 JP P,L3380 ; forward to FIRST-3D if in range $00 - $3D
 ; anything with bit 7 set will be one of
 ; 128 compound literals.

; compound literals have the following format.
; bit 7 set indicates compound.
; bits 6-5 the subgroup 0-3.
; bits 4-0 the embedded parameter $00 - $1F.
; The subgroup 0-3 needs to be manipulated to form the next available four
; address places after the simple literals in the address table.

 LD D,A ; save literal in D
 AND $60 ; and with 01100000 to isolate subgroup

 RRCA ; rotate bits
 RRCA ; 4 places to right
 RRCA ; not five as we need offset * 2
 RRCA ; 00000xx0
 ADD A,$7C ; add ($3E * 2) to give correct offset.
 ; alter above if you add more literals.
 LD L,A ; store in L for later indexing.
 LD A,D ; bring back compound literal
 AND $1F ; use mask to isolate parameter bits
 JR L338E ; forward to ENT-TABLE

; ---

; the branch was here with simple literals.

;; FIRST-3D
L3380: CP $18 ; compare with first unary operations.
 JR NC,L338C ; to DOUBLE-A with unary operations

; it is binary so adjust pointers.

 EXX ;
 LD BC,$FFFB ; the value -5
 LD D,H ; transfer HL, the last value, to DE.
 LD E,L ;
 ADD HL,BC ; subtract 5 making HL point to second
 ; value.
 EXX ;

;; DOUBLE-A
L338C: RLCA ; double the literal
 LD L,A ; and store in L for indexing

;; ENT-TABLE
L338E: LD DE,L32D7 ; Address: tbl-addrs
 LD H,$00 ; prepare to index
 ADD HL,DE ; add to get address of routine
 LD E,(HL) ; low byte to E
 INC HL ;
 LD D,(HL) ; high byte to D
 LD HL,L3365 ; Address: RE-ENTRY
 EX (SP),HL ; goes to stack
 PUSH DE ; now address of routine
 EXX ; main set
 ; avoid using IY register.
 LD BC,($5C66) ; STKEND_hi
 ; nothing much goes to C but BREG to B
 ; and continue into next ret instruction
 ; which has a dual identity

; ------------------
; Handle delete (02)
; ------------------
; A simple return but when used as a calculator literal this
; deletes the last value from the calculator stack.
; On entry, as always with binary operations,
; HL=first number, DE=second number
; On exit, HL=result, DE=stkend.
; So nothing to do

;; delete
L33A1: RET ; return - indirect jump if from above.

; ---------------------
; Single operation (3B)
; ---------------------
; this single operation is used, in the first instance, to evaluate most
; of the mathematical and string functions found in BASIC expressions.

;; fp-calc-2
L33A2: POP AF ; drop return address.
 LD A,($5C67) ; load accumulator from system variable BREG
 ; value will be literal e.g. 'tan'
 EXX ; switch to alt
 JR L336C ; back to SCAN-ENT
 ; next literal will be end-calc at L2758

; ---------------------------------
; THE 'TEST FIVE SPACES' SUBROUTINE
; ---------------------------------
; This routine is called from MOVE-FP, STK-CONST and STK-STORE to test that
; there is enough space between the calculator stack and the machine stack
; for another five-byte value. It returns with BC holding the value 5 ready
; for any subsequent LDIR.

;; TEST-5-SP
L33A9: PUSH DE ; save
 PUSH HL ; registers
 LD BC,$0005 ; an overhead of five bytes
 CALL L1F05 ; routine TEST-ROOM tests free RAM raising
 ; an error if not.
 POP HL ; else restore
 POP DE ; registers.
 RET ; return with BC set at 5.

; -----------------------------
; THE 'STACK NUMBER' SUBROUTINE
; -----------------------------
; This routine is called to stack a hidden floating point number found in
; a BASIC line. It is also called to stack a numeric variable value, and
; from BEEP, to stack an entry in the semi-tone table. It is not part of the
; calculator suite of routines. On entry, HL points to the number to be
; stacked.

;; STACK-NUM
L33B4: LD DE,($5C65) ; Load destination from STKEND system variable.

 CALL L33C0 ; Routine MOVE-FP puts on calculator stack
 ; with a memory check.
 LD ($5C65),DE ; Set STKEND to next free location.

 RET ; Return.

; ---------------------------------
; Move a floating point number (31)
; ---------------------------------

; This simple routine is a 5-byte LDIR instruction
; that incorporates a memory check.
; When used as a calculator literal it duplicates the last value on the
; calculator stack.
; Unary so on entry HL points to last value, DE to stkend

;; duplicate
;; MOVE-FP
L33C0: CALL L33A9 ; routine TEST-5-SP test free memory
 ; and sets BC to 5.

 LDIR ; copy the five bytes.
 RET ; return with DE addressing new STKEND
 ; and HL addressing new last value.

; -------------------
; Stack literals ($34)
; -------------------
; When a calculator subroutine needs to put a value on the calculator
; stack that is not a regular constant this routine is called with a
; variable number of following data bytes that convey to the routine
; the integer or floating point form as succinctly as is possible.

;; stk-data
L33C6: LD H,D ; transfer STKEND
 LD L,E ; to HL for result.

;; STK-CONST
L33C8: CALL L33A9 ; routine TEST-5-SP tests that room exists
 ; and sets BC to $05.

 EXX ; switch to alternate set
 PUSH HL ; save the pointer to next literal on stack
 EXX ; switch back to main set

 EX (SP),HL ; pointer to HL, destination to stack.

 PUSH BC ; save BC - value 5 from test room ??.

 LD A,(HL) ; fetch the byte following 'stk-data'
 AND $C0 ; isolate bits 7 and 6
 RLCA ; rotate
 RLCA ; to bits 1 and 0 range $00 - $03.
 LD C,A ; transfer to C
 INC C ; and increment to give number of bytes
 ; to read. $01 - $04
 LD A,(HL) ; reload the first byte
 AND $3F ; mask off to give possible exponent.
 JR NZ,L33DE ; forward to FORM-EXP if it was possible to
 ; include the exponent.

; else byte is just a byte count and exponent comes next.

 INC HL ; address next byte and
 LD A,(HL) ; pick up the exponent (- $50).

;; FORM-EXP
L33DE: ADD A,$50 ; now add $50 to form actual exponent
 LD (DE),A ; and load into first destination byte.
 LD A,$05 ; load accumulator with $05 and
 SUB C ; subtract C to give count of trailing
 ; zeros plus one.
 INC HL ; increment source
 INC DE ; increment destination
 LD B,$00 ; prepare to copy
 LDIR ; copy C bytes

 POP BC ; restore 5 counter to BC ??.

 EX (SP),HL ; put HL on stack as next literal pointer
 ; and the stack value - result pointer -
 ; to HL.

 EXX ; switch to alternate set.
 POP HL ; restore next literal pointer from stack

 ; to H'L'.
 EXX ; switch back to main set.

 LD B,A ; zero count to B
 XOR A ; clear accumulator

;; STK-ZEROS
L33F1: DEC B ; decrement B counter
 RET Z ; return if zero. >>
 ; DE points to new STKEND
 ; HL to new number.

 LD (DE),A ; else load zero to destination
 INC DE ; increase destination
 JR L33F1 ; loop back to STK-ZEROS until done.

; -------------------------------
; THE 'SKIP CONSTANTS' SUBROUTINE
; -------------------------------
; This routine traverses variable-length entries in the table of constants,
; stacking intermediate, unwanted constants onto a dummy calculator stack,
; in the first five bytes of ROM. The destination DE normally points to the
; end of the calculator stack which might be in the normal place or in the
; system variables area during E-LINE-NO; INT-TO-FP; stk-ten. In any case,
; it would be simpler all round if the routine just shoved unwanted values
; where it is going to stick the wanted value. The instruction LD DE, $0000
; can be removed.

;; SKIP-CONS
L33F7: AND A ; test if initially zero.

;; SKIP-NEXT
L33F8: RET Z ; return if zero. >>

 PUSH AF ; save count.
 PUSH DE ; and normal STKEND

 LD DE,$0000 ; dummy value for STKEND at start of ROM
 ; Note. not a fault but this has to be
 ; moved elsewhere when running in RAM.
 ; e.g. with Expandor Systems 'Soft ROM'.
 ; Better still, write to the normal place.
 CALL L33C8 ; routine STK-CONST works through variable
 ; length records.

 POP DE ; restore real STKEND
 POP AF ; restore count
 DEC A ; decrease
 JR L33F8 ; loop back to SKIP-NEXT

; ------------------------------
; THE 'LOCATE MEMORY' SUBROUTINE
; ------------------------------
; This routine, when supplied with a base address in HL and an index in A,
; will calculate the address of the A'th entry, where each entry occupies
; five bytes. It is used for reading the semi-tone table and addressing
; floating-point numbers in the calculator's memory area.
; It is not possible to use this routine for the table of constants as these
; six values are held in compressed format.

;; LOC-MEM
L3406: LD C,A ; store the original number $00-$1F.
 RLCA ; X2 - double.
 RLCA ; X4 - quadruple.

 ADD A,C ; X5 - now add original to multiply by five.

 LD C,A ; place the result in the low byte.
 LD B,$00 ; set high byte to zero.
 ADD HL,BC ; add to form address of start of number in HL.

 RET ; return.

; ------------------------------
; Get from memory area ($E0 etc.)
; ------------------------------
; Literals $E0 to $FF
; A holds $00-$1F offset.
; The calculator stack increases by 5 bytes.

;; get-mem-xx
L340F: PUSH DE ; save STKEND
 LD HL,($5C68) ; MEM is base address of the memory cells.
 CALL L3406 ; routine LOC-MEM so that HL = first byte
 CALL L33C0 ; routine MOVE-FP moves 5 bytes with memory
 ; check.
 ; DE now points to new STKEND.
 POP HL ; original STKEND is now RESULT pointer.
 RET ; return.

; --------------------------
; Stack a constant (A0 etc.)
; --------------------------
; This routine allows a one-byte instruction to stack up to 32 constants
; held in short form in a table of constants. In fact only 5 constants are
; required. On entry the A register holds the literal ANDed with 1F.
; It isn't very efficient and it would have been better to hold the
; numbers in full, five byte form and stack them in a similar manner
; to that used for semi-tone table values.

;; stk-const-xx
L341B: LD H,D ; save STKEND - required for result
 LD L,E ;
 EXX ; swap
 PUSH HL ; save pointer to next literal
 LD HL,L32C5 ; Address: stk-zero - start of table of
 ; constants
 EXX ;
 CALL L33F7 ; routine SKIP-CONS
 CALL L33C8 ; routine STK-CONST
 EXX ;
 POP HL ; restore pointer to next literal.
 EXX ;
 RET ; return.

; --------------------------------
; Store in a memory area ($C0 etc.)
; --------------------------------
; Offsets $C0 to $DF
; Although 32 memory storage locations can be addressed, only six
; $C0 to $C5 are required by the ROM and only the thirty bytes (6*5)
; required for these are allocated. Spectrum programmers who wish to
; use the floating point routines from assembly language may wish to
; alter the system variable MEM to point to 160 bytes of RAM to have
; use the full range available.
; A holds the derived offset $00-$1F.
; This is a unary operation, so on entry HL points to the last value and DE
; points to STKEND.

;; st-mem-xx
L342D: PUSH HL ; save the result pointer.
 EX DE,HL ; transfer to DE.
 LD HL,($5C68) ; fetch MEM the base of memory area.
 CALL L3406 ; routine LOC-MEM sets HL to the destination.
 EX DE,HL ; swap - HL is start, DE is destination.
 CALL L33C0 ; routine MOVE-FP.
 ; note. a short ld bc,5; ldir
 ; the embedded memory check is not required
 ; so these instructions would be faster.
 EX DE,HL ; DE = STKEND
 POP HL ; restore original result pointer
 RET ; return.

; -------------------------
; THE 'EXCHANGE' SUBROUTINE
; -------------------------
; (offset: $01 'exchange')
; This routine swaps the last two values on the calculator stack.
; On entry, as always with binary operations,
; HL=first number, DE=second number
; On exit, HL=result, DE=stkend.

;; exchange
L343C: LD B,$05 ; there are five bytes to be swapped

; start of loop.

;; SWAP-BYTE
L343E: LD A,(DE) ; each byte of second
 LD C,(HL) ; each byte of first
 EX DE,HL ; swap pointers
 LD (DE),A ; store each byte of first
 LD (HL),C ; store each byte of second
 INC HL ; advance both
 INC DE ; pointers.
 DJNZ L343E ; loop back to SWAP-BYTE until all 5 done.

 EX DE,HL ; even up the exchanges so that DE addresses
 ; STKEND.

 RET ; return.

; ------------------------------
; THE 'SERIES GENERATOR' ROUTINE
; ------------------------------
; (offset: $86 'series-06')
; (offset: $88 'series-08')
; (offset: $8C 'series-0C')
; The Spectrum uses Chebyshev polynomials to generate approximations for
; SIN, ATN, LN and EXP. These are named after the Russian mathematician
; Pafnuty Chebyshev, born in 1821, who did much pioneering work on numerical
; series. As far as calculators are concerned, Chebyshev polynomials have an
; advantage over other series, for example the Taylor series, as they can
; reach an approximation in just six iterations for SIN, eight for EXP and
; twelve for LN and ATN. The mechanics of the routine are interesting but
; for full treatment of how these are generated with demonstrations in
; Sinclair BASIC see "The Complete Spectrum ROM Disassembly" by Dr Ian Logan
; and Dr Frank O'Hara, published 1983 by Melbourne House.

;; series-xx
L3449: LD B,A ; parameter $00 - $1F to B counter
 CALL L335E ; routine GEN-ENT-1 is called.
 ; A recursive call to a special entry point

 ; in the calculator that puts the B register
 ; in the system variable BREG. The return
 ; address is the next location and where
 ; the calculator will expect its first
 ; instruction - now pointed to by HL'.
 ; The previous pointer to the series of
 ; five-byte numbers goes on the machine stack.

; The initialization phase.

 DEFB $31 ;;duplicate x,x
 DEFB $0F ;;addition x+x
 DEFB $C0 ;;st-mem-0 x+x
 DEFB $02 ;;delete .
 DEFB $A0 ;;stk-zero 0
 DEFB $C2 ;;st-mem-2 0

; a loop is now entered to perform the algebraic calculation for each of
; the numbers in the series

;; G-LOOP
L3453: DEFB $31 ;;duplicate v,v.
 DEFB $E0 ;;get-mem-0 v,v,x+2
 DEFB $04 ;;multiply v,v*x+2
 DEFB $E2 ;;get-mem-2 v,v*x+2,v
 DEFB $C1 ;;st-mem-1
 DEFB $03 ;;subtract
 DEFB $38 ;;end-calc

; the previous pointer is fetched from the machine stack to H'L' where it
; addresses one of the numbers of the series following the series literal.

 CALL L33C6 ; routine STK-DATA is called directly to
 ; push a value and advance H'L'.
 CALL L3362 ; routine GEN-ENT-2 recursively re-enters
 ; the calculator without disturbing
 ; system variable BREG
 ; H'L' value goes on the machine stack and is
 ; then loaded as usual with the next address.

 DEFB $0F ;;addition
 DEFB $01 ;;exchange
 DEFB $C2 ;;st-mem-2
 DEFB $02 ;;delete

 DEFB $35 ;;dec-jr-nz
 DEFB $EE ;;back to L3453, G-LOOP

; when the counted loop is complete the final subtraction yields the result
; for example SIN X.

 DEFB $E1 ;;get-mem-1
 DEFB $03 ;;subtract
 DEFB $38 ;;end-calc

 RET ; return with H'L' pointing to location
 ; after last number in series.

; ---------------------------------
; THE 'ABSOLUTE MAGNITUDE' FUNCTION
; ---------------------------------
; (offset: $2A 'abs')
; This calculator literal finds the absolute value of the last value,
; integer or floating point, on calculator stack.

;; abs
L346A: LD B,$FF ; signal abs
 JR L3474 ; forward to NEG-TEST

; ---------------------------
; THE 'UNARY MINUS' OPERATION
; ---------------------------
; (offset: $1B 'negate')
; Unary so on entry HL points to last value, DE to STKEND.

;; NEGATE
;; negate
L346E: CALL L34E9 ; call routine TEST-ZERO and
 RET C ; return if so leaving zero unchanged.

 LD B,$00 ; signal negate required before joining
 ; common code.

;; NEG-TEST
L3474: LD A,(HL) ; load first byte and
 AND A ; test for zero
 JR Z,L3483 ; forward to INT-CASE if a small integer

; for floating point numbers a single bit denotes the sign.

 INC HL ; address the first byte of mantissa.
 LD A,B ; action flag $FF=abs, $00=neg.
 AND $80 ; now $80 $00
 OR (HL) ; sets bit 7 for abs
 RLA ; sets carry for abs and if number negative
 CCF ; complement carry flag
 RRA ; and rotate back in altering sign
 LD (HL),A ; put the altered adjusted number back
 DEC HL ; HL points to result
 RET ; return with DE unchanged

; ---

; for integer numbers an entire byte denotes the sign.

;; INT-CASE
L3483: PUSH DE ; save STKEND.

 PUSH HL ; save pointer to the last value/result.

 CALL L2D7F ; routine INT-FETCH puts integer in DE
 ; and the sign in C.

 POP HL ; restore the result pointer.

 LD A,B ; $FF=abs, $00=neg
 OR C ; $FF for abs, no change neg
 CPL ; $00 for abs, switched for neg
 LD C,A ; transfer result to sign byte.

 CALL L2D8E ; routine INT-STORE to re-write the integer.

 POP DE ; restore STKEND.
 RET ; return.

; ---------------------
; THE 'SIGNUM' FUNCTION
; ---------------------

; (offset: $29 'sgn')
; This routine replaces the last value on the calculator stack,
; which may be in floating point or integer form, with the integer values
; zero if zero, with one if positive and with -minus one if negative.

;; sgn
L3492: CALL L34E9 ; call routine TEST-ZERO and
 RET C ; exit if so as no change is required.

 PUSH DE ; save pointer to STKEND.

 LD DE,$0001 ; the result will be 1.
 INC HL ; skip over the exponent.
 RL (HL) ; rotate the sign bit into the carry flag.
 DEC HL ; step back to point to the result.
 SBC A,A ; byte will be $FF if negative, $00 if positive.
 LD C,A ; store the sign byte in the C register.
 CALL L2D8E ; routine INT-STORE to overwrite the last
 ; value with 0001 and sign.

 POP DE ; restore STKEND.
 RET ; return.

; -----------------
; THE 'IN' FUNCTION
; -----------------
; (offset: $2C 'in')
; This function reads a byte from an input port.

;; in
L34A5: CALL L1E99 ; Routine FIND-INT2 puts port address in BC.
 ; All 16 bits are put on the address line.

 IN A,(C) ; Read the port.

 JR L34B0 ; exit to STACK-A (via IN-PK-STK to save a byte
 ; of instruction code).

; -------------------
; THE 'PEEK' FUNCTION
; -------------------
; (offset: $2B 'peek')
; This function returns the contents of a memory address.
; The entire address space can be peeked including the ROM.

;; peek
L34AC: CALL L1E99 ; routine FIND-INT2 puts address in BC.
 LD A,(BC) ; load contents into A register.

;; IN-PK-STK
L34B0: JP L2D28 ; exit via STACK-A to put the value on the
 ; calculator stack.

; ------------------
; THE 'USR' FUNCTION
; ------------------
; (offset: $2d 'usr-no')
; The USR function followed by a number 0-65535 is the method by which
; the Spectrum invokes machine code programs. This function returns the
; contents of the BC register pair.
; Note. that STACK-BC re-initializes the IY register if a user-written
; program has altered it.

;; usr-no

L34B3: CALL L1E99 ; routine FIND-INT2 to fetch the
 ; supplied address into BC.

 LD HL,L2D2B ; address: STACK-BC is
 PUSH HL ; pushed onto the machine stack.
 PUSH BC ; then the address of the machine code
 ; routine.

 RET ; make an indirect jump to the routine
 ; and, hopefully, to STACK-BC also.

; -------------------------
; THE 'USR STRING' FUNCTION
; -------------------------
; (offset: $19 'usr-$')
; The user function with a one-character string argument, calculates the
; address of the User Defined Graphic character that is in the string.
; As an alternative, the ASCII equivalent, upper or lower case,
; may be supplied. This provides a user-friendly method of redefining
; the 21 User Definable Graphics e.g.
; POKE USR "a", BIN 10000000 will put a dot in the top left corner of the
; character 144.
; Note. the curious double check on the range. With 26 UDGs the first check
; only is necessary. With anything less the second check only is required.
; It is highly likely that the first check was written by Steven Vickers.

;; usr-$
L34BC: CALL L2BF1 ; routine STK-FETCH fetches the string
 ; parameters.
 DEC BC ; decrease BC by
 LD A,B ; one to test
 OR C ; the length.
 JR NZ,L34E7 ; to REPORT-A if not a single character.

 LD A,(DE) ; fetch the character
 CALL L2C8D ; routine ALPHA sets carry if 'A-Z' or 'a-z'.
 JR C,L34D3 ; forward to USR-RANGE if ASCII.

 SUB $90 ; make UDGs range 0-20d
 JR C,L34E7 ; to REPORT-A if too low. e.g. usr " ".

 CP $15 ; Note. this test is not necessary.
 JR NC,L34E7 ; to REPORT-A if higher than 20.

 INC A ; make range 1-21d to match LSBs of ASCII

;; USR-RANGE
L34D3: DEC A ; make range of bits 0-4 start at zero
 ADD A,A ; multiply by eight
 ADD A,A ; and lose any set bits
 ADD A,A ; range now 0 - 25*8
 CP $A8 ; compare to 21*8
 JR NC,L34E7 ; to REPORT-A if originally higher
 ; than 'U','u' or graphics U.

 LD BC,($5C7B) ; fetch the UDG system variable value.
 ADD A,C ; add the offset to character
 LD C,A ; and store back in register C.
 JR NC,L34E4 ; forward to USR-STACK if no overflow.

 INC B ; increment high byte.

;; USR-STACK
L34E4: JP L2D2B ; jump back and exit via STACK-BC to store

; ---

;; REPORT-A
L34E7: RST 08H ; ERROR-1
 DEFB $09 ; Error Report: Invalid argument

; ------------------------------
; THE 'TEST FOR ZERO' SUBROUTINE
; ------------------------------
; Test if top value on calculator stack is zero. The carry flag is set if
; the last value is zero but no registers are altered.
; All five bytes will be zero but first four only need be tested.
; On entry, HL points to the exponent the first byte of the value.

;; TEST-ZERO
L34E9: PUSH HL ; preserve HL which is used to address.
 PUSH BC ; preserve BC which is used as a store.
 LD B,A ; preserve A in B.

 LD A,(HL) ; load first byte to accumulator
 INC HL ; advance.
 OR (HL) ; OR with second byte and clear carry.
 INC HL ; advance.
 OR (HL) ; OR with third byte.
 INC HL ; advance.
 OR (HL) ; OR with fourth byte.

 LD A,B ; restore A without affecting flags.
 POP BC ; restore the saved
 POP HL ; registers.

 RET NZ ; return if not zero and with carry reset.

 SCF ; set the carry flag.
 RET ; return with carry set if zero.

; --------------------------------
; THE 'GREATER THAN ZERO' OPERATOR
; --------------------------------
; (offset: $37 'greater-0')
; Test if the last value on the calculator stack is greater than zero.
; This routine is also called directly from the end-tests of the comparison
; routine.

;; GREATER-0
;; greater-0
L34F9: CALL L34E9 ; routine TEST-ZERO
 RET C ; return if was zero as this
 ; is also the Boolean 'false' value.

 LD A,$FF ; prepare XOR mask for sign bit
 JR L3507 ; forward to SIGN-TO-C
 ; to put sign in carry
 ; (carry will become set if sign is positive)
 ; and then overwrite location with 1 or 0
 ; as appropriate.

; ------------------
; THE 'NOT' FUNCTION
; ------------------
; (offset: $30 'not')
; This overwrites the last value with 1 if it was zero else with zero
; if it was any other value.

;
; e.g. NOT 0 returns 1, NOT 1 returns 0, NOT -3 returns 0.
;
; The subroutine is also called directly from the end-tests of the comparison
; operator.

;; NOT
;; not
L3501: CALL L34E9 ; routine TEST-ZERO sets carry if zero

 JR L350B ; to FP-0/1 to overwrite operand with
 ; 1 if carry is set else to overwrite with zero.

; ------------------------------
; THE 'LESS THAN ZERO' OPERATION
; ------------------------------
; (offset: $36 'less-0')
; Destructively test if last value on calculator stack is less than zero.
; Bit 7 of second byte will be set if so.

;; less-0
L3506: XOR A ; set XOR mask to zero
 ; (carry will become set if sign is negative).

; transfer sign of mantissa to Carry Flag.

;; SIGN-TO-C
L3507: INC HL ; address 2nd byte.
 XOR (HL) ; bit 7 of HL will be set if number is negative.
 DEC HL ; address 1st byte again.
 RLCA ; rotate bit 7 of A to carry.

; ----------------------------
; THE 'ZERO OR ONE' SUBROUTINE
; ----------------------------
; This routine places an integer value of zero or one at the addressed
; location of the calculator stack or MEM area. The value one is written if
; carry is set on entry else zero.

;; FP-0/1
L350B: PUSH HL ; save pointer to the first byte
 LD A,$00 ; load accumulator with zero - without
 ; disturbing flags.
 LD (HL),A ; zero to first byte
 INC HL ; address next
 LD (HL),A ; zero to 2nd byte
 INC HL ; address low byte of integer
 RLA ; carry to bit 0 of A
 LD (HL),A ; load one or zero to low byte.
 RRA ; restore zero to accumulator.
 INC HL ; address high byte of integer.
 LD (HL),A ; put a zero there.
 INC HL ; address fifth byte.
 LD (HL),A ; put a zero there.
 POP HL ; restore pointer to the first byte.
 RET ; return.

; -----------------
; THE 'OR' OPERATOR
; -----------------
; (offset: $07 'or')
; The Boolean OR operator. e.g. X OR Y
; The result is zero if both values are zero else a non-zero value.
;

; e.g. 0 OR 0 returns 0.
; -3 OR 0 returns -3.
; 0 OR -3 returns 1.
; -3 OR 2 returns 1.
;
; A binary operation.
; On entry HL points to first operand (X) and DE to second operand (Y).

;; or
L351B: EX DE,HL ; make HL point to second number
 CALL L34E9 ; routine TEST-ZERO
 EX DE,HL ; restore pointers
 RET C ; return if result was zero - first operand,
 ; now the last value, is the result.

 SCF ; set carry flag
 JR L350B ; back to FP-0/1 to overwrite the first operand
 ; with the value 1.

; ---------------------------------
; THE 'NUMBER AND NUMBER' OPERATION
; ---------------------------------
; (offset: $08 'no-&-no')
; The Boolean AND operator.
;
; e.g. -3 AND 2 returns -3.
; -3 AND 0 returns 0.
; 0 and -2 returns 0.
; 0 and 0 returns 0.
;
; Compare with OR routine above.

;; no-&-no
L3524: EX DE,HL ; make HL address second operand.

 CALL L34E9 ; routine TEST-ZERO sets carry if zero.

 EX DE,HL ; restore pointers.
 RET NC ; return if second non-zero, first is result.

;

 AND A ; else clear carry.
 JR L350B ; back to FP-0/1 to overwrite first operand
 ; with zero for return value.

; ---------------------------------
; THE 'STRING AND NUMBER' OPERATION
; ---------------------------------
; (offset: $10 'str-&-no')
; e.g. "You Win" AND score>99 will return the string if condition is true
; or the null string if false.

;; str-&-no
L352D: EX DE,HL ; make HL point to the number.
 CALL L34E9 ; routine TEST-ZERO.
 EX DE,HL ; restore pointers.
 RET NC ; return if number was not zero - the string
 ; is the result.

; if the number was zero (false) then the null string must be returned by
; altering the length of the string on the calculator stack to zero.

 PUSH DE ; save pointer to the now obsolete number
 ; (which will become the new STKEND)

 DEC DE ; point to the 5th byte of string descriptor.
 XOR A ; clear the accumulator.
 LD (DE),A ; place zero in high byte of length.
 DEC DE ; address low byte of length.
 LD (DE),A ; place zero there - now the null string.

 POP DE ; restore pointer - new STKEND.
 RET ; return.

; ---------------------------
; THE 'COMPARISON' OPERATIONS
; ---------------------------
; (offset: $0A 'no-gr-eql')
; (offset: $0B 'nos-neql')
; (offset: $0C 'no-grtr')
; (offset: $0D 'no-less')
; (offset: $0E 'nos-eql')
; (offset: $11 'str-l-eql')
; (offset: $12 'str-gr-eql')
; (offset: $13 'strs-neql')
; (offset: $14 'str-grtr')
; (offset: $15 'str-less')
; (offset: $16 'strs-eql')

; True binary operations.
; A single entry point is used to evaluate six numeric and six string
; comparisons. On entry, the calculator literal is in the B register and
; the two numeric values, or the two string parameters, are on the
; calculator stack.
; The individual bits of the literal are manipulated to group similar
; operations although the SUB 8 instruction does nothing useful and merely
; alters the string test bit.
; Numbers are compared by subtracting one from the other, strings are
; compared by comparing every character until a mismatch, or the end of one
; or both, is reached.
;
; Numeric Comparisons.
; --------------------
; The 'x>y' example is the easiest as it employs straight-thru logic.
; Number y is subtracted from x and the result tested for greater-0 yielding
; a final value 1 (true) or 0 (false).
; For 'x<y' the same logic is used but the two values are first swapped on the
; calculator stack.
; For 'x=y' NOT is applied to the subtraction result yielding true if the
; difference was zero and false with anything else.
; The first three numeric comparisons are just the opposite of the last three
; so the same processing steps are used and then a final NOT is applied.
;
; literal Test No sub 8 ExOrNot 1st RRCA exch sub ? End-Tests
; ========= ==== == ======== === ======== ======== ==== === = === === ===
; no-l-eql x<=y 09 00000001 dec 00000000 00000000 ---- x-y ? --- >0? NOT
; no-gr-eql x>=y 0A 00000010 dec 00000001 10000000c swap y-x ? --- >0? NOT
; nos-neql x<>y 0B 00000011 dec 00000010 00000001 ---- x-y ? NOT --- NOT
; no-grtr x>y 0C 00000100 - 00000100 00000010 ---- x-y ? --- >0? ---
; no-less x<y 0D 00000101 - 00000101 10000010c swap y-x ? --- >0? ---
; nos-eql x=y 0E 00000110 - 00000110 00000011 ---- x-y ? NOT --- ---
;
; comp -> C/F
; ==== ===
; str-l-eql x$<=y$ 11 00001001 dec 00001000 00000100 ---- xy 0 !or >0? NOT
; str-gr-eql x$>=y$ 12 00001010 dec 00001001 10000100c swap yx 0 !or >0? NOT

; strs-neql x$<>y$ 13 00001011 dec 00001010 00000101 ---- xy 0 !or >0? NOT
; str-grtr x$>y$ 14 00001100 - 00001100 00000110 ---- xy 0 !or >0? ---
; str-less x$<y$ 15 00001101 - 00001101 10000110c swap yx 0 !or >0? ---
; strs-eql x$=y$ 16 00001110 - 00001110 00000111 ---- xy 0 !or >0? ---
;
; String comparisons are a little different in that the eql/neql carry flag
; from the 2nd RRCA is, as before, fed into the first of the end tests but
; along the way it gets modified by the comparison process. The result on the
; stack always starts off as zero and the carry fed in determines if NOT is
; applied to it. So the only time the greater-0 test is applied is if the
; stack holds zero which is not very efficient as the test will always yield
; zero. The most likely explanation is that there were once separate end tests
; for numbers and strings.

;; no-l-eql,etc.
L353B: LD A,B ; transfer literal to accumulator.
 SUB $08 ; subtract eight - which is not useful.

 BIT 2,A ; isolate '>', '<', '='.

 JR NZ,L3543 ; skip to EX-OR-NOT with these.

 DEC A ; else make $00-$02, $08-$0A to match bits 0-2.

;; EX-OR-NOT
L3543: RRCA ; the first RRCA sets carry for a swap.
 JR NC,L354E ; forward to NU-OR-STR with other 8 cases

; for the other 4 cases the two values on the calculator stack are exchanged.

 PUSH AF ; save A and carry.
 PUSH HL ; save HL - pointer to first operand.
 ; (DE points to second operand).

 CALL L343C ; routine exchange swaps the two values.
 ; (HL = second operand, DE = STKEND)

 POP DE ; DE = first operand
 EX DE,HL ; as we were.
 POP AF ; restore A and carry.

; Note. it would be better if the 2nd RRCA preceded the string test.
; It would save two duplicate bytes and if we also got rid of that sub 8
; at the beginning we wouldn't have to alter which bit we test.

;; NU-OR-STR
L354E: BIT 2,A ; test if a string comparison.
 JR NZ,L3559 ; forward to STRINGS if so.

; continue with numeric comparisons.

 RRCA ; 2nd RRCA causes eql/neql to set carry.
 PUSH AF ; save A and carry

 CALL L300F ; routine subtract leaves result on stack.
 JR L358C ; forward to END-TESTS

; ---

;; STRINGS
L3559: RRCA ; 2nd RRCA causes eql/neql to set carry.
 PUSH AF ; save A and carry.

 CALL L2BF1 ; routine STK-FETCH gets 2nd string params

 PUSH DE ; save start2 *.
 PUSH BC ; and the length.

 CALL L2BF1 ; routine STK-FETCH gets 1st string
 ; parameters - start in DE, length in BC.
 POP HL ; restore length of second to HL.

; A loop is now entered to compare, by subtraction, each corresponding character
; of the strings. For each successful match, the pointers are incremented and
; the lengths decreased and the branch taken back to here. If both string
; remainders become null at the same time, then an exact match exists.

;; BYTE-COMP
L3564: LD A,H ; test if the second string
 OR L ; is the null string and hold flags.

 EX (SP),HL ; put length2 on stack, bring start2 to HL *.
 LD A,B ; hi byte of length1 to A

 JR NZ,L3575 ; forward to SEC-PLUS if second not null.

 OR C ; test length of first string.

;; SECND-LOW
L356B: POP BC ; pop the second length off stack.
 JR Z,L3572 ; forward to BOTH-NULL if first string is also
 ; of zero length.

; the true condition - first is longer than second (SECND-LESS)

 POP AF ; restore carry (set if eql/neql)
 CCF ; complement carry flag.
 ; Note. equality becomes false.
 ; Inequality is true. By swapping or applying
 ; a terminal 'not', all comparisons have been
 ; manipulated so that this is success path.
 JR L3588 ; forward to leave via STR-TEST

; ---
; the branch was here with a match

;; BOTH-NULL
L3572: POP AF ; restore carry - set for eql/neql
 JR L3588 ; forward to STR-TEST

; ---
; the branch was here when 2nd string not null and low byte of first is yet
; to be tested.

;; SEC-PLUS
L3575: OR C ; test the length of first string.
 JR Z,L3585 ; forward to FRST-LESS if length is zero.

; both strings have at least one character left.

 LD A,(DE) ; fetch character of first string.
 SUB (HL) ; subtract with that of 2nd string.
 JR C,L3585 ; forward to FRST-LESS if carry set

 JR NZ,L356B ; back to SECND-LOW and then STR-TEST
 ; if not exact match.

 DEC BC ; decrease length of 1st string.

 INC DE ; increment 1st string pointer.

 INC HL ; increment 2nd string pointer.
 EX (SP),HL ; swap with length on stack
 DEC HL ; decrement 2nd string length
 JR L3564 ; back to BYTE-COMP

; ---
; the false condition.

;; FRST-LESS
L3585: POP BC ; discard length
 POP AF ; pop A
 AND A ; clear the carry for false result.

; ---
; exact match and x$>y$ rejoin here

;; STR-TEST
L3588: PUSH AF ; save A and carry

 RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero an initial false value.
 DEFB $38 ;;end-calc

; both numeric and string paths converge here.

;; END-TESTS
L358C: POP AF ; pop carry - will be set if eql/neql
 PUSH AF ; save it again.

 CALL C,L3501 ; routine NOT sets true(1) if equal(0)
 ; or, for strings, applies true result.

 POP AF ; pop carry and
 PUSH AF ; save A

 CALL NC,L34F9 ; routine GREATER-0 tests numeric subtraction
 ; result but also needlessly tests the string
 ; value for zero - it must be.

 POP AF ; pop A
 RRCA ; the third RRCA - test for '<=', '>=' or '<>'.
 CALL NC,L3501 ; apply a terminal NOT if so.
 RET ; return.

; ------------------------------------
; THE 'STRING CONCATENATION' OPERATION
; ------------------------------------
; (offset: $17 'strs-add')
; This literal combines two strings into one e.g. LET a$ = b$ + c$
; The two parameters of the two strings to be combined are on the stack.

;; strs-add
L359C: CALL L2BF1 ; routine STK-FETCH fetches string parameters
 ; and deletes calculator stack entry.
 PUSH DE ; save start address.
 PUSH BC ; and length.

 CALL L2BF1 ; routine STK-FETCH for first string
 POP HL ; re-fetch first length
 PUSH HL ; and save again
 PUSH DE ; save start of second string
 PUSH BC ; and its length.

 ADD HL,BC ; add the two lengths.
 LD B,H ; transfer to BC
 LD C,L ; and create
 RST 30H ; BC-SPACES in workspace.
 ; DE points to start of space.

 CALL L2AB2 ; routine STK-STO-$ stores parameters
 ; of new string updating STKEND.

 POP BC ; length of first
 POP HL ; address of start
 LD A,B ; test for
 OR C ; zero length.
 JR Z,L35B7 ; to OTHER-STR if null string

 LDIR ; copy string to workspace.

;; OTHER-STR
L35B7: POP BC ; now second length
 POP HL ; and start of string
 LD A,B ; test this one
 OR C ; for zero length
 JR Z,L35BF ; skip forward to STK-PNTRS if so as complete.

 LDIR ; else copy the bytes.
 ; and continue into next routine which
 ; sets the calculator stack pointers.

; -----------------------------------
; THE 'SET STACK POINTERS' SUBROUTINE
; -----------------------------------
; Register DE is set to STKEND and HL, the result pointer, is set to five
; locations below this.
; This routine is used when it is inconvenient to save these values at the
; time the calculator stack is manipulated due to other activity on the
; machine stack.
; This routine is also used to terminate the VAL and READ-IN routines for
; the same reason and to initialize the calculator stack at the start of
; the CALCULATE routine.

;; STK-PNTRS
L35BF: LD HL,($5C65) ; fetch STKEND value from system variable.
 LD DE,$FFFB ; the value -5
 PUSH HL ; push STKEND value.

 ADD HL,DE ; subtract 5 from HL.

 POP DE ; pop STKEND to DE.
 RET ; return.

; -------------------
; THE 'CHR$' FUNCTION
; -------------------
; (offset: $2f 'chr$')
; This function returns a single character string that is a result of
; converting a number in the range 0-255 to a string e.g. CHR$ 65 = "A".

;; chrs
L35C9: CALL L2DD5 ; routine FP-TO-A puts the number in A.

 JR C,L35DC ; forward to REPORT-Bd if overflow
 JR NZ,L35DC ; forward to REPORT-Bd if negative

 PUSH AF ; save the argument.

 LD BC,$0001 ; one space required.
 RST 30H ; BC-SPACES makes DE point to start

 POP AF ; restore the number.

 LD (DE),A ; and store in workspace

 CALL L2AB2 ; routine STK-STO-$ stacks descriptor.

 EX DE,HL ; make HL point to result and DE to STKEND.
 RET ; return.

; ---

;; REPORT-Bd
L35DC: RST 08H ; ERROR-1
 DEFB $0A ; Error Report: Integer out of range

; ----------------------------
; THE 'VAL and VAL$' FUNCTIONS
; ----------------------------
; (offset: $1d 'val')
; (offset: $18 'val$')
; VAL treats the characters in a string as a numeric expression.
; e.g. VAL "2.3" = 2.3, VAL "2+4" = 6, VAL ("2" + "4") = 24.
; VAL$ treats the characters in a string as a string expression.
; e.g. VAL$ (z$+"(2)") = a$(2) if z$ happens to be "a$".

;; val
;; val$
L35DE: LD HL,($5C5D) ; fetch value of system variable CH_ADD
 PUSH HL ; and save on the machine stack.
 LD A,B ; fetch the literal (either $1D or $18).
 ADD A,$E3 ; add $E3 to form $00 (setting carry) or $FB.
 SBC A,A ; now form $FF bit 6 = numeric result
 ; or $00 bit 6 = string result.
 PUSH AF ; save this mask on the stack

 CALL L2BF1 ; routine STK-FETCH fetches the string operand
 ; from calculator stack.

 PUSH DE ; save the address of the start of the string.
 INC BC ; increment the length for a carriage return.

 RST 30H ; BC-SPACES creates the space in workspace.
 POP HL ; restore start of string to HL.
 LD ($5C5D),DE ; load CH_ADD with start DE in workspace.

 PUSH DE ; save the start in workspace
 LDIR ; copy string from program or variables or
 ; workspace to the workspace area.
 EX DE,HL ; end of string + 1 to HL
 DEC HL ; decrement HL to point to end of new area.
 LD (HL),$0D ; insert a carriage return at end.
 RES 7,(IY+$01) ; update FLAGS - signal checking syntax.
 CALL L24FB ; routine SCANNING evaluates string
 ; expression and result.

 RST 18H ; GET-CHAR fetches next character.
 CP $0D ; is it the expected carriage return ?
 JR NZ,L360C ; forward to V-RPORT-C if not
 ; 'Nonsense in BASIC'.

 POP HL ; restore start of string in workspace.
 POP AF ; restore expected result flag (bit 6).
 XOR (IY+$01) ; xor with FLAGS now updated by SCANNING.
 AND $40 ; test bit 6 - should be zero if result types
 ; match.

;; V-RPORT-C
L360C: JP NZ,L1C8A ; jump back to REPORT-C with a result mismatch.

 LD ($5C5D),HL ; set CH_ADD to the start of the string again.
 SET 7,(IY+$01) ; update FLAGS - signal running program.
 CALL L24FB ; routine SCANNING evaluates the string
 ; in full leaving result on calculator stack.

 POP HL ; restore saved character address in program.
 LD ($5C5D),HL ; and reset the system variable CH_ADD.

 JR L35BF ; back to exit via STK-PNTRS.
 ; resetting the calculator stack pointers
 ; HL and DE from STKEND as it wasn't possible
 ; to preserve them during this routine.

; -------------------
; THE 'STR$' FUNCTION
; -------------------
; (offset: $2e 'str$')
; This function produces a string comprising the characters that would appear
; if the numeric argument were printed.
; e.g. STR$ (1/10) produces "0.1".

;; str$
L361F: LD BC,$0001 ; create an initial byte in workspace
 RST 30H ; using BC-SPACES restart.

 LD ($5C5B),HL ; set system variable K_CUR to new location.
 PUSH HL ; and save start on machine stack also.

 LD HL,($5C51) ; fetch value of system variable CURCHL
 PUSH HL ; and save that too.

 LD A,$FF ; select system channel 'R'.
 CALL L1601 ; routine CHAN-OPEN opens it.
 CALL L2DE3 ; routine PRINT-FP outputs the number to
 ; workspace updating K-CUR.

 POP HL ; restore current channel.
 CALL L1615 ; routine CHAN-FLAG resets flags.

 POP DE ; fetch saved start of string to DE.
 LD HL,($5C5B) ; load HL with end of string from K_CUR.

 AND A ; prepare for true subtraction.
 SBC HL,DE ; subtract start from end to give length.
 LD B,H ; transfer the length to
 LD C,L ; the BC register pair.

 CALL L2AB2 ; routine STK-STO-$ stores string parameters
 ; on the calculator stack.

 EX DE,HL ; HL = last value, DE = STKEND.
 RET ; return.

; ------------------------

; THE 'READ-IN' SUBROUTINE
; ------------------------
; (offset: $1a 'read-in')
; This is the calculator literal used by the INKEY$ function when a '#'
; is encountered after the keyword.
; INKEY$ # does not interact correctly with the keyboard, #0 or #1, and
; its uses are for other channels.

;; read-in
L3645: CALL L1E94 ; routine FIND-INT1 fetches stream to A
 CP $10 ; compare with 16 decimal.
 JP NC,L1E9F ; JUMP to REPORT-Bb if not in range 0 - 15.
 ; 'Integer out of range'
 ; (REPORT-Bd is within range)

 LD HL,($5C51) ; fetch current channel CURCHL
 PUSH HL ; save it

 CALL L1601 ; routine CHAN-OPEN opens channel

 CALL L15E6 ; routine INPUT-AD - the channel must have an
 ; input stream or else error here from stream
 ; stub.
 LD BC,$0000 ; initialize length of string to zero
 JR NC,L365F ; forward to R-I-STORE if no key detected.

 INC C ; increase length to one.

 RST 30H ; BC-SPACES creates space for one character
 ; in workspace.
 LD (DE),A ; the character is inserted.

;; R-I-STORE
L365F: CALL L2AB2 ; routine STK-STO-$ stacks the string
 ; parameters.
 POP HL ; restore current channel address

 CALL L1615 ; routine CHAN-FLAG resets current channel
 ; system variable and flags.

 JP L35BF ; jump back to STK-PNTRS

; -------------------
; THE 'CODE' FUNCTION
; -------------------
; (offset: $1c 'code')
; Returns the ASCII code of a character or first character of a string
; e.g. CODE "Aardvark" = 65, CODE "" = 0.

;; code
L3669: CALL L2BF1 ; routine STK-FETCH to fetch and delete the
 ; string parameters.
 ; DE points to the start, BC holds the length.

 LD A,B ; test length
 OR C ; of the string.
 JR Z,L3671 ; skip to STK-CODE with zero if the null string.

 LD A,(DE) ; else fetch the first character.

;; STK-CODE
L3671: JP L2D28 ; jump back to STACK-A (with memory check)

; ------------------

; THE 'LEN' FUNCTION
; ------------------
; (offset: $1e 'len')
; Returns the length of a string.
; In Sinclair BASIC strings can be more than twenty thousand characters long
; so a sixteen-bit register is required to store the length

;; len
L3674: CALL L2BF1 ; Routine STK-FETCH to fetch and delete the
 ; string parameters from the calculator stack.
 ; Register BC now holds the length of string.

 JP L2D2B ; Jump back to STACK-BC to save result on the
 ; calculator stack (with memory check).

; -------------------------------------
; THE 'DECREASE THE COUNTER' SUBROUTINE
; -------------------------------------
; (offset: $35 'dec-jr-nz')
; The calculator has an instruction that decrements a single-byte
; pseudo-register and makes consequential relative jumps just like
; the Z80's DJNZ instruction.

;; dec-jr-nz
L367A: EXX ; switch in set that addresses code

 PUSH HL ; save pointer to offset byte
 LD HL,$5C67 ; address BREG in system variables
 DEC (HL) ; decrement it
 POP HL ; restore pointer

 JR NZ,L3687 ; to JUMP-2 if not zero

 INC HL ; step past the jump length.
 EXX ; switch in the main set.
 RET ; return.

; Note. as a general rule the calculator avoids using the IY register
; otherwise the cumbersome 4 instructions in the middle could be replaced by
; dec (iy+$2d) - three bytes instead of six.

; ---------------------
; THE 'JUMP' SUBROUTINE
; ---------------------
; (offset: $33 'jump')
; This enables the calculator to perform relative jumps just like the Z80
; chip's JR instruction.

;; jump
;; JUMP
L3686: EXX ; switch in pointer set

;; JUMP-2
L3687: LD E,(HL) ; the jump byte 0-127 forward, 128-255 back.
 LD A,E ; transfer to accumulator.
 RLA ; if backward jump, carry is set.
 SBC A,A ; will be $FF if backward or $00 if forward.
 LD D,A ; transfer to high byte.
 ADD HL,DE ; advance calculator pointer forward or back.

 EXX ; switch back.
 RET ; return.

; --------------------------
; THE 'JUMP-TRUE' SUBROUTINE
; --------------------------
; (offset: $00 'jump-true')
; This enables the calculator to perform conditional relative jumps dependent
; on whether the last test gave a true result.

;; jump-true
L368F: INC DE ; Collect the
 INC DE ; third byte
 LD A,(DE) ; of the test
 DEC DE ; result and
 DEC DE ; backtrack.

 AND A ; Is result 0 or 1 ?
 JR NZ,L3686 ; Back to JUMP if true (1).

 EXX ; Else switch in the pointer set.
 INC HL ; Step past the jump length.
 EXX ; Switch in the main set.
 RET ; Return.

; -------------------------
; THE 'END-CALC' SUBROUTINE
; -------------------------
; (offset: $38 'end-calc')
; The end-calc literal terminates a mini-program written in the Spectrum's
; internal language.

;; end-calc
L369B: POP AF ; Drop the calculator return address RE-ENTRY
 EXX ; Switch to the other set.

 EX (SP),HL ; Transfer H'L' to machine stack for the
 ; return address.
 ; When exiting recursion, then the previous
 ; pointer is transferred to H'L'.

 EXX ; Switch back to main set.
 RET ; Return.

; ------------------------
; THE 'MODULUS' SUBROUTINE
; ------------------------
; (offset: $32 'n-mod-m')
; (n1,n2 -- r,q)
; Similar to FORTH's 'divide mod' /MOD
; On the Spectrum, this is only used internally by the RND function and could
; have been implemented inline. On the ZX81, this calculator routine was also
; used by PRINT-FP.

;; n-mod-m
L36A0: RST 28H ;; FP-CALC 17, 3.
 DEFB $C0 ;;st-mem-0 17, 3.
 DEFB $02 ;;delete 17.
 DEFB $31 ;;duplicate 17, 17.
 DEFB $E0 ;;get-mem-0 17, 17, 3.
 DEFB $05 ;;division 17, 17/3.
 DEFB $27 ;;int 17, 5.
 DEFB $E0 ;;get-mem-0 17, 5, 3.
 DEFB $01 ;;exchange 17, 3, 5.
 DEFB $C0 ;;st-mem-0 17, 3, 5.
 DEFB $04 ;;multiply 17, 15.

 DEFB $03 ;;subtract 2.
 DEFB $E0 ;;get-mem-0 2, 5.
 DEFB $38 ;;end-calc 2, 5.

 RET ; return.

; ------------------
; THE 'INT' FUNCTION
; ------------------
; (offset $27: 'int')
; This function returns the integer of x, which is just the same as truncate
; for positive numbers. The truncate literal truncates negative numbers
; upwards so that -3.4 gives -3 whereas the BASIC INT function has to
; truncate negative numbers down so that INT -3.4 is -4.
; It is best to work through using, say, +-3.4 as examples.

;; int
L36AF: RST 28H ;; FP-CALC x. (= 3.4 or -3.4).
 DEFB $31 ;;duplicate x, x.
 DEFB $36 ;;less-0 x, (1/0)
 DEFB $00 ;;jump-true x, (1/0)
 DEFB $04 ;;to L36B7, X-NEG

 DEFB $3A ;;truncate trunc 3.4 = 3.
 DEFB $38 ;;end-calc 3.

 RET ; return with + int x on stack.

; ---

;; X-NEG
L36B7: DEFB $31 ;;duplicate -3.4, -3.4.
 DEFB $3A ;;truncate -3.4, -3.
 DEFB $C0 ;;st-mem-0 -3.4, -3.
 DEFB $03 ;;subtract -.4
 DEFB $E0 ;;get-mem-0 -.4, -3.
 DEFB $01 ;;exchange -3, -.4.
 DEFB $30 ;;not -3, (0).
 DEFB $00 ;;jump-true -3.
 DEFB $03 ;;to L36C2, EXIT -3.

 DEFB $A1 ;;stk-one -3, 1.
 DEFB $03 ;;subtract -4.

;; EXIT
L36C2: DEFB $38 ;;end-calc -4.

 RET ; return.

; ------------------
; THE 'EXP' FUNCTION
; ------------------
; (offset $26: 'exp')
; The exponential function EXP x is equal to e^x, where e is the mathematical
; name for a number approximated to 2.718281828.
; ERROR 6 if argument is more than about 88.

;; EXP
;; exp
L36C4: RST 28H ;; FP-CALC
 DEFB $3D ;;re-stack

 DEFB $34 ;;stk-data
 DEFB $F1 ;;Exponent: $81, Bytes: 4
 DEFB $38,$AA,$3B,$29 ;;
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $27 ;;int
 DEFB $C3 ;;st-mem-3
 DEFB $03 ;;subtract
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract
 DEFB $88 ;;series-08
 DEFB $13 ;;Exponent: $63, Bytes: 1
 DEFB $36 ;;(+00,+00,+00)
 DEFB $58 ;;Exponent: $68, Bytes: 2
 DEFB $65,$66 ;;(+00,+00)
 DEFB $9D ;;Exponent: $6D, Bytes: 3
 DEFB $78,$65,$40 ;;(+00)
 DEFB $A2 ;;Exponent: $72, Bytes: 3
 DEFB $60,$32,$C9 ;;(+00)
 DEFB $E7 ;;Exponent: $77, Bytes: 4
 DEFB $21,$F7,$AF,$24 ;;
 DEFB $EB ;;Exponent: $7B, Bytes: 4
 DEFB $2F,$B0,$B0,$14 ;;
 DEFB $EE ;;Exponent: $7E, Bytes: 4
 DEFB $7E,$BB,$94,$58 ;;
 DEFB $F1 ;;Exponent: $81, Bytes: 4
 DEFB $3A,$7E,$F8,$CF ;;
 DEFB $E3 ;;get-mem-3
 DEFB $38 ;;end-calc

 CALL L2DD5 ; routine FP-TO-A
 JR NZ,L3705 ; to N-NEGTV

 JR C,L3703 ; to REPORT-6b
 ; 'Number too big'

 ADD A,(HL) ;
 JR NC,L370C ; to RESULT-OK

;; REPORT-6b
L3703: RST 08H ; ERROR-1
 DEFB $05 ; Error Report: Number too big

; ---

;; N-NEGTV
L3705: JR C,L370E ; to RSLT-ZERO

 SUB (HL) ;
 JR NC,L370E ; to RSLT-ZERO

 NEG ; Negate

;; RESULT-OK
L370C: LD (HL),A ;
 RET ; return.

; ---

;; RSLT-ZERO

L370E: RST 28H ;; FP-CALC
 DEFB $02 ;;delete
 DEFB $A0 ;;stk-zero
 DEFB $38 ;;end-calc

 RET ; return.

; --------------------------------
; THE 'NATURAL LOGARITHM' FUNCTION
; --------------------------------
; (offset $25: 'ln')
; Function to calculate the natural logarithm (to the base e).
; e.g. LN EXP 5.3 = 5.3
; Error A if the argument is 0 or negative.

;; ln
L3713: RST 28H ;; FP-CALC
 DEFB $3D ;;re-stack
 DEFB $31 ;;duplicate
 DEFB $37 ;;greater-0
 DEFB $00 ;;jump-true
 DEFB $04 ;;to L371C, VALID

 DEFB $38 ;;end-calc

;; REPORT-Ab
L371A: RST 08H ; ERROR-1
 DEFB $09 ; Error Report: Invalid argument

;; VALID
L371C: DEFB $A0 ;;stk-zero
 DEFB $02 ;;delete
 DEFB $38 ;;end-calc
 LD A,(HL) ;

 LD (HL),$80 ;
 CALL L2D28 ; routine STACK-A

 RST 28H ;; FP-CALC
 DEFB $34 ;;stk-data
 DEFB $38 ;;Exponent: $88, Bytes: 1
 DEFB $00 ;;(+00,+00,+00)
 DEFB $03 ;;subtract
 DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $34 ;;stk-data
 DEFB $F0 ;;Exponent: $80, Bytes: 4
 DEFB $4C,$CC,$CC,$CD ;;
 DEFB $03 ;;subtract
 DEFB $37 ;;greater-0
 DEFB $00 ;;jump-true
 DEFB $08 ;;to L373D, GRE.8

 DEFB $01 ;;exchange
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract
 DEFB $01 ;;exchange
 DEFB $38 ;;end-calc

 INC (HL) ;

 RST 28H ;; FP-CALC

;; GRE.8
L373D: DEFB $01 ;;exchange
 DEFB $34 ;;stk-data
 DEFB $F0 ;;Exponent: $80, Bytes: 4
 DEFB $31,$72,$17,$F8 ;;
 DEFB $04 ;;multiply
 DEFB $01 ;;exchange
 DEFB $A2 ;;stk-half
 DEFB $03 ;;subtract
 DEFB $A2 ;;stk-half
 DEFB $03 ;;subtract
 DEFB $31 ;;duplicate
 DEFB $34 ;;stk-data
 DEFB $32 ;;Exponent: $82, Bytes: 1
 DEFB $20 ;;(+00,+00,+00)
 DEFB $04 ;;multiply
 DEFB $A2 ;;stk-half
 DEFB $03 ;;subtract
 DEFB $8C ;;series-0C
 DEFB $11 ;;Exponent: $61, Bytes: 1
 DEFB $AC ;;(+00,+00,+00)
 DEFB $14 ;;Exponent: $64, Bytes: 1
 DEFB $09 ;;(+00,+00,+00)
 DEFB $56 ;;Exponent: $66, Bytes: 2
 DEFB $DA,$A5 ;;(+00,+00)
 DEFB $59 ;;Exponent: $69, Bytes: 2
 DEFB $30,$C5 ;;(+00,+00)
 DEFB $5C ;;Exponent: $6C, Bytes: 2
 DEFB $90,$AA ;;(+00,+00)
 DEFB $9E ;;Exponent: $6E, Bytes: 3
 DEFB $70,$6F,$61 ;;(+00)
 DEFB $A1 ;;Exponent: $71, Bytes: 3
 DEFB $CB,$DA,$96 ;;(+00)
 DEFB $A4 ;;Exponent: $74, Bytes: 3
 DEFB $31,$9F,$B4 ;;(+00)
 DEFB $E7 ;;Exponent: $77, Bytes: 4
 DEFB $A0,$FE,$5C,$FC ;;
 DEFB $EA ;;Exponent: $7A, Bytes: 4
 DEFB $1B,$43,$CA,$36 ;;
 DEFB $ED ;;Exponent: $7D, Bytes: 4
 DEFB $A7,$9C,$7E,$5E ;;
 DEFB $F0 ;;Exponent: $80, Bytes: 4
 DEFB $6E,$23,$80,$93 ;;
 DEFB $04 ;;multiply
 DEFB $0F ;;addition
 DEFB $38 ;;end-calc

 RET ; return.

; -----------------------------
; THE 'TRIGONOMETRIC' FUNCTIONS
; -----------------------------
; Trigonometry is rocket science. It is also used by carpenters and pyramid
; builders.
; Some uses can be quite abstract but the principles can be seen in simple
; right-angled triangles. Triangles have some special properties -
;
; 1) The sum of the three angles is always PI radians (180 degrees).
; Very helpful if you know two angles and wish to find the third.
; 2) In any right-angled triangle the sum of the squares of the two shorter
; sides is equal to the square of the longest side opposite the right-angle.
; Very useful if you know the length of two sides and wish to know the

; length of the third side.
; 3) Functions sine, cosine and tangent enable one to calculate the length
; of an unknown side when the length of one other side and an angle is
; known.
; 4) Functions arcsin, arccosine and arctan enable one to calculate an unknown
; angle when the length of two of the sides is known.

; --------------------------------
; THE 'REDUCE ARGUMENT' SUBROUTINE
; --------------------------------
; (offset $39: 'get-argt')
;
; This routine performs two functions on the angle, in radians, that forms
; the argument to the sine and cosine functions.
; First it ensures that the angle 'wraps round'. That if a ship turns through
; an angle of, say, 3*PI radians (540 degrees) then the net effect is to turn
; through an angle of PI radians (180 degrees).
; Secondly it converts the angle in radians to a fraction of a right angle,
; depending within which quadrant the angle lies, with the periodicity
; resembling that of the desired sine value.
; The result lies in the range -1 to +1.
;
; 90 deg.
;
; (pi/2)
; II +1 I
; |
; sin+ |\ | /| sin+
; cos- | \ | / | cos+
; tan- | \ | / | tan+
; | \|/) |
; 180 deg. (pi) 0 -|----+----|-- 0 (0) 0 degrees
; | /|\ |
; sin- | / | \ | sin-
; cos- | / | \ | cos+
; tan+ |/ | \| tan-
; |
; III -1 IV
; (3pi/2)
;
; 270 deg.
;

;; get-argt
L3783: RST 28H ;; FP-CALC X.
 DEFB $3D ;;re-stack
 DEFB $34 ;;stk-data
 DEFB $EE ;;Exponent: $7E,
 ;;Bytes: 4
 DEFB $22,$F9,$83,$6E ;; X, 1/(2*PI)
 DEFB $04 ;;multiply X/(2*PI) = fraction
 DEFB $31 ;;duplicate
 DEFB $A2 ;;stk-half
 DEFB $0F ;;addition
 DEFB $27 ;;int

 DEFB $03 ;;subtract now range -.5 to .5

 DEFB $31 ;;duplicate
 DEFB $0F ;;addition now range -1 to 1.
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition now range -2 to +2.

; quadrant I (0 to +1) and quadrant IV (-1 to 0) are now correct.

; quadrant II ranges +1 to +2.
; quadrant III ranges -2 to -1.

 DEFB $31 ;;duplicate Y, Y.
 DEFB $2A ;;abs Y, abs(Y). range 1 to 2
 DEFB $A1 ;;stk-one Y, abs(Y), 1.
 DEFB $03 ;;subtract Y, abs(Y)-1. range 0 to 1
 DEFB $31 ;;duplicate Y, Z, Z.
 DEFB $37 ;;greater-0 Y, Z, (1/0).

 DEFB $C0 ;;st-mem-0 store as possible sign
 ;; for cosine function.

 DEFB $00 ;;jump-true
 DEFB $04 ;;to L37A1, ZPLUS with quadrants II and III.

; else the angle lies in quadrant I or IV and value Y is already correct.

 DEFB $02 ;;delete Y. delete the test value.
 DEFB $38 ;;end-calc Y.

 RET ; return. with Q1 and Q4 >>>

; ---

; the branch was here with quadrants II (0 to 1) and III (1 to 0).
; Y will hold -2 to -1 if this is quadrant III.

;; ZPLUS
L37A1: DEFB $A1 ;;stk-one Y, Z, 1.
 DEFB $03 ;;subtract Y, Z-1. Q3 = 0 to -1
 DEFB $01 ;;exchange Z-1, Y.
 DEFB $36 ;;less-0 Z-1, (1/0).
 DEFB $00 ;;jump-true Z-1.
 DEFB $02 ;;to L37A8, YNEG
 ;;if angle in quadrant III

; else angle is within quadrant II (-1 to 0)

 DEFB $1B ;;negate range +1 to 0.

;; YNEG
L37A8: DEFB $38 ;;end-calc quadrants II and III correct.

 RET ; return.

; ---------------------
; THE 'COSINE' FUNCTION
; ---------------------
; (offset $20: 'cos')
; Cosines are calculated as the sine of the opposite angle rectifying the
; sign depending on the quadrant rules.
;
;
; /|
; h /y|
; / |o
; /x |
; /----|
; a
;
; The cosine of angle x is the adjacent side (a) divided by the hypotenuse 1.
; However if we examine angle y then a/h is the sine of that angle.

; Since angle x plus angle y equals a right-angle, we can find angle y by
; subtracting angle x from pi/2.
; However it's just as easy to reduce the argument first and subtract the
; reduced argument from the value 1 (a reduced right-angle).
; It's even easier to subtract 1 from the angle and rectify the sign.
; In fact, after reducing the argument, the absolute value of the argument
; is used and rectified using the test result stored in mem-0 by 'get-argt'
; for that purpose.
;

;; cos
L37AA: RST 28H ;; FP-CALC angle in radians.
 DEFB $39 ;;get-argt X reduce -1 to +1

 DEFB $2A ;;abs ABS X. 0 to 1
 DEFB $A1 ;;stk-one ABS X, 1.
 DEFB $03 ;;subtract now opposite angle
 ;; although sign is -ve.

 DEFB $E0 ;;get-mem-0 fetch the sign indicator
 DEFB $00 ;;jump-true
 DEFB $06 ;;fwd to L37B7, C-ENT
 ;;forward to common code if in QII or QIII.

 DEFB $1B ;;negate else make sign +ve.
 DEFB $33 ;;jump
 DEFB $03 ;;fwd to L37B7, C-ENT
 ;; with quadrants I and IV.

; -------------------
; THE 'SINE' FUNCTION
; -------------------
; (offset $1F: 'sin')
; This is a fundamental transcendental function from which others such as cos
; and tan are directly, or indirectly, derived.
; It uses the series generator to produce Chebyshev polynomials.
;
;
; /|
; 1 / |
; / |x
; /a |
; /----|
; y
;
; The 'get-argt' function is designed to modify the angle and its sign
; in line with the desired sine value and afterwards it can launch straight
; into common code.

;; sin
L37B5: RST 28H ;; FP-CALC angle in radians
 DEFB $39 ;;get-argt reduce - sign now correct.

;; C-ENT
L37B7: DEFB $31 ;;duplicate
 DEFB $31 ;;duplicate
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract

 DEFB $86 ;;series-06
 DEFB $14 ;;Exponent: $64, Bytes: 1

 DEFB $E6 ;;(+00,+00,+00)
 DEFB $5C ;;Exponent: $6C, Bytes: 2
 DEFB $1F,$0B ;;(+00,+00)
 DEFB $A3 ;;Exponent: $73, Bytes: 3
 DEFB $8F,$38,$EE ;;(+00)
 DEFB $E9 ;;Exponent: $79, Bytes: 4
 DEFB $15,$63,$BB,$23 ;;
 DEFB $EE ;;Exponent: $7E, Bytes: 4
 DEFB $92,$0D,$CD,$ED ;;
 DEFB $F1 ;;Exponent: $81, Bytes: 4
 DEFB $23,$5D,$1B,$EA ;;
 DEFB $04 ;;multiply
 DEFB $38 ;;end-calc

 RET ; return.

; ----------------------
; THE 'TANGENT' FUNCTION
; ----------------------
; (offset $21: 'tan')
;
; Evaluates tangent x as sin(x) / cos(x).
;
;
; /|
; h / |
; / |o
; /x |
; /----|
; a
;
; the tangent of angle x is the ratio of the length of the opposite side
; divided by the length of the adjacent side. As the opposite length can
; be calculates using sin(x) and the adjacent length using cos(x) then
; the tangent can be defined in terms of the previous two functions.

; Error 6 if the argument, in radians, is too close to one like pi/2
; which has an infinite tangent. e.g. PRINT TAN (PI/2) evaluates as 1/0.
; Similarly PRINT TAN (3*PI/2), TAN (5*PI/2) etc.

;; tan
L37DA: RST 28H ;; FP-CALC x.
 DEFB $31 ;;duplicate x, x.
 DEFB $1F ;;sin x, sin x.
 DEFB $01 ;;exchange sin x, x.
 DEFB $20 ;;cos sin x, cos x.
 DEFB $05 ;;division sin x/cos x (= tan x).
 DEFB $38 ;;end-calc tan x.

 RET ; return.

; ---------------------
; THE 'ARCTAN' FUNCTION
; ---------------------
; (Offset $24: 'atn')
; the inverse tangent function with the result in radians.
; This is a fundamental transcendental function from which others such as asn
; and acs are directly, or indirectly, derived.
; It uses the series generator to produce Chebyshev polynomials.

;; atn
L37E2: CALL L3297 ; routine re-stack
 LD A,(HL) ; fetch exponent byte.
 CP $81 ; compare to that for 'one'

 JR C,L37F8 ; forward, if less, to SMALL

 RST 28H ;; FP-CALC
 DEFB $A1 ;;stk-one
 DEFB $1B ;;negate
 DEFB $01 ;;exchange
 DEFB $05 ;;division
 DEFB $31 ;;duplicate
 DEFB $36 ;;less-0
 DEFB $A3 ;;stk-pi/2
 DEFB $01 ;;exchange
 DEFB $00 ;;jump-true
 DEFB $06 ;;to L37FA, CASES

 DEFB $1B ;;negate
 DEFB $33 ;;jump
 DEFB $03 ;;to L37FA, CASES

;; SMALL
L37F8: RST 28H ;; FP-CALC
 DEFB $A0 ;;stk-zero

;; CASES
L37FA: DEFB $01 ;;exchange
 DEFB $31 ;;duplicate
 DEFB $31 ;;duplicate
 DEFB $04 ;;multiply
 DEFB $31 ;;duplicate
 DEFB $0F ;;addition
 DEFB $A1 ;;stk-one
 DEFB $03 ;;subtract
 DEFB $8C ;;series-0C
 DEFB $10 ;;Exponent: $60, Bytes: 1
 DEFB $B2 ;;(+00,+00,+00)
 DEFB $13 ;;Exponent: $63, Bytes: 1
 DEFB $0E ;;(+00,+00,+00)
 DEFB $55 ;;Exponent: $65, Bytes: 2
 DEFB $E4,$8D ;;(+00,+00)
 DEFB $58 ;;Exponent: $68, Bytes: 2
 DEFB $39,$BC ;;(+00,+00)
 DEFB $5B ;;Exponent: $6B, Bytes: 2
 DEFB $98,$FD ;;(+00,+00)
 DEFB $9E ;;Exponent: $6E, Bytes: 3
 DEFB $00,$36,$75 ;;(+00)
 DEFB $A0 ;;Exponent: $70, Bytes: 3
 DEFB $DB,$E8,$B4 ;;(+00)
 DEFB $63 ;;Exponent: $73, Bytes: 2
 DEFB $42,$C4 ;;(+00,+00)
 DEFB $E6 ;;Exponent: $76, Bytes: 4
 DEFB $B5,$09,$36,$BE ;;
 DEFB $E9 ;;Exponent: $79, Bytes: 4
 DEFB $36,$73,$1B,$5D ;;
 DEFB $EC ;;Exponent: $7C, Bytes: 4
 DEFB $D8,$DE,$63,$BE ;;
 DEFB $F0 ;;Exponent: $80, Bytes: 4
 DEFB $61,$A1,$B3,$0C ;;
 DEFB $04 ;;multiply
 DEFB $0F ;;addition
 DEFB $38 ;;end-calc

 RET ; return.

; ---------------------

; THE 'ARCSIN' FUNCTION
; ---------------------
; (Offset $22: 'asn')
; the inverse sine function with result in radians.
; derived from arctan function above.
; Error A unless the argument is between -1 and +1 inclusive.
; uses an adaptation of the formula asn(x) = atn(x/sqr(1-x*x))
;
;
; /|
; 1 / |
; / |x
; /a |
; /----|
; y
;
; e.g. we know the opposite side (x) and hypotenuse (1)
; and we wish to find angle a in radians.
; we can derive length y by Pythagoras and then use ATN instead.
; since y*y + x*x = 1*1 (Pythagoras Theorem) then
; y=sqr(1-x*x) - no need to multiply 1 by itself.
; so, asn(a) = atn(x/y)
; or more fully,
; asn(a) = atn(x/sqr(1-x*x))

; Close but no cigar.

; While PRINT ATN (x/SQR (1-x*x)) gives the same results as PRINT ASN x,
; it leads to division by zero when x is 1 or -1.
; To overcome this, 1 is added to y giving half the required angle and the
; result is then doubled.
; That is PRINT ATN (x/(SQR (1-x*x) +1)) *2
; A value higher than 1 gives the required error as attempting to find the
; square root of a negative number generates an error in Sinclair BASIC.

;; asn
L3833: RST 28H ;; FP-CALC x.
 DEFB $31 ;;duplicate x, x.
 DEFB $31 ;;duplicate x, x, x.
 DEFB $04 ;;multiply x, x*x.
 DEFB $A1 ;;stk-one x, x*x, 1.
 DEFB $03 ;;subtract x, x*x-1.
 DEFB $1B ;;negate x, 1-x*x.
 DEFB $28 ;;sqr x, sqr(1-x*x) = y
 DEFB $A1 ;;stk-one x, y, 1.
 DEFB $0F ;;addition x, y+1.
 DEFB $05 ;;division x/y+1.
 DEFB $24 ;;atn a/2 (half the angle)
 DEFB $31 ;;duplicate a/2, a/2.
 DEFB $0F ;;addition a.
 DEFB $38 ;;end-calc a.

 RET ; return.

; ---------------------
; THE 'ARCCOS' FUNCTION
; ---------------------
; (Offset $23: 'acs')
; the inverse cosine function with the result in radians.
; Error A unless the argument is between -1 and +1.
; Result in range 0 to pi.
; Derived from asn above which is in turn derived from the preceding atn.
; It could have been derived directly from atn using acs(x) = atn(sqr(1-x*x)/x).

; However, as sine and cosine are horizontal translations of each other,
; uses acs(x) = pi/2 - asn(x)

; e.g. the arccosine of a known x value will give the required angle b in
; radians.
; We know, from above, how to calculate the angle a using asn(x).
; Since the three angles of any triangle add up to 180 degrees, or pi radians,
; and the largest angle in this case is a right-angle (pi/2 radians), then
; we can calculate angle b as pi/2 (both angles) minus asn(x) (angle a).
;
;
; /|
; 1 /b|
; / |x
; /a |
; /----|
; y
;

;; acs
L3843: RST 28H ;; FP-CALC x.
 DEFB $22 ;;asn asn(x).
 DEFB $A3 ;;stk-pi/2 asn(x), pi/2.
 DEFB $03 ;;subtract asn(x) - pi/2.
 DEFB $1B ;;negate pi/2 -asn(x) = acs(x).
 DEFB $38 ;;end-calc acs(x).

 RET ; return.

; --------------------------
; THE 'SQUARE ROOT' FUNCTION
; --------------------------
; (Offset $28: 'sqr')
; This routine is remarkable only in its brevity - 7 bytes.
; It wasn't written here but in the ZX81 where the programmers had to squeeze
; a bulky operating system into an 8K ROM. It simply calculates
; the square root by stacking the value .5 and continuing into the 'to-power'
; routine. With more space available the much faster Newton-Raphson method
; should have been used as on the Jupiter Ace.

;; sqr
L384A: RST 28H ;; FP-CALC
 DEFB $31 ;;duplicate
 DEFB $30 ;;not
 DEFB $00 ;;jump-true
 DEFB $1E ;;to L386C, LAST

 DEFB $A2 ;;stk-half
 DEFB $38 ;;end-calc

; ------------------------------
; THE 'EXPONENTIATION' OPERATION
; ------------------------------
; (Offset $06: 'to-power')
; This raises the first number X to the power of the second number Y.
; As with the ZX80,
; 0 ^ 0 = 1.
; 0 ^ +n = 0.
; 0 ^ -n = arithmetic overflow.
;

;; to-power

L3851: RST 28H ;; FP-CALC X, Y.
 DEFB $01 ;;exchange Y, X.
 DEFB $31 ;;duplicate Y, X, X.
 DEFB $30 ;;not Y, X, (1/0).
 DEFB $00 ;;jump-true
 DEFB $07 ;;to L385D, XISO if X is zero.

; else X is non-zero. Function 'ln' will catch a negative value of X.

 DEFB $25 ;;ln Y, LN X.
 DEFB $04 ;;multiply Y * LN X.
 DEFB $38 ;;end-calc

 JP L36C4 ; jump back to EXP routine ->

; ---

; these routines form the three simple results when the number is zero.
; begin by deleting the known zero to leave Y the power factor.

;; XISO
L385D: DEFB $02 ;;delete Y.
 DEFB $31 ;;duplicate Y, Y.
 DEFB $30 ;;not Y, (1/0).
 DEFB $00 ;;jump-true
 DEFB $09 ;;to L386A, ONE if Y is zero.

 DEFB $A0 ;;stk-zero Y, 0.
 DEFB $01 ;;exchange 0, Y.
 DEFB $37 ;;greater-0 0, (1/0).
 DEFB $00 ;;jump-true 0.
 DEFB $06 ;;to L386C, LAST if Y was any positive
 ;; number.

; else force division by zero thereby raising an Arithmetic overflow error.
; There are some one and two-byte alternatives but perhaps the most formal
; might have been to use end-calc; rst 08; defb 05.

 DEFB $A1 ;;stk-one 0, 1.
 DEFB $01 ;;exchange 1, 0.
 DEFB $05 ;;division 1/0 ouch!

; ---

;; ONE
L386A: DEFB $02 ;;delete .
 DEFB $A1 ;;stk-one 1.

;; LAST
L386C: DEFB $38 ;;end-calc last value is 1 or 0.

 RET ; return. Whew!

; ---------------------
; THE 'SPARE' LOCATIONS
; ---------------------

;; spare
L386E: DEFB $FF, $FF ;

 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;

 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;

 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;

 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;
 DEFB $FF, $FF, $FF, $FF, $FF, $FF, $FF, $FF;

; ORG $3D00

; -------------------------------
; THE 'ZX SPECTRUM CHARACTER SET'
; -------------------------------

;; char-set

; $20 - Character: ' ' CHR$(32)

L3D00: DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $21 - Character: '!' CHR$(33)

 DEFB %00000000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000
 DEFB %00010000
 DEFB %00000000

; $22 - Character: '"' CHR$(34)

 DEFB %00000000
 DEFB %00100100
 DEFB %00100100
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $23 - Character: '#' CHR$(35)

 DEFB %00000000
 DEFB %00100100
 DEFB %01111110
 DEFB %00100100
 DEFB %00100100

 DEFB %01111110
 DEFB %00100100
 DEFB %00000000

; $24 - Character: '$' CHR$(36)

 DEFB %00000000
 DEFB %00001000
 DEFB %00111110
 DEFB %00101000
 DEFB %00111110
 DEFB %00001010
 DEFB %00111110
 DEFB %00001000

; $25 - Character: '%' CHR$(37)

 DEFB %00000000
 DEFB %01100010
 DEFB %01100100
 DEFB %00001000
 DEFB %00010000
 DEFB %00100110
 DEFB %01000110
 DEFB %00000000

; $26 - Character: '&' CHR$(38)

 DEFB %00000000
 DEFB %00010000
 DEFB %00101000
 DEFB %00010000
 DEFB %00101010
 DEFB %01000100
 DEFB %00111010
 DEFB %00000000

; $27 - Character: ''' CHR$(39)

 DEFB %00000000
 DEFB %00001000
 DEFB %00010000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $28 - Character: '(' CHR$(40)

 DEFB %00000000
 DEFB %00000100
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00000100
 DEFB %00000000

; $29 - Character: ')' CHR$(41)

 DEFB %00000000
 DEFB %00100000
 DEFB %00010000

 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00100000
 DEFB %00000000

; $2A - Character: '*' CHR$(42)

 DEFB %00000000
 DEFB %00000000
 DEFB %00010100
 DEFB %00001000
 DEFB %00111110
 DEFB %00001000
 DEFB %00010100
 DEFB %00000000

; $2B - Character: '+' CHR$(43)

 DEFB %00000000
 DEFB %00000000
 DEFB %00001000
 DEFB %00001000
 DEFB %00111110
 DEFB %00001000
 DEFB %00001000
 DEFB %00000000

; $2C - Character: ',' CHR$(44)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00001000
 DEFB %00001000
 DEFB %00010000

; $2D - Character: '-' CHR$(45)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00111110
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $2E - Character: '.' CHR$(46)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00011000
 DEFB %00011000
 DEFB %00000000

; $2F - Character: '/' CHR$(47)

 DEFB %00000000

 DEFB %00000000
 DEFB %00000010
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00100000
 DEFB %00000000

; $30 - Character: '0' CHR$(48)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000110
 DEFB %01001010
 DEFB %01010010
 DEFB %01100010
 DEFB %00111100
 DEFB %00000000

; $31 - Character: '1' CHR$(49)

 DEFB %00000000
 DEFB %00011000
 DEFB %00101000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00111110
 DEFB %00000000

; $32 - Character: '2' CHR$(50)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %00000010
 DEFB %00111100
 DEFB %01000000
 DEFB %01111110
 DEFB %00000000

; $33 - Character: '3' CHR$(51)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %00001100
 DEFB %00000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $34 - Character: '4' CHR$(52)

 DEFB %00000000
 DEFB %00001000
 DEFB %00011000
 DEFB %00101000
 DEFB %01001000
 DEFB %01111110
 DEFB %00001000
 DEFB %00000000

; $35 - Character: '5' CHR$(53)

 DEFB %00000000
 DEFB %01111110
 DEFB %01000000
 DEFB %01111100
 DEFB %00000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $36 - Character: '6' CHR$(54)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000000
 DEFB %01111100
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $37 - Character: '7' CHR$(55)

 DEFB %00000000
 DEFB %01111110
 DEFB %00000010
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $38 - Character: '8' CHR$(56)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $39 - Character: '9' CHR$(57)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %00111110
 DEFB %00000010
 DEFB %00111100
 DEFB %00000000

; $3A - Character: ':' CHR$(58)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00000000

; $3B - Character: ';' CHR$(59)

 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00010000
 DEFB %00100000

; $3C - Character: '<' CHR$(60)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00001000
 DEFB %00000100
 DEFB %00000000

; $3D - Character: '=' CHR$(61)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00111110
 DEFB %00000000
 DEFB %00111110
 DEFB %00000000
 DEFB %00000000

; $3E - Character: '>' CHR$(62)

 DEFB %00000000
 DEFB %00000000
 DEFB %00010000
 DEFB %00001000
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00000000

; $3F - Character: '?' CHR$(63)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %00000100
 DEFB %00001000
 DEFB %00000000
 DEFB %00001000
 DEFB %00000000

; $40 - Character: '@' CHR$(64)

 DEFB %00000000
 DEFB %00111100
 DEFB %01001010
 DEFB %01010110
 DEFB %01011110
 DEFB %01000000

 DEFB %00111100
 DEFB %00000000

; $41 - Character: 'A' CHR$(65)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01111110
 DEFB %01000010
 DEFB %01000010
 DEFB %00000000

; $42 - Character: 'B' CHR$(66)

 DEFB %00000000
 DEFB %01111100
 DEFB %01000010
 DEFB %01111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01111100
 DEFB %00000000

; $43 - Character: 'C' CHR$(67)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000000
 DEFB %01000000
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $44 - Character: 'D' CHR$(68)

 DEFB %00000000
 DEFB %01111000
 DEFB %01000100
 DEFB %01000010
 DEFB %01000010
 DEFB %01000100
 DEFB %01111000
 DEFB %00000000

; $45 - Character: 'E' CHR$(69)

 DEFB %00000000
 DEFB %01111110
 DEFB %01000000
 DEFB %01111100
 DEFB %01000000
 DEFB %01000000
 DEFB %01111110
 DEFB %00000000

; $46 - Character: 'F' CHR$(70)

 DEFB %00000000
 DEFB %01111110
 DEFB %01000000
 DEFB %01111100

 DEFB %01000000
 DEFB %01000000
 DEFB %01000000
 DEFB %00000000

; $47 - Character: 'G' CHR$(71)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000000
 DEFB %01001110
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $48 - Character: 'H' CHR$(72)

 DEFB %00000000
 DEFB %01000010
 DEFB %01000010
 DEFB %01111110
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00000000

; $49 - Character: 'I' CHR$(73)

 DEFB %00000000
 DEFB %00111110
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00111110
 DEFB %00000000

; $4A - Character: 'J' CHR$(74)

 DEFB %00000000
 DEFB %00000010
 DEFB %00000010
 DEFB %00000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $4B - Character: 'K' CHR$(75)

 DEFB %00000000
 DEFB %01000100
 DEFB %01001000
 DEFB %01110000
 DEFB %01001000
 DEFB %01000100
 DEFB %01000010
 DEFB %00000000

; $4C - Character: 'L' CHR$(76)

 DEFB %00000000
 DEFB %01000000

 DEFB %01000000
 DEFB %01000000
 DEFB %01000000
 DEFB %01000000
 DEFB %01111110
 DEFB %00000000

; $4D - Character: 'M' CHR$(77)

 DEFB %00000000
 DEFB %01000010
 DEFB %01100110
 DEFB %01011010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00000000

; $4E - Character: 'N' CHR$(78)

 DEFB %00000000
 DEFB %01000010
 DEFB %01100010
 DEFB %01010010
 DEFB %01001010
 DEFB %01000110
 DEFB %01000010
 DEFB %00000000

; $4F - Character: 'O' CHR$(79)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $50 - Character: 'P' CHR$(80)

 DEFB %00000000
 DEFB %01111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01111100
 DEFB %01000000
 DEFB %01000000
 DEFB %00000000

; $51 - Character: 'Q' CHR$(81)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01010010
 DEFB %01001010
 DEFB %00111100
 DEFB %00000000

; $52 - Character: 'R' CHR$(82)

 DEFB %00000000
 DEFB %01111100
 DEFB %01000010
 DEFB %01000010
 DEFB %01111100
 DEFB %01000100
 DEFB %01000010
 DEFB %00000000

; $53 - Character: 'S' CHR$(83)

 DEFB %00000000
 DEFB %00111100
 DEFB %01000000
 DEFB %00111100
 DEFB %00000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $54 - Character: 'T' CHR$(84)

 DEFB %00000000
 DEFB %11111110
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $55 - Character: 'U' CHR$(85)

 DEFB %00000000
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00111100
 DEFB %00000000

; $56 - Character: 'V' CHR$(86)

 DEFB %00000000
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %00100100
 DEFB %00011000
 DEFB %00000000

; $57 - Character: 'W' CHR$(87)

 DEFB %00000000
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01000010
 DEFB %01011010
 DEFB %00100100
 DEFB %00000000

; $58 - Character: 'X' CHR$(88)

 DEFB %00000000
 DEFB %01000010
 DEFB %00100100
 DEFB %00011000
 DEFB %00011000
 DEFB %00100100
 DEFB %01000010
 DEFB %00000000

; $59 - Character: 'Y' CHR$(89)

 DEFB %00000000
 DEFB %10000010
 DEFB %01000100
 DEFB %00101000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $5A - Character: 'Z' CHR$(90)

 DEFB %00000000
 DEFB %01111110
 DEFB %00000100
 DEFB %00001000
 DEFB %00010000
 DEFB %00100000
 DEFB %01111110
 DEFB %00000000

; $5B - Character: '[' CHR$(91)

 DEFB %00000000
 DEFB %00001110
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001110
 DEFB %00000000

; $5C - Character: '\' CHR$(92)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000000
 DEFB %00100000
 DEFB %00010000
 DEFB %00001000
 DEFB %00000100
 DEFB %00000000

; $5D - Character: ']' CHR$(93)

 DEFB %00000000
 DEFB %01110000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %01110000

 DEFB %00000000

; $5E - Character: '^' CHR$(94)

 DEFB %00000000
 DEFB %00010000
 DEFB %00111000
 DEFB %01010100
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $5F - Character: '_' CHR$(95)

 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %11111111

; $60 - Character: 'ukp' CHR$(96)

 DEFB %00000000
 DEFB %00011100
 DEFB %00100010
 DEFB %01111000
 DEFB %00100000
 DEFB %00100000
 DEFB %01111110
 DEFB %00000000

; $61 - Character: 'a' CHR$(97)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111000
 DEFB %00000100
 DEFB %00111100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000000

; $62 - Character: 'b' CHR$(98)

 DEFB %00000000
 DEFB %00100000
 DEFB %00100000
 DEFB %00111100
 DEFB %00100010
 DEFB %00100010
 DEFB %00111100
 DEFB %00000000

; $63 - Character: 'c' CHR$(99)

 DEFB %00000000
 DEFB %00000000
 DEFB %00011100
 DEFB %00100000
 DEFB %00100000

 DEFB %00100000
 DEFB %00011100
 DEFB %00000000

; $64 - Character: 'd' CHR$(100)

 DEFB %00000000
 DEFB %00000100
 DEFB %00000100
 DEFB %00111100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000000

; $65 - Character: 'e' CHR$(101)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111000
 DEFB %01000100
 DEFB %01111000
 DEFB %01000000
 DEFB %00111100
 DEFB %00000000

; $66 - Character: 'f' CHR$(102)

 DEFB %00000000
 DEFB %00001100
 DEFB %00010000
 DEFB %00011000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00000000

; $67 - Character: 'g' CHR$(103)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000100
 DEFB %00111000

; $68 - Character: 'h' CHR$(104)

 DEFB %00000000
 DEFB %01000000
 DEFB %01000000
 DEFB %01111000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00000000

; $69 - Character: 'i' CHR$(105)

 DEFB %00000000
 DEFB %00010000
 DEFB %00000000

 DEFB %00110000
 DEFB %00010000
 DEFB %00010000
 DEFB %00111000
 DEFB %00000000

; $6A - Character: 'j' CHR$(106)

 DEFB %00000000
 DEFB %00000100
 DEFB %00000000
 DEFB %00000100
 DEFB %00000100
 DEFB %00000100
 DEFB %00100100
 DEFB %00011000

; $6B - Character: 'k' CHR$(107)

 DEFB %00000000
 DEFB %00100000
 DEFB %00101000
 DEFB %00110000
 DEFB %00110000
 DEFB %00101000
 DEFB %00100100
 DEFB %00000000

; $6C - Character: 'l' CHR$(108)

 DEFB %00000000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00001100
 DEFB %00000000

; $6D - Character: 'm' CHR$(109)

 DEFB %00000000
 DEFB %00000000
 DEFB %01101000
 DEFB %01010100
 DEFB %01010100
 DEFB %01010100
 DEFB %01010100
 DEFB %00000000

; $6E - Character: 'n' CHR$(110)

 DEFB %00000000
 DEFB %00000000
 DEFB %01111000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00000000

; $6F - Character: 'o' CHR$(111)

 DEFB %00000000

 DEFB %00000000
 DEFB %00111000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111000
 DEFB %00000000

; $70 - Character: 'p' CHR$(112)

 DEFB %00000000
 DEFB %00000000
 DEFB %01111000
 DEFB %01000100
 DEFB %01000100
 DEFB %01111000
 DEFB %01000000
 DEFB %01000000

; $71 - Character: 'q' CHR$(113)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000100
 DEFB %00000110

; $72 - Character: 'r' CHR$(114)

 DEFB %00000000
 DEFB %00000000
 DEFB %00011100
 DEFB %00100000
 DEFB %00100000
 DEFB %00100000
 DEFB %00100000
 DEFB %00000000

; $73 - Character: 's' CHR$(115)

 DEFB %00000000
 DEFB %00000000
 DEFB %00111000
 DEFB %01000000
 DEFB %00111000
 DEFB %00000100
 DEFB %01111000
 DEFB %00000000

; $74 - Character: 't' CHR$(116)

 DEFB %00000000
 DEFB %00010000
 DEFB %00111000
 DEFB %00010000
 DEFB %00010000
 DEFB %00010000
 DEFB %00001100
 DEFB %00000000

; $75 - Character: 'u' CHR$(117)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111000
 DEFB %00000000

; $76 - Character: 'v' CHR$(118)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %01000100
 DEFB %00101000
 DEFB %00101000
 DEFB %00010000
 DEFB %00000000

; $77 - Character: 'w' CHR$(119)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %01010100
 DEFB %01010100
 DEFB %01010100
 DEFB %00101000
 DEFB %00000000

; $78 - Character: 'x' CHR$(120)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %00101000
 DEFB %00010000
 DEFB %00101000
 DEFB %01000100
 DEFB %00000000

; $79 - Character: 'y' CHR$(121)

 DEFB %00000000
 DEFB %00000000
 DEFB %01000100
 DEFB %01000100
 DEFB %01000100
 DEFB %00111100
 DEFB %00000100
 DEFB %00111000

; $7A - Character: 'z' CHR$(122)

 DEFB %00000000
 DEFB %00000000
 DEFB %01111100
 DEFB %00001000
 DEFB %00010000
 DEFB %00100000
 DEFB %01111100
 DEFB %00000000

; $7B - Character: '{' CHR$(123)

 DEFB %00000000
 DEFB %00001110
 DEFB %00001000
 DEFB %00110000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001110
 DEFB %00000000

; $7C - Character: '|' CHR$(124)

 DEFB %00000000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00001000
 DEFB %00000000

; $7D - Character: '}' CHR$(125)

 DEFB %00000000
 DEFB %01110000
 DEFB %00010000
 DEFB %00001100
 DEFB %00010000
 DEFB %00010000
 DEFB %01110000
 DEFB %00000000

; $7E - Character: '~' CHR$(126)

 DEFB %00000000
 DEFB %00010100
 DEFB %00101000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000
 DEFB %00000000

; $7F - Character: '(c)' CHR$(127)

 DEFB %00111100
 DEFB %01000010
 DEFB %10011001
 DEFB %10100001
 DEFB %10100001
 DEFB %10011001
 DEFB %01000010
 DEFB %00111100

#end ; generic cross-assembler directive

; Acknowledgements
; -----------------
; Sean Irvine for default list of section headings
; Dr. Ian Logan for labels and functional disassembly.
; Dr. Frank O'Hara for labels and functional disassembly.

;
; Credits
; -------
; Alex Pallero Gonzales for corrections.
; Mike Dailly for comments.
; Alvin Albrecht for comments.
; Andy Styles for full relocatability implementation and testing.
testing.
; Andrew Owen for ZASM compatibility and format improvements.

; For other assemblers you may have to add directives like these near the
; beginning - see accompanying documentation.
; ZASM (MacOs) cross-assembler directives. (uncomment by removing ';')
; #target rom ; declare target file format as binary.
; #code 0,$4000 ; declare code segment.
; Also see notes at Address Labels 0609 and 1CA5 if your assembler has
; trouble with expressions.

