
Interface 1bis for the Sinclair ZX Spectrum 48k Ver 4b
Operating system reference

1. Compatibility

The 'Interface 1bis' is software compatible with the Sinclair 'ZX
INTERFACE 1' at BASIC command as well as 'hook-code' level.

1.1 Necessary pre-conditions
- Same mechanism to extend the BASIC interpreter: paging a 'shadow' ROM

in place of the BASIC ROM, whenever a syntax error is encountered
- Same 'extended BASIC' syntax
- Same system variables
- Same mechanism to access shadow ROM routines: 'Hook codes'
- Same data structure for handling sequential files: 'Microdrive channel'

1.2 Limitations
- BASIC commands and hook-codes referring to the RS-232 port and 'ZX
NETWORK' are not implemented.

2. Memory layout

When activated, the interface disables the internal PROM of the ZX
Spectrum and pages in its own operating system (OpSys), which resides in
two contiguous 16 KB NVSRAM banks with the following layout:
---------------------------------------------------

Bank Offset Size Address Write protected
---------------------------------------------------
BASIC ROM #0000 #4000 #0000 Yes
---------------------------------------------------
Shadow ROM #4000 #2E00 #0000 Yes
Work RAM #6E00 #0200 #2E00 No
Buffers #7000 #1000 #3000 No
---------------------------------------------------

2.1 The 'BASIC ROM'
is a slightly modified copy of the ZX Spectrum 48k ROM, the scope of the
changes being restricted to:
- enabling software-controlled memory paging by means of input/output

operations to dedicated ports
- trapping the calls to the tape routines, to handle .TAP files,
- modified NMI handling, to allow the creation of (.Z80) snapshots,
and optionally:
- integration of an ESC/P printer driver in the ZX Spectrum BASIC
- fixing some known ZX Spectrum 48k ROM bugs.

2.2 The 'shadow ROM'
The shadow ROM is fully compatible with the 8 KB ROM of the original
Sinclair 'ZX INTERFACE 1' at BASIC command and 'hook code' level,
- Following hook codes are not implemented:
---------------------------------------
Code Function Reason
---------------------------------------
#1D R232 input (1)
#1E R232 output (1)
#2D Open network channel (1)
#2E Close network channel (1)
#2F Get packet (1)
#30 Send packet (1)
#34 Open "B" channel (2)
---------------------------------------
(1) The corresponding hardware device is not supported
(2) Redundant

2.3 The 'work RAM'
- The 'work RAM' is structured as below:
----------------------------------

Address Block Bytes
----------------------------------

#2E00 Variables 128
#2E80 Internal stack 64
#2EC0 Printer buffer 64
#2F00 Page buffer 256

----------------------------------



- The internal stack is used when handling (.Z80) snapshots or loading
(.TAP) files.

2.4 Sector buffers
- There are seven sector buffers and one 'current directory table',
of 512 bytes each.



3. The extended BASIC

3.1 Syntax

- All 'ZX INTERFACE 1' extended BASIC statements are accepted in their
original format.
- A number of syntax enhancements are implemented.

3.1.1 CAT [#<str>;][fsq]
3.1.2 CLEAR #
3.1.3 CLOSE #<str>
3.1.4 CLS #
3.1.5 ERASE <fsq>|#<hdl>
3.1.6 FORMAT [#<csz>;][[{*}<dev>;]<dnr>]{;<nam>}
3.1.8 INKEY$ #<str>
3.1.9 INPUT #<str>,<var>
3.1.10 LOAD <fsp>|#<hdl>|STOP [<opt>]
3.1.11 MERGE <fsp>|#<hdl>
3.1.12 MOVE <fss>|#<sts> TO|AT <fsd>|#<std>
3.1.13 MOVE [<dvs>;]<dns>{;<nas>} OVER [<dvd>;]<dnd>{;<nad>}
3.1.14 MOVE #<str>|#<hdl> POINT [<pnt>]
3.1.15 OPEN #<str>;<fsq> [IN|OUT|RND]
3.1.16 PRINT #<str>;<exp>
3.1.17 SAVE <fsp>|#<hdl>|STOP [<opt>]
3.1.18 VERIFY <fsp>|#<hdl>|STOP [<opt>]

Where: <str> = Stream (0-15)
<sts> = Source stream number (0-15)
<std> = Destination stream number (0-15)
<hdl> = Handle (0-15)
<fsq> = File specifier

= [[{*}<dev>;]<dnr>];<nam>
<fss> = Source file specifier
<fsd> = Destination file specifier
<fsp> = File specifier for SAVE, LOAD, VERIFY or MERGE

= [[*<dev>;]<dnr>];<nam>
<dev> = Device specifier

= <typ>[<vol>]
<dvs> = Source device specifier
<dvd> = Destination device specifier
<typ> = Device type literal

= "V" - for:'serVer' drive
= "M" - for: flash drive

<vol> = Volume literal: "A"-"O"
<dnr> = Drive number (1-255)
<dns> = Source drive number (1-255)
<dnd> = Destination drive number (1-255)
<nam> = File name (1-10 characters)
<nas> = Source file name (1-10 characters)
<nad> = Destination file name (1-10 characters)
<opt> = SAVE, LOAD or VERIFY options

= LINE <lin>
= DATA <ary>[$]()
= CODE [<add>[,<len>{,<pnt>}]]
= SCREEN$
= BIN [<add>[,<len>[,<pnt>]]]
= [;]<fty>

<fty> = File type literal ( see 3.4 )
<lin> = Auto-run line number (0-9999)
<ary> = Array name
<add> = Memory block address (0-65535)
<len> = Memory block length (0-65535)
<pnt> = File pointer

= <rec>[,<pos>]
<rec> = Record number (0-32767)
<pos> = Position within a record (0-511)
<var> = BASIC variable
<exp> = BASIC expression
<csz> = Allocation unit in sectors/cluster (2,4,8,16)

- Syntax elements in square brackets are optional
- Syntax elements in curly brackets are accepted but not used
- Alternative syntax elements are separated by a vertical bar
- A (file) 'handle' is a stream opened to a file, using the option RND
- The position within a record: <pos> may be specified in the range

(0-65535), because the pointer is always automatically normalized:



<rec> = <rec>+int(<pos>/512)
<pos> = mod(<pos>,512)

- The separator is required before the file type literal if the file
name is specified by a string expression rather than a constant

3.2 Channels

3.2.1 The 'Microdrive' channel: M
- The M channel provides buffered character input/output from/to the
supported storage devices
- It is compatible with the 'Microdrive' channel of the original 'ZX
INTERFACE 1', having the same descriptor structure

3.2.2 The 'Local Area Network' channel: N
- Channel N is not implemented. Any reference to it produces an error
report

3.2.3 The 'RS-232 Interface' channels: B and T
- These channels are implemented as output-only. Any input operation
produces an error report
- Channel B sends binary data directly to the printer while channel T
behaves identically to channel P

3.2.4 The 'Handle' channel: H
- An 'H channel' is created by opening a stream to a file, using the
option RND. Its descriptor is identical to bytes 0-30 of the M channel
descriptor
- Such a stream can be used as a 'handle' to specify the associated
file in LOAD, SAVE, VERY, MERGE and ERASE statements

3.2.5 The 'NULL' channel: U
- Provides no input and discards any output

3.3 File names

- Full names may be composed of segments, separated by "/". The last
segment represents the actual filename, while all the other make up
the path. The length of each segment can not exceed 10 characters and
the total length of the path 254 characters
- A name ending with a "/" represents a directory name
- Filenames may have a trailing 'file type literal', separated by a ".",
as an extension
- A leading "/" stands for the root directory of the disk and a "../"
for the parent directory
- For the 'server drive', "/A/", "/C/".."/Z/" represent the drives A,
C .. Z of the server. The alternative form "a:/".. is also accepted.
- When not creating a new file, the wild cards "?" ( standing for
"any character" ) and "*" ( standing for "any number of characters" )
are accepted in filenames, but never in directory names
- Filenames are case-insensitive

3.4 File types

3.4.1 'BASIC' files
-----------------------------------------------
Type Literal Description Extension
-----------------------------------------------

0 P BASIC program ZZP
1 N Number array ZZN
2 A String array ZZA
3 C CODE block ZZC

-----------------------------------------------
- To allow access via the SAVE, LOAD and VERIFY commands these
files contain a 9-byte header, with the following structure:

0 File type (0-3)
1-2 File length (excluding the header)
3-4 Loading address (Code)
5-6 Length of program only (Program)

Array name (Numeric or String)
7-8 Start line (Program)

3.4.2 'Regular' files
-----------------------------------------------
Type Literal Description Extension
-----------------------------------------------

4 F PRINT file ZZF



5 X Text file TXT
6 Spare
7 B Binary file ZZB

-----------------------------------------------
- The maximum length of a regular file is 16 MByte
(32768 records of 512 bytes each).

3.4.2.1 PRINT file (type 4)
- PRINT files are implemented as in the original ZX INTERFACE 1
extended BASIC, to be accessed via the OPEN#, PRINT#, INKEY$# and
INPUT# commands

3.4.2.2 Text file (type 5)
- A 'Text' file is a PRINT file, with every CR followed by a LF and all
BASIC tokens expanded
- When writing ( PRINT# ) to a stream opened to a 'text file', a LF is
automatically inserted after each CR
- When reading ( INPUT# ) from a stream opened to a 'text file', any LF
following a CR is discarded

3.4.2.3 Type number 6 is 'spare' (not implemented)

3.4.2.4 Binary file (Type 7)
- 'Binary' files have no specific structure

3.4.3 'Emulator' files
-----------------------------------------------
Type Literal Description Extension
-----------------------------------------------

8 S Screen dump SCR
9 Spare

10 T 'Tape' file TAP
11 Z 'Z80' snapshot Z80

-----------------------------------------------

3.4.3.1 Screen dump (type 8)
- A 'Screen dump' represents the contents of the video RAM, having the
default loading address of: #4000 and the default length of: #1B00,
- Screen dumps are loaded or saved specifying the file type either by
means of the filename extention '.s' or the command option 's'

3.4.3.2 Type number 9 is 'spare' (not implemented).

3.4.3.3 'Tape' file (type 10)
- A 'tape' file is opened for input or output via the LOAD or respec-
tively SAVE statement, specifying the file type either by means of the
filename extention '.t' or the command option 't', after which, all
BASIC tape input or output is redirected to the specified file, until
the end of the 'input tape' is reached, the length of the 'output tape'
exceeds 16 MB or the file is closed using the LOAD or respectively SAVE
command with the option: STOP
- A reset or even a power-off does not close the tape files.
- Opening the 'input tape' to a non-existing file will generate the
error report "File not found"
- Opening the 'output tape' to a non-existing file will create that
file
- Opening the 'output tape' to an existing file will append to that
file
- The 'input tape' and 'output tape' can be simultaneously opened to
the same file, but the blocks appended after the 'input tape' was
opened, will not be accessible until the 'input tape' is closed and
re-opened
- Opening the `input tape' using the file type 'T' (capital) will imme-
diately perform the equivalent of NEW, followed by LOAD""

3.4.3.4 (.Z80) Snapshot file (type 11)
- (.Z80) snapshot files are launched using the LOAD command, specifying
the file type either by means of the filename extention '.z' or the
command option 'z'
- After loading a snapshot with the file type 'Z' (capital) the inter-
face will switch to the 'ON - inactive' state
- To create a snapshot, a file must be first opened using the SAVE
command specifying the file type either by means of the filename
extention '.z' or the command option 'z', after which, generating a NMI
saves the snapshot and closes the corresponding file
- Closing can also be forced using the VERIFY command with the option:
STOP, but the resulting file will have no usable content



- A reset or even a power-off does not close the snapshot file
- All versions of 48k 'Z80' snapshots can be loaded, but only
uncompressed version 1.45 snapshots can be created

3.4.4 Reserved file types
-----------------------------------------------
Type Literal Description Extension
-----------------------------------------------

12 Reserved
13 Reserved
14 Reserved
15 Y Any type *

-----------------------------------------------
- Type numbers: 12,13 and 14 are reserved
- Type number 15 is the 'type wild card', standing for "Any type"

3.4.5 Directories (type 16)
- Directories are special files, accessed via the commands LOAD,
standing for 'change', SAVE, standing for 'create' and DELETE,
containing sequences of 16-byte, fixed-length 'file specifiers':
----------------------------------------
Offset Length Description
----------------------------------------

0 1 File type
1 10 File name

11 2 First sector of the file
13 3 File length

----------------------------------------
with the byte #FF as an end marker.
- The size of a flash drive (sub)directory is limited only by the
available space and the depth of the directory tree by the maximum
length of the path name: 254 bytes.
- The first entry of the first record of a flash drive directory
has the following structure:
--------------------------------------------------------
Offset Length Description
--------------------------------------------------------

0 1 Type: 16
1 10 Directory name

11 2 First sector of the parent directory, or
00 00 for the root directory

13 3 00 00 00
--------------------------------------------------------

3.5 Other syntax issues

3.5.1 Default values
- The default values for the device literal <dev>, volume literal <vol>
and drive number <dnr> are the ones last specified in a statement
- For statement 3.1.1, the default value of <str> is: 2
- For statement 3.1.6, the default value of <csz> is the one stored on
the media when the drive was last formatted, or otherwise: 8

3.5.2 The CAT command
- The file list produced by the CAT statement has following layout:

Column 1-10 Filename
12 File type literal

14-21 File length in bytes
23-27 Auto start line (Program)

Array letter (Numeric or String)
Loading address (Code)

- The number of free sectors available on the drive is given as the
product of the number of free clusters and the cluster size
- If no name is specified, all files in the current directory are
catalogued
- If a name is specified, then its path indicates the directory to be
catalogued and the filename and extension are used as filters for the
output of the command
- If followed by the token ABS, the CAT command outputs only the abso-
lute path
- If followed by the token PEEK, the CAT command only sets the system
variable SER_FL to a non-zero value if the specified file exists
- If the specified drive number is 0, then the name is considered a
command and is sent to the peripheral port, to be interpreted by either
the server, if it ends in a "/", or otherwise by the peripheral
controller. After processing the command, these are expected to send a
response, which is printed out as hex-dump, if not supressed by a NOT



option token

Following strings are available for configuring the mouse driver:

3.5.2.1 Enable mouse: "[m]e[n]"
3.5.2.2 Disable mouse: "[m]d[i]"
3.5.2.3 Mouse as joystick: "[m]j[o]"
3.5.2.4 Legacy mode: "[m]l[g]"
3.5.2.5 Windowed mode: "[m]w[i]"
3.5.2.2 Set sensitivity: "[m]s"+CHR$ <s>

<s> = 3 - 32 Sensitivity of mouse as joystick
3.5.2.2 Set rate: "[m]r"+CHR$ <r>

<r> = 1 - 10 Mouse as joystick sample rate [Hz]
3.5.2.2 Set window width: "[m]x"+CHR$ <x>

<x> = 10 - 255 Window width in pixels
3.5.2.2 Set window height: "[m]y"+CHR$ <y>

<x> = 10 - 192 Window height in pixels

The command strings may be concatenated up to a length of 10 charac-
ters, in which case the characters in sqare brackets may be omitted if
they are not the first or the last in the composite string.

3.5.3 The FORMAT command
- The statement 3.1.6 does not apply to the 'server' drive.
- The statement 3.1.6 with: <dnr> = 0 identifies a new device before
its first use and also clears the 'current directories' table
- The allowed values of the cluster size in statement 3.1.6 are: 2,
4, 8 and 16. Any other number is disregarded and the default value
used instead

3.5.4 The MOVE command
- If both source and destination are files, the operation is performed
sector by sector, rather than byte by byte
- If source and destination are on the same drive and the separator AT
is used, rather than TO, the source file is not copied but renamed
- The statement 3.1.12 is repetitive. It processes all files that match
the specified source name.
- The statement 3.1.13, copies an entire logical drive
- The statement 3.1.14 sets the file pointer of the file, to which
the stream is currently opened, to the specified position
If the stream is opened to a M-channel and the specified position
is out of range, the file pointer is set to EOF

3.5.5 The OPEN command
- Any file can be opened for sequential access, not only PRINT files
- The optional keywords IN or OUT force the opening of the file for
reading or respectively writing
- Opening a non-existing file with the option IN generates the error
report "File not found"
- Opening an existing file with the option OUT sets the file pointer
to EOF
- Opening a file with the option RND creates a random access 'handle'
for that file

3.5.6 The SAVE, LOAD and VERIFY commands
- The option BIN allows to load, save or verify a memory block from/to
a given position of any type of file
- If the file is accessed via a 'handle' rather than a specifier,
the pointer entered with the option BIN is not used, but instead the
one stored in the corresponding H channel descriptor, which is set
to 0 when the file is opened and subsequently updated automatically
following each operation.

3.5.7 The ERASE command
- The form: ERASE <fsq> is repetitive. It processes all files that match
the specified name.
- The form: ERASE #<hdl> is not accepted for the 'server' drive.

3.5.8 The printer commands.
- The printer commands: LPRINT, LLIST and COPY work as expected with
a ESC/P printer.
- The block graphics and UDG characters are printed as bitmaps at a
density of 80 DPI.
- The system variables P_POSN and PR_CC are used as follows:
---------------------------------------------------------------------
Variable Address Length Description
---------------------------------------------------------------------



P_POSN #5C7F 23679 1 Column number
PR_CC #5C80 23680 1 Lines per page minus Line number

#5C81 23681 1 Bit 7 reset = 64 columns
set = 32 columns

Bits 0-6 = Lines per page
---------------------------------------------------------------------
- OPEN #<str>,"P" sends an initialization string to the printer
- While the interface is connected to a server PC, the print jobs are
forwarded to the server application, which directs them to a printer or
a spool file.

3.6 Error messages
The error messages are the same as those of the original ZX INTERFACE 1,
except for the following:

- 06: "Invalid station number" replaced by "Invalid path"
- 08: "Missing station number" replaced by "Feature not supported"
- 0A: "Missing baud rate" replaced by "Communication error"
- 0B: "Header mismatch error" replaced by "Directory in use"
- 13: "Hook code error" replaced by "File exists"
- 16: "Wrong file type" not used



4. Data structures

4.1 The ZX INTERFACE 1 system variables
-------------------------------------------
Variable Address Length Replaces
-------------------------------------------
FLAGS3 #5CB6 23734 1
VECTOR #5CB7 23735 2
..
SER_FL #5CC7 23751 2
..
CHADD_ #5CCB 23755 2
..
DRV_NR #5CD6 23766 1 D_STR1
PTH_LN #5CD7 23767 1
STR_NR #5CD8 23768 1 S_STR1
DEV_TY #5CD9 23769 1 L_STR1
NAM_LN #5CDA 23770 1 N_STR1
FIL_TY #5CDB 23771 1
NAM_AD #5CDC 23772 2 P_STR1
DRV_N2 #5CDE 23774 1 D_STR2
PTH_L2 #5CDF 23775 1
STR_N2 #5CE0 23776 1 S_STR2
DEV_T2 #5CE1 23777 1 L_STR2
NAM_L2 #5CE2 23778 1 N_STR2
FIL_T2 #5CE3 23779 1
NAM_A2 #5CE4 23780 2 P_STR2
HD__00 #5CE6 23782 1 HD_00
HD__0B #5CE7 23783 2 HD_0B
HD__0D #5CE9 23785 2 HD_0D
HD__0F #5CEB 23787 2 HD_0F
HD__11 #5CED 23789 1 HD_11
HD__DV #5CEE 23790 1
HD__DR #5CEF 23791 1 COPIES
-------------------------------------------
- The variables not shown are not used

4.1.1 FLAGS3
Bits 0-4 have the same significance as in the original ZX INTERFACE 1
'Shadow ROM'
- Bit 0 Shadow ROM entered the second time for the same error
- Bit 1 Shadow ROM entered the first time after creation of the new

system variables, or
CLEAR# command in progress

- Bit 2 Shadow ROM entered by means of a hook-code
- Bit 3 H(andle) channel SAVE / LOAD / VERIFY in progress, or

CAT command in progress
- Bit 4 Character by character MOVE command in progress, or

Destination name in MOVE command contains wild cards, or
A filename was specified in the CAT command, or
Suppress auto-run of a loaded BASIC program, or
SAVE / LOAD option specified in upper case

- Bit 5 Find the 'last match' in a search operation
- Bit 6 Find the 'next match' in a search operation
- Bit 7 Temporary file opened on the 'server' drive

4.1.2 VECTOR, CHADD_
Same as in the original ZX INTERFACE 1 'Shadow ROM'

4.1.3 File specifiers
The two 8-byte file specifiers at DSTR_1 and DSTR_2 have the same
function as in the original ZX INTERFACE 1 'Shadow ROM', except for the
drive number's high byte, which is used to store the path name's length
and the file name's length high byte, which is used to store the file
type

4.1.4 BASIC header: HD__00 .. HD__11
Same as in the original ZX INTERFACE 1 'Shadow ROM'

4.1.5 HD__DV and HD__DR
Replace HD_11 high byte and COPIES. Store the device and drive number

4.2 The M channel descriptor
-----------------------------------------------------------------------
Offset Name Description



-----------------------------------------------------------------------
0 Address of error handling routine (0008)
2 Address of error handling routine (0008)
4 Channel type ("M" or "M"+128 for 'ad-hoc' channels)
5 Address of output subroutine
7 Address of input routine
9 Length of channel (595)

11 CHBYTE Record pointer (0-512).
13 CHREC Record number, lower byte
14 CHNAME 10 byte filename with trailing spaces
24 CHFLAG Flag byte: bit 0 set - open for write

reset - open for read
25 CHDRIV Drive number
26 CHMAP - Sector number of parent directory on flash disk, or

- File handle of a file on the 'server disk'
28 File type literal.
29 Record number, upper byte.
30 Device code

.. Not used

67 RECFLG Flag byte: bit 0 = 0
bit 1 = last record
bit 2 = not a PRINT file

68 RECNUM Not used
69 RECLEN Number of bytes of data in the current record (0-512)
71 RECNAM Not used
81 DESCHK Not used
82 CHDATA 512 bytes of data

594 DCHK Not used
-----------------------------------------------------------------------

4.3 The 'Work RAM'
is a 512 bytes RAM area, mapped at address #2E00 of the 'Shadow ROM'

4.3.1 Main logical drive descriptor (12 bytes)
#2E00 CRT_DV Current device code
#2E01 CRT_DR Current drive number
#2E02 PRV_DV Previous device code
#2E03 PRV_DR Previous drive number
#2E04 VOL_OF Volume offset (in logical drives)
#2E06 CLU_SZ Cluster size - 1
#2E07 ROOT_D First sector number of root directory
#2E08 SEC_NR In-cluster sector number
#2E0A FAT_SN Pointer to the current FAT sector number

4.3.2 Alternate logical drive descriptor (12 bytes)
Same structure as the main descriptor
#2E0C ALT_DV

4.3.4 Device capacity table (8 bytes)
Size (in logical drives) and number (0-15)
of the last volume for each device
#2E18 VOL_TB Not used
#2E1A Server drive
#2E1C Flash drive
#2E1E Not used

4.3.5 Volumes table (4 bytes)
Current volume number for each device
#2E20 CRT_VL Not used
#2E21 Server drive
#2E22 Flash drive
#2E23 Not used

#2E24 Spare initialized variables

4.3.6 Sector buffer pointers (16 bytes)
#2E30 SECT_0 Pointer for buffer 0
#2E32 SECT_1 Pointer for buffer 1
#2E34 SECT_F Pointer for buffer F
#2E36 SECT_3 Pointer for buffer 3
#2E38 SECT_L Pointer for buffer L
#2E3A SECT_S Pointer for buffer S
#2E3C SECT_A Pointer for buffer A
#2E3E SECT_Z Parent directory pointer



4.3.7 'Server drive' file descriptor (16 bytes)
#2E40 N_DESC File type
#2E4B N_HNDL File handle
#2E4D N_FLEN File length

4.3.8 'Input tape' variables (10 bytes)
#2E50 L_FLAG Flag
#2E51 L_FSEC First sector
#2E53 L_FPNT File pointer
#2E55 L_LENL Length (low)
#2E57 L_LENH Length (high)
#2E58 L_DEVN Device code
#2E59 L_DRVN Drive number

4.3.9 'Output tape' variables (10 bytes)
#2E5A S_FLAG Flag
#2E5B S_FSEC First sector
#2E5D S_DIRN Directory nr
#2E5F S_BLEN Tape length
#2E62 S_DEVN Device code
#2E63 S_DRVN Drive number

4.3.10 (.Z80) snapshot variables (10 bytes)
#2E64 Z_FLAG Flag
#2E65 Z_FSEC First sector
#2E67 TMP_HL
#2E69 TMP_JP
#2E6A TMP_AD
#2E6C Z_DEVN Device code
#2E6D Z_DRVN Drive number

4.3.11 Printer buffer pointer (2 bytes)
#2E6E PBF_PT

4.3.13 Directory search variables (6 bytes)
#2E70 D_NUMB Directory number
#2E72 D_SECT Sector number
#2E74 D_PNTR Pointer

4.3.14 Flash drive block number (4 bytes)
#2E76 BLK_LO Low word
#2E78 BLK_HI High word
#2E7A DAT_LN Data length

4.3.16 Other
#2E7C SPARE_ Spare
#2E7E AX_CMD
#2E7F AX_ERR

4.3.12 Copy/Rename destination file parameters (16 bytes)
#2E80 DST_TY File type
#2E81 DST_LN Filename length
#2E83 DST_AD Filename address
#2E85 DST_NA Filename

4.3.17 Internal Stack (32 levels)

4.3.18 Printer buffer (64 bytes)
#2EC0 PR_BUF

4.3.19 Page buffer (256 bytes)
#2F00 BUFF_P

4.4 Sector buffers (4 KB)

4.4.1 Sector buffers
#3000 BUFF_0 Main sector
#3200 BUFF_1 Allocation
#3400 Main FAT
#3600 BUFF_3 Work
#3800 BUFF_L 'Input tape'
#3A00 BUFF_S 'Output tape'
#3C00 Alternate FAT

4.4.2 Application data (256 bytes)
#3E00 AP_DAT



4.4.3 Current directories table
Stores the last 64 directory numbers used
#3F00 DIR_TB



5. File system

5.1 Local file system ( Flash drive )
- The device is implicitly partitioned into fixed-sized logical drives
of 32 MB ( 65536 sectors of 512 bytes ).
- The maximum usable device space is of 128 GB, subdivided in 'volumes'
of 255 logical drives.
- The logical drives are formatted according to a simplified 16-bit FAT
system, the FAT entries being sector, rather than cluster numbers.
- The allocation unit (cluster) can be of: 2, 4, 8 or 16 sectors
- Sector number 0 of any logical drive is not used.
- The FAT contains ( 65536 / cluster size ) entries, occupying sectors
1 through ( 256 / cluster size ).
- Sector number ( 256 / cluster size ) + 1 contains the first record of
the root directory.
- As cluster 0 is always occupied by the FAT, the corresponding FAT
entry (bytes 0 and 1 of sector 1) is used to store the cluster size.
- As sectors 0 and 1 are not available for allocation, the correspon-
ding FAT entry values are used for marking:

0000 = Free cluster
0001 = Last cluster of the file

- When a file is deleted, the parent directory is compacted by reclaiming
the corresponding entry and shifting all further entries to its right,
which can span several records, downwards by 16 bytes.

5.2 Remote file system ('Server drive')
The remote device is accessed via 'command blocks' sent to the
peripheral controller, which relays them to a machine, running a
suitable server application.
The structure of the command block is:
-------------------------------------------------------

Byte Nr. Description
-------------------------------------------------------

1 Command byte: bits 0-3 = command parameter
bits 4-7 = command code

2 Auxiliary command code
3,4 Length of data: n = 0-512

5..(n+4) (n) bytes of data
-------------------------------------------------------

After processing the command, the server sends back a 'response block':
-----------------------------------------

Byte Nr. Description
-----------------------------------------

1 Error code or: 0 = No error
2 Auxiliary error code

3,4 Length of data: n = 0-512
5..(n+4) (n) bytes of 'response' data

-----------------------------------------

5.2.1 Following commands are implemented:
---------------------------------------------------------
Code Command Parameter Data Response
---------------------------------------------------------

0 Close File Handle
1 Read sector Handle Sector
2 Write sector Handle Sector
3 Set file pointer Handle Position
3 Set pointer to EOF Handle File size
4 Create temp. file Type Name Handle
5 Create perm. file Type Name Handle
6 Open temp. file Type Name Descriptor
6 Open next file any Descriptor
7 Open perm. file Type Name Descriptor
8 Find file Type Name Descriptor
8 Find next file any Descriptor
9 Delete file Type Name

10 Rename file Type Name
11 Copy file Type Name
12 Get directory list 0 Name List
12 Next directory list 0 List
12 Host command 1 Command Result
12 Dump OpSys 6 Sector
12 Download OpSys 7 Sector
12 Print buffer 8 Buffer
13 Select directory 0 Name Path



13 Get path 0 Path
14 Create directory 0 Name
15 Delete directory 0 Name
---------------------------------------------------------

5.2.2 Notes
- A 'Handle' is a number in the range: 0-15
- The 'Type' is a number in the range: 0-15 defined at (3.4)
- A 'permanent file' is allocated a handle = 1-15. The same handle is
not re-allocated before the file is explicitly closed.
- A 'temporary file' is always allocated the handle = 0. Creating or
opening another 'temporary file' automatically closes the previous one.
- For the 'Set file pointer' command the position can be specified
either on two, or on four bytes: [<Pos>]<Rec>, where <Pos>= record
pointer (0-511) and <Rec>= record number (0-32767).
- The 'Set pointer to EOF' command returns the length of the file as a
3-bytes number.

5.2.3 The 'Find (next) file' command returns a 16-bytes descriptor:
--------------------------------
Offset Length Description
--------------------------------

0 1 File type (0-11)
1 10 File name

11 2 00 00
13 3 File length

--------------------------------

5.2.4 The descriptor returned by the 'Open temporary|permanent|
next file'command contains also the file handle
---------------------------------------
Offset Length Description
---------------------------------------

0 1 Actual file type (0-11)
1 10 Actual file name

11 2 File handle (0-15)
13 3 File length

---------------------------------------

5.2.5 The handle returned by the 'Create temporary|permanent file'
command is a two-byte number in the range 0-15.
- After a 'Find file' or 'Open temp. file' command, a subsequent 'Find
next file' or 'Open next file' command will attempt to find/open the
next file with a matching name.
- A copy|rename operation requires two steps:

1. The source file is found by issuing a 'Find [next] file' command.
2. The destination name is specified in a 'Rename file' or 'Copy

file' command.

5.2.6 The list returned by the 'Get|Next directory list' command
consists of a sequence of 16-bytes file descriptors, with #FF as an end
marker. For file types 4-11 the descriptors are the same as those
returned by the 'Find (next) file' command. (see 5.2.3)
For file types 0-3 the descriptors contain also information from the
9-byte BASIC header of the files:
-------------------------------------------------
Offset Length Description
-------------------------------------------------

0 1 File type (0-3)
1 10 File name

11 1 File type (from BASIC header)
12 2 File length
14 2 Start line (Program), or

Array name (Numeric or String), or
Loading address (Code)

--------------------------------------------------

5.3 Flash drive
- The flash drive is accessed in the same way as the 'server drive',
the command and response blocks having the same structure.
- Following commands are implemented:
---------------------------------------------------------
Code Command Parameter Data Response
---------------------------------------------------------
15 Receive - Write 5 Address
15 Set write address 6 Address
15 Read - Transmit 7 Address
15 Read block 8 Address Sector



15 Read to buffer 9 Address
15 Write block 10 Sector
15 Write from buffer 11 Address
15 Identify card 12 Identifier
15 First erase address 13 Address
15 Last erase address 14 Address
15 Erase block 15
---------------------------------------------------------
- 'Address' is a 4-bytes sector number
- 'Identifier' is an 8-bytes card identifier string followed by the

4-bytes capacity (last sector number) of the card
- 'Sector' is a 512-bytes block of data
- Writing a sector requires two steps:

1. The sector number is specified in a 'Set write address' command
2. The data is sent via a 'Write sector' command

- The 'Write from buffer' writes the sector read by a previous 'Read to
buffer' command

- Erasing a block requires three steps:
1. The start of the block is specified in a 'First erase address'

command
2. The end of the block is specified in a 'Last erase address'

command
3. The 'Erase block' command is sent to actually erase the block



6. Hook Codes

The ZX INTERFACE 1 hook codes.
--------------------------------------------------------------

Nr Label Address Description
--------------------------------------------------------------
#1B WAI_KY #0103 Console input
#1C PRI_NT #0106 Console output
#1D #0109 R232 input Not implemented
#1E #010C R232 output Not implemented
#1F L_PRNT #010F Printer output
#20 TST_KY #0112 Keyboard test
#21 HK_NOP #0115 Select drive
#22 OPN_FL #0118 Open file
#23 CLO_FL #011B Close file
#24 ERA_FL #011E Delete file
#25 RD_SQE #0121 Read sequential
#26 WR_SQE #0124 Write sequential
#27 RD_REC #0127 Read random
#28 RD_CSC #012A Read sector
#29 NEXT_S #012D Read next
#2A WR_CSC #0130 Write sector
#2B CRE_CH #0133 Create buffer
#2C RCL_CH #0136 Delete buffer
#2D #0139 Open network channel Not implemented
#2E #013C Close network channel Not implemented
#2F #013F Get packet Not implemented
#30 #0142 Send packet Not implemented
#31 HK_NOP #0145 Create system variables
#32 SERV_R #0148 Call shadow ROM routine
#33 #014B Read next header Not implemented
#34 #014E Open "B" channel Not implemented
--------------------------------------------------------------

Additional hook codes
--------------------------------------------------------------

Nr Label Address Description
--------------------------------------------------------------
#35 RD_SEC #0151 Read sector
#36 WR_SEC #0154 Write sector
#37 NEXT_R #0157 Next sector
#38 RCLM_A #015A Reclaim 'ad-hoc' channels
#39 LOCT_F #015D Find file or directory
#3A FIND_F #0160 Get (next) file or directory info
#3B OPEN_S #0163 Open stream
#3C CLOS_S #0166 Close stream
#3D SAV_LD #0169 SAVE / LOAD / VERIFY / MERGE
#3E MOVE_E #016C Copy file or Set file pointer
#3F CAT_LG #016F Catalogue of current or specified path
#40 FORM_T #0172 Format drive
#41 CLR_SC #0175 Clear screen
#42 CLOS_A #0178 Close all streams
#43 SV_CMD #017B Custom peripheral port command
#44 A_PATH #017E Get absolute path
#45 DIR_FL #0181 Get first directory list
#46 DIR_NL #0184 Get next directory list
#47 PR_INT #0187 Print 3-byte integer
#48 SND_CM #018A Peripheral command
#49 RCV_NW #018D Peripheral send-receive
--------------------------------------------------------------
- A 'File type literal' is a character as defined at (3.4)
- A 'Device type literal' is a character as defined at (3.1)
- A 'Device code' is a byte defined as:

Bits 0-3: Volume number (0-15)
Bits 4-6: Device number (0-7)

0 - Not used
1 - Server drive
2 - Flash drive
3 - Not used

Bit 7 : 1

6.1 Console input (#1B)
6.1.1 Action: Wait for a key to be pressed
6.1.2 Input data: None
6.1.3 Output data:

- (A) = Character code



6.2 Console output (#1C)
6.2.1 Action: Send a character to the screen
6.2.2 Input data:

- (A) = Character code
6.2.3 Output data: None

6.3 Printer output (#1F)
6.3.1 Action: Print a character to the printer
6.3.2 Input data:

- (A) = Character code
6.3.3 Output data: None

6.4 Keyboard test (#20)
6.4.1 Action: Test if a key is being pressed
6.4.2 Input data: None
6.4.3 Output data:

- Carry flag set if a key is being pressed

6.5 Open file (#22)
6.5.1 Action: Open a file for sequential access.
6.5.2 Input data:

- (A) = #BF (IN) - Open for read
= #DF (OUT) - Open for write
= #A5 (RND) - Create a file handle

- (DRV_NR) = Drive number (1-255)
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)

6.5.3 Output data:
- (IX) = Address of the channel descriptor

6.6 Close file (#23)
6.6.1 Action: Close a file.
6.6.2 Input data:

- (IX) = Address of the channel descriptor
6.6.3 Output data: None

6.7 Delete file (#24)
6.7.1 Action: Delete a file
6.7.2 Input data:

- (DRV_NR) = Drive number (1-255)
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)

6.7.3 Output data: None

6.8 Read sequential (#25)
6.8.1 Action: Read the next record
6.8.2 Input data:

- (IX) = Address of the channel descriptor
6.8.3 Output data: None

6.9 Write sequential (#26)
6.9.1 Action: Write the current record
6.9.2 Input data:

- (IX) = Address of the channel descriptor
6.9.3 Output data: None

6.10 Read record (#27)
6.10.1 Action: Read the current record
6.10.2 Input data:

- (IX) = Address of the channel descriptor
6.10.3 Output data: None

6.11 Read sector (#28)
6.11.1 Action: Read sector CHREC into channel buffer
6.11.2 Input data:

- (IX) = Address of the channel descriptor
6.11.3 Output data:

6.12 Read next (#29)
6.12.1 Action: Read next sector into channel buffer
6.12.2 Input data:

- (IX) = Address of the channel descriptor
6.12.3 Output data:



6.13 Write sector (#2A)
6.13.1 Action: Write channel buffer to sector CHREC
6.13.2 Input data:

- (IX) = Address of the channel descriptor
6.13.3 Output data:

6.14 Create buffer (#2B)
6.14.1 Action: Create a channel descriptor
6.14.2 Input data:

- (A) = #BF (IN) - Open for read
= #DF (OUT) - Open for write
= #A5 (RND) - Create a file handle

- (DRV_NR) = Drive number (1-255)
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)

6.14.3 Output data:
- (IX) = Address of the channel descriptor

6.15 Delete buffer (#2C)
6.15.1 Action: Delete a channel descriptor
6.15.2 Input data:

- (IX) = Address of the channel descriptor
6.15.3 Output data: None

6.16 Create system variables (#31)
6.16.1 Action: Create system variables
6.16.2 Input data: None
6.16.3 Output data: None

6.17 Execute code (#32)
6.17.1 Action: Execute code from address (HD__11)
6.17.2 Input data:

- (HD__11) = Address of the executable code
6.17.3 Output data: None

6.18 Read sector (#35)
6.18.1 Action: Read sector into buffer.

- Does not apply to the 'server drive'.
6.18.2 Input data:

- (A) = Drive number (1-255)
- (BC) = Sector Number (0-65535)
- (HL) = Buffer address (0-65536)
- (DEV_TY) = Device type literal or device code

6.18.3 Output data: None

6.19 Write sector (#36).
6.19.1 Action: Write sector from buffer.

- Does not apply to the 'server drive'.
6.19.2 Input data:

- (A) = Drive number (1-255)
- (BC) = Sector Number (0-65535)
- (HL) = Buffer address (0-65536)
- (DEV_TY) = Device type literal or device code

6.19.3 Output data: None

6.20 Next sector (#37).
6.20.1 Action: Find the sector number of the next record of a file.

- Initially it should be called with (BC)=0 to flush the FAT
buffer.

- Does not apply to the 'server drive'.
6.20.2 Input data:

- (A) = Drive number (1-255)
- (BC) = Sector number (0-65535)
- (DEV_TY) = Device type literal or device code

6.20.3 Output data:
- Zero flag set = No more records
- (BC) = Next sector number (0-65535)

6.21 Reclaim all 'ad-hoc' channels (#38).
6.21.1 Action: All channels not associated with streams are

reclaimed.
6.21.2 Input data: None
6.21.3 Output data: None

6.22 Find file or directory (#39).



6.22.1 Action: Check if a specified file or directory exists.
6.22.2 Input data:

- (DRV_NR) = Drive number (1-255)
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)

6.22.3 Output data:
Carry Flag reset = file exists.

6.23 Get (next) file or directory info (#3A).
6.23.1 Action: Retrieve file information.

- If bit 6 of FLAGS3 is set, the next matching file will be
found.

6.23.2 Input data:
- (DRV_NR) = Drive number (1-255)
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)

6.23.3 Output data:
- Carry Flag reset = file exists.
- (HD__00) = File type
- (HD__0B) = Sector number of first record.
- (HD__0F) = File length (bytes 1 and 2)
- (HD__11) = File length (byte 3)
- (DE) = Directory number
- (BC) = Sector number of the directory entry.
- (HL) = Pointer to the directory entry.

6.24 Open stream (#3B).
6.24.1 Action: Open a stream to a file.
6.24.2 Input data:

- (A) = #BF (IN) - Open for read
= #DF (OUT) - Open for write
= #A5 (RND) - Create a file handle

- (DRV_NR) = Drive number (1-255)
- (STR_NR) = Stream number (0-15).
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)

6.24.3 Output data: None.

6.25 Close stream (#3C).
6.25.1 Action: Close a stream.
6.25.2 Input Data:

- (A) = Stream number (0-15)
6.25.3 Output data: None

6.26 SAVE / LOAD (#3D).
6.26.1 Action:

- Read/Write memory contents from/ to a file.
- Create (SAVE) / change (LOAD) directory.
- Close the 'input tape', 'output tape' or 'snapshot file'.

6.26.2 Input data:
Operation type:

- (A) = 0,4 - SAVE
= 1,5 - LOAD
= 2,6 - VERIFY
= 3,7 - MERGE
= 8 - Close 'output tape'
= 9 - Close 'input tape'
= 10 - Close snapshot file.

File parameters, specified by a descriptor or a handle
Descriptor:
- (DRV_NR) = Drive number (1-255)
- (STR_NR) = 255
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal

Effective only for data type: 7,8,10 and 11
- (NAM_AD) = Address of filename (0-65535)
Handle:
- (STR_NR) = Handle (0-15)

Data type code
- (HD__00) = 0 - BASIC program

= 1 - BASIC number array



= 2 - BASIC string array
= 3 - BASIC 'CODE' block
= 7 - Binary block
= 10 - Tape file
= 11 - Snapshot file

Parameters of BASIC program only for data type: 0
- (HD__11) = Auto-run line number
Parameters of BASIC array, only for data type: 1-2
- (HD__0F) = Array name ("a"-"z").
Length of memory block, only for data type: 3 and 7
- (HD__0B) = Length of memory block.
Address of memory block, only for data type: 3 and 7
- (HD__0D) = Address of memory block.
File pointer, only for data type: 7
- (HD__0F) = Record pointer (0-511)
- (HD__11) = Record number (0-32767)

If bit 2 of the 'operation type' in the A-register is set, the
pointer doesn't need to be specified as it is initialized to 0
The pointer is automatically updated after the operation

6.26.3 Output data: None

6.27 Copy /rename file (#3E).
6.27.1 Action: Copy or rename files / rename directory
6.27.2 Input data:

Operation type:
- (A) = #CC (TO) - copy

= #AC (AT) - rename
Source: specified by a stream or a file descriptor

Stream:
- (STR_NR) = Stream number (0-15)
File descriptor:
- (DRV_NR) = Drive number (1-255)
- (STR_NR) = 255
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = Length of filename (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of filename (0-65535)

Destination, specified by a stream or a file descriptor
Stream:
- (STR_N2) = Stream number (0-15)
File descriptor:
- (DRV_N2) = Drive number (1-255)
- (STR_N2) = 255
- (DEV_T2) = Device type literal or device code
- (NAM_L2) = Length of filename (1-254)
- (FIL_T2) = File type literal
- (NAM_A2) = Address of filename (0-65535)

6.27.3 Output data: None

6.28 Set file pointer (#3E).
6.28.1 Action: Set file the pointer of a M or H channel to which

a given stream is opened.
6.28.2 Input data:

- (A) = Operation type: #A9 (POINT)
- (STR_NR) = Stream number (0-15)
- (HD__0F) = Record pointer (0-511)
- (HD__11) = Record number (0-32767)

6.28.3 Output data: None

6.29 Catalogue (#3F).
6.29.1 Action: Produce a file catalogue.
6.29.2 Input data:

- (DRV_NR) = Drive number (1-255)
- (STR_NR) = Stream number (0-15)
- (DEV_TY) = Device type literal or device code
- (NAM_LN) = 0
A directory or file name may be specified to be used as a
filter for command's output
- (NAM_LN) = Length of name (1-254)
- (FIL_TY) = File type literal
- (NAM_AD) = Address of name (0-65535)

6.29.3 Output data: None

6.30 Format logical drive (#40).
6.30.1 Action: Format logical drive

- Does not apply to the 'server drive'
6.30.2 Input data:

- (A) = Drive number (1-255)



- (STR_NR) = Cluster size: 2, 4, 8 or 16
- (DEV_TY) = Device type literal or device code

6.30.3 Output data: None

6.31 Clear Screen (#41)
6.31.1 Action: Same as the extended BASIC 'CLS #' Command
6.31.2 Input data: None
6.31.3 Output data: None

6.32 Close all streams (#42)
6.32.1 Action: Same as the extended BASIC 'CLEAR #' command
6.32.2 Input data: None
6.32.3 Output data: None

6.33 Peripheral Module Command (#43)
6.33.1 Action: Sends a command to the server or the peripheral

controller and prints the response as hex-dump
6.33.2 Input data:

- (A) = Selector
bit 0 - Adaptor / not Server
bit 1 - Print hex-dump

- (BC) = Length of command string
- (HL) = Address of command string

6.33.3 Output data: None

6.34 Get absolute path (#44).
6.34.1 Action: Get parameters of absolute path name
6.34.2 Input data:

- (DRV_NR) = Drive number (1-255)
- (DEV_TY) = Device type literal or device code
Relative path name
- (NAM_LN) = Length of filename (1-254) or

Zero for the current directory
- (NAM_AD) = Address of filename (0-65535)

6.34.3 Output data: Absolute path name in BUFF_3
- (HL) = Address of absolute file name
- (BC) = Length of absolute file name

6.35 Get first directory list (#45).
6.35.1 Action: Get the first directory list as

specified at 3.4.5 and 5.2.6
6.35.2 Input data:

- (DRV_NR) = Drive number (1-255)
- (DEV_TY) = Device type literal or device code
Relative path name
- (NAM_LN) = Length of directory name (1-254) or

Zero for the current directory
- (NAM_AD) = Address of directory name (0-65535)

6.35.3 Output data: First directory list in BUFF_3
- (HL) = Address of first directory list
- (SER_FL) = 0 if root directory

6.36 Get next directory list (#46).
6.36.1 Action: Get the next directory list as specified

specified at 3.4.5 and 5.2.6
6.36.2 Input data: None
6.36.3 Output data: Next directory list in BUFF_3

- (HL) = Address of next directory list

6.37 Print integer (#47).
6.37.1 Action: Print the 3-byte integer (A) (DE)

with 3, 6 or 8 digits and leading spaces
6.37.2 Input data:

- (DE) = Lower bytes
- (A) = Upper byte
- The flags specify the number of digits:

---------------------
Zero Carry Width

---------------------
reset - 3

set set 6
set reset 8

---------------------
6.37.3 Output data: None

6.37 Peripheral command (#48)
6.37.1 Action: Send only a command code to the peripheral

controller.



6.37.2 Input data:
- (A) = Command code

6.37.3 Output data:
- (A) = Error code ( 0 = no error )
- (HL) = Adress of response data (0-65535)
- Carry = Set if error

6.38 Peripheral send-receive (#49)
6.38.1 Action: Send and receive data to/from the

peripheral controller.
6.38.2 Input data:

- (A) = Command code
- (HL) = Data block address (0-65535)
- (BC) = Length of data block (0-512)
- (DE) = Response address (0-65535)

6.38.3 Output data:
- (A) = Error code
- (HL) = Response address
- (BC) = Response length


